Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-313-2020
https://doi.org/10.5194/wcd-1-313-2020
Research article
 | 
13 Jul 2020
Research article |  | 13 Jul 2020

Robust predictors for seasonal Atlantic hurricane activity identified with causal effect networks

Peter Pfleiderer, Carl-Friedrich Schleussner, Tobias Geiger, and Marlene Kretschmer

Related authors

Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024,https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Extreme Atlantic hurricane seasons made twice as likely by ocean warming
Peter Pfleiderer, Shruti Nath, and Carl-Friedrich Schleussner
Weather Clim. Dynam., 3, 471–482, https://doi.org/10.5194/wcd-3-471-2022,https://doi.org/10.5194/wcd-3-471-2022, 2022
Short summary
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120, https://doi.org/10.5194/esd-12-103-2021,https://doi.org/10.5194/esd-12-103-2021, 2021
Short summary
Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
Andreas Geiges, Alexander Nauels, Paola Yanguas Parra, Marina Andrijevic, William Hare, Peter Pfleiderer, Michiel Schaeffer, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 11, 697–708, https://doi.org/10.5194/esd-11-697-2020,https://doi.org/10.5194/esd-11-697-2020, 2020
Short summary

Related subject area

Atmospheric predictability
Systematic evaluation of the predictability of different Mediterranean cyclone categories
Benjamin Doiteau, Florian Pantillon, Matthieu Plu, Laurent Descamps, and Thomas Rieutord
Weather Clim. Dynam., 5, 1409–1427, https://doi.org/10.5194/wcd-5-1409-2024,https://doi.org/10.5194/wcd-5-1409-2024, 2024
Short summary
Understanding winter windstorm predictability over Europe
Lisa Degenhardt, Gregor C. Leckebusch, and Adam A. Scaife
Weather Clim. Dynam., 5, 587–607, https://doi.org/10.5194/wcd-5-587-2024,https://doi.org/10.5194/wcd-5-587-2024, 2024
Short summary
Intrinsic predictability limits arising from Indian Ocean Madden–Julian oscillation (MJO) heating: effects on tropical and extratropical teleconnections
David Martin Straus, Daniela I. V. Domeisen, Sarah-Jane Lock, Franco Molteni, and Priyanka Yadav
Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023,https://doi.org/10.5194/wcd-4-1001-2023, 2023
Short summary
Predictable decadal forcing of the North Atlantic jet speed by sub-polar North Atlantic sea surface temperatures
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
Weather Clim. Dynam., 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023,https://doi.org/10.5194/wcd-4-853-2023, 2023
Short summary
Exploiting the signal-to-noise ratio in multi-system predictions of boreal summer precipitation and temperature
Juan Camilo Acosta Navarro and Andrea Toreti
Weather Clim. Dynam., 4, 823–831, https://doi.org/10.5194/wcd-4-823-2023,https://doi.org/10.5194/wcd-4-823-2023, 2023
Short summary

Cited articles

Alexander, M. A., Halimeda Kilbourne, K., and Nye, J. A.: Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008, J. Marine Syst., 133, 14–26, https://doi.org/10.1016/j.jmarsys.2013.07.017, 2014. 
Brier, G. W.: Verification of forecasts expressed in terms of probability, Mon. Weather Rev., 78, 1–3, 1950. 
Camargo, S. J. and Hsiang, S. M.: Tropical Cyclones: From the Influence of Climate to their Socio-Economic Impacts, Extrem. Events Obs. Model. Econ., 73, 303–342, https://doi.org/10.1002/9781119157052.ch18, 2014. 
Caron, L.-P., Boudreault, M., and Bruyère, C. L.: Changes in large-scale controls of Atlantic tropical cyclone activity with the phases of the Atlantic multidecadal oscillation, Clim. Dynam., 44, 1801–1821, https://doi.org/10.1007/s00382-014-2186-5, 2015. 
CCRIF: The Caribbean Catastrophe Risk Insurance Facility, available at: https://www.ccrif.org, last access: 28 May 2020. 
Download
Short summary
Seasonal outlooks of Atlantic hurricane activity are required to enable risk reduction measures and disaster preparedness. Many seasonal forecasts are based on a selection of climate signals from which a statistical model is constructed. The crucial step in this approach is to select the most relevant predictors without overfitting. Here we show that causal effect networks can be used to identify the most robust predictors. Based on these predictors we construct a competitive forecast model.