Articles | Volume 5, issue 1
https://doi.org/10.5194/wcd-5-357-2024
https://doi.org/10.5194/wcd-5-357-2024
Research article
 | 
04 Mar 2024
Research article |  | 04 Mar 2024

Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming

William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock

Related authors

Visualising historical changes in air pollution with the Air Quality Stripes
Kirsty Jane Pringle, Richard Rigby, Steven Turnock, Carly Reddington, Meruyert Shayakhmetova, Malcolm Illingworth, Denis Barclay, Neil Chue Hong, Ed Hawkins, Douglas S. Hamilton, Ethan Brain, and James B. McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-3961,https://doi.org/10.5194/egusphere-2024-3961, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis
Jacob Perez, Amanda C. Maycock, Stephen D. Griffiths, Steven C. Hardiman, and Christine M. McKenna
Weather Clim. Dynam., 5, 1061–1078, https://doi.org/10.5194/wcd-5-1061-2024,https://doi.org/10.5194/wcd-5-1061-2024, 2024
Short summary
Investigation of the impact of satellite vertical sensitivity on long-term retrieved lower-tropospheric ozone trends
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024,https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Minimal influence of future Arctic sea ice loss on North Atlantic jet stream morphology
Yvonne Anderson, Jacob Perez, and Amanda C. Maycock
EGUsphere, https://doi.org/10.5194/egusphere-2024-2506,https://doi.org/10.5194/egusphere-2024-2506, 2024
Short summary
Model spread in multidecadal North Atlantic Oscillation variability connected to stratosphere–troposphere coupling
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024,https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
Western disturbances and climate variability: a review of recent developments
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
Weather Clim. Dynam., 6, 43–112, https://doi.org/10.5194/wcd-6-43-2025,https://doi.org/10.5194/wcd-6-43-2025, 2025
Short summary
Role of the quasi-biennial oscillation in alleviating biases in the semi-annual oscillation
Aleena M. Jaison, Lesley J. Gray, Scott M. Osprey, Jeff R. Knight, and Martin B. Andrews
Weather Clim. Dynam., 5, 1489–1504, https://doi.org/10.5194/wcd-5-1489-2024,https://doi.org/10.5194/wcd-5-1489-2024, 2024
Short summary
Atmospheric Mixed Rossby Gravity Waves over Tropical Pacific during the Austral Summer
Hugo Alves Braga and Victor Magaña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3317,https://doi.org/10.5194/egusphere-2024-3317, 2024
Short summary
A simple model linking radiative–convective instability, convective aggregation and large-scale dynamics
Matthew Davison and Peter Haynes
Weather Clim. Dynam., 5, 1153–1185, https://doi.org/10.5194/wcd-5-1153-2024,https://doi.org/10.5194/wcd-5-1153-2024, 2024
Short summary
Spatial and temporal variability of the freezing level in Patagonia's atmosphere
Nicolás García-Lee, Claudio Bravo, Álvaro Gónzalez-Reyes, and Piero Mardones
Weather Clim. Dynam., 5, 1137–1151, https://doi.org/10.5194/wcd-5-1137-2024,https://doi.org/10.5194/wcd-5-1137-2024, 2024
Short summary

Cited articles

Alexander, M. A., Vimont, D. J., Chang, P., and Scott, J. D.: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments, J. Climate, 23, 2885–2901, https://doi.org/10.1175/2010JCLI3205.1, 2010. 
Amaya, D. J., Kosaka, Y., Zhou, W., Zhang, Y., Xie, S. P., and Miller, A. J.: The North Pacific pacemaker effect on historical ENSO and its mechanisms, J. Climate, 32, 7643–7661, https://doi.org/10.1175/JCLI-D-19-0040.1, 2019. 
Blaker, A. T., Joshi, M., Sinha, B., Stevens, D. P., Smith, R. S., and Hirschi, J. J.-M.: FORTE 2.0: a fast, parallel and flexible coupled climate model, Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, 2021. 
Blaker, A. T., Dow, W. J., and Joshi, M. M.: NOC-MSM/FORTE2.0: FORTE 2.0: a fast, parallel and flexible coupled climate model, Zenodo [code], https://doi.org/10.5281/zenodo.8142714, 2023. 
Chen, S. and Yu, B.: The seasonal footprinting mechanism in large ensemble simulations of the second generation Canadian earth system model: uncertainty due to internal climate variability, Clim. Dynam., 55, 2523–2541, https://doi.org/10.1007/s00382-020-05396-y, 2020. 
Download
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.