Articles | Volume 1, issue 1
Weather Clim. Dynam., 1, 93–109, 2020
https://doi.org/10.5194/wcd-1-93-2020
Weather Clim. Dynam., 1, 93–109, 2020
https://doi.org/10.5194/wcd-1-93-2020

Research article 10 Mar 2020

Research article | 10 Mar 2020

The role of wave–wave interactions in sudden stratospheric warming formation

Erik A. Lindgren and Aditi Sheshadri

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021,https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021,https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020,https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020,https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020,https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary

Cited articles

Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., and Manney, G. L.: Unusual stratospheric transport and mixing during the 2002 Antarctic winter, Geophys. Res. Lett., 30, 1599, https://doi.org/10.1029/2003GL017117, 2003. a
Austin, J. and Palmer, T. N.: The importance of nonlinear wave processes in a quiescent winter stratosphere, Q. J. Roy. Meteor. Soc., 110, 289–301, https://doi.org/10.1002/qj.49711046402, 1984. a, b
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a
Birner, T. and Albers, J. R.: Sudden Stratospheric Warmings and Anomalous Upward Wave Activity Flux, SOLA, 13, 8–12, https://doi.org/10.2151/sola.13A-002, 2017. a, b, c, d, e, f, g, h, i
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining Sudden Stratospheric Warmings, B. Am. Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015. a
Download
Short summary
Sudden stratospheric warmings (SSWs) are extreme events that influence surface weather up to 2 months after onset. We remove wave–wave interactions (WWIs) in vertical sections of a general circulation model to investigate the role of WWIs in SSW formation. We show that the effects of WWIs depend strongly on the pressure levels where they occur and the zonal structure of the wave forcing in the troposphere. Our results highlight the importance of upper-level processes in stratospheric dynamics.