Articles | Volume 1, issue 1
https://doi.org/10.5194/wcd-1-207-2020
https://doi.org/10.5194/wcd-1-207-2020
Research article
 | 
28 Apr 2020
Research article |  | 28 Apr 2020

Large impact of tiny model domain shifts for the Pentecost 2014 mesoscale convective system over Germany

Christian Barthlott and Andrew I. Barrett

Related authors

Pseudo-Global Warming Simulations Reveal Enhanced Supercell Intensity and Hail Growth in a Future Central European Climate
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069,https://doi.org/10.5194/egusphere-2025-3069, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The impact of microphysical uncertainty conditional on initial and boundary condition uncertainty under varying synoptic control
Takumi Matsunobu, Christian Keil, and Christian Barthlott
Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022,https://doi.org/10.5194/wcd-3-1273-2022, 2022
Short summary
Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022,https://doi.org/10.5194/acp-22-10841-2022, 2022
Short summary
Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 2153–2172, https://doi.org/10.5194/acp-22-2153-2022,https://doi.org/10.5194/acp-22-2153-2022, 2022
Short summary
Relative impact of aerosol, soil moisture, and orography perturbations on deep convection
Linda Schneider, Christian Barthlott, Corinna Hoose, and Andrew I. Barrett
Atmos. Chem. Phys., 19, 12343–12359, https://doi.org/10.5194/acp-19-12343-2019,https://doi.org/10.5194/acp-19-12343-2019, 2019
Short summary

Related subject area

Atmospheric predictability
Causal relationships and predictability of the summer East Atlantic teleconnection
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024,https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Linking Weather Regimes to the Variability of Warm-Season Tornado Activity over the United States
Matthew Graber, Zhuo Wang, and Robert J. Trapp
EGUsphere, https://doi.org/10.5194/egusphere-2024-3216,https://doi.org/10.5194/egusphere-2024-3216, 2024
Short summary
Systematic evaluation of the predictability of different Mediterranean cyclone categories
Benjamin Doiteau, Florian Pantillon, Matthieu Plu, Laurent Descamps, and Thomas Rieutord
Weather Clim. Dynam., 5, 1409–1427, https://doi.org/10.5194/wcd-5-1409-2024,https://doi.org/10.5194/wcd-5-1409-2024, 2024
Short summary
Understanding winter windstorm predictability over Europe
Lisa Degenhardt, Gregor C. Leckebusch, and Adam A. Scaife
Weather Clim. Dynam., 5, 587–607, https://doi.org/10.5194/wcd-5-587-2024,https://doi.org/10.5194/wcd-5-587-2024, 2024
Short summary
Intrinsic predictability limits arising from Indian Ocean Madden–Julian oscillation (MJO) heating: effects on tropical and extratropical teleconnections
David Martin Straus, Daniela I. V. Domeisen, Sarah-Jane Lock, Franco Molteni, and Priyanka Yadav
Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023,https://doi.org/10.5194/wcd-4-1001-2023, 2023
Short summary

Cited articles

Barrett, A. I., Gray, S. L., Kirshbaum, D. J., Roberts, N. M., Schultz, D. M., and Fairman Jr., J. G.: Synoptic versus orographic control on stationary convective banding, Q. J. Roy. Meteorol. Soc., 141, 1101–1113, https://doi.org/10.1002/qj.2409, 2015. a, b
Barrett, A. I., Wellmann, C., Seifert, A., Hoose, C., Vogel, B., and Kunz, M.: One step at a time: How model timestep significantly affects Convection-Permitting simulations, J. Adv. Model. Earth Syst., 11, 641–658, https://doi.org/10.1029/2018MS001418, 2019. a
Barthlott, C. and Hoose, C.: Aerosol effects on clouds and precipitation over central Europe in different weather regimes, J. Atmos. Sci., 75, 4247–4264, https://doi.org/10.1175/JAS-D-18-0110.1, 2018. a
Barthlott, C., Hauck, C., Schädler, G., Kalthoff, N., and Kottmeier, C.: Soil moisture impacts on convective indices and precipitation over complex terrain, Meteorol. Z., 20, 185–197, https://doi.org/10.1127/0941-2948/2011/0216, 2011. a
Barthlott, C., Mühr, B., and Hoose, C.: Sensitivity of the 2014 Pentecost storms over Germany to different model grids and microphysics schemes, Q. J. Roy. Meteorol. Soc., 143, 1485–1503, https://doi.org/10.1002/qj.3019, 2017. a, b, c, d
Download
Short summary
The mesoscale convective system (MCS) that affected Germany at Pentecost 2014 was one of the most severe for decades. However, the predictability of this system was very low. By moving the model domain by just one grid point changed whether the MCS was successfully simulated or not. The decisive factor seems to be small differences in the initial track of the convection: cooler air near the coast inhibited development there, but tracks slightly more inland found more favorable conditions.
Share