Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1303-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-1303-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of tropopause polar vortices in the intensification of summer Arctic cyclones
Department of Meteorology, University of Reading, Reading, RG6 6ET, UK
Kevin I. Hodges
Department of Meteorology, University of Reading, Reading, RG6 6ET, UK
National Centre for Atmospheric Science, University of Reading, Reading, RG6 6ET, UK
Jonathan L. Vautrey
Department of Meteorology, University of Reading, Reading, RG6 6ET, UK
now at: Met Office, Exeter, UK
John Methven
Department of Meteorology, University of Reading, Reading, RG6 6ET, UK
Related authors
Suzanne L. Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
Weather Clim. Dynam., 5, 1523–1544, https://doi.org/10.5194/wcd-5-1523-2024, https://doi.org/10.5194/wcd-5-1523-2024, 2024
Short summary
Short summary
Sting jets occur in some of the most damaging cyclones impacting Europe. We present the first climatology of sting-jet cyclones over the major ocean basins. Cyclones with sting-jet precursors occur over the North Atlantic, North Pacific, and Southern Oceans, with implications for wind warnings. Precursor cyclones have distinct characteristics, even in reanalyses that are too coarse to fully resolve sting jets, evidencing the climatological consequences of strong diabatic cloud processes.
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024, https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary
Short summary
Medicane Ianos was a very intense cyclone that led to harmful impacts over Greece. We explore what processes are important for the forecasting of Medicane Ianos, with the use of the Met Office weather model. There was a preceding precipitation event before Ianos’s birth, whose energetics generated a bubble in the tropopause. This bubble created the necessary conditions for Ianos to emerge and strengthen, and the processes are enhanced in simulations with a warmer Mediterranean Sea.
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024, https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
Rafaela Jane Delfino, Gerry Bagtasa, Pier Luigi Vidale, and Kevin Hodges
EGUsphere, https://doi.org/10.5194/egusphere-2025-4443, https://doi.org/10.5194/egusphere-2025-4443, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We investigate changes in tropical cyclone (TC) precipitation in the Philippines using high-resolution pseudo-global warming simulations. Analysis of Haiyan, Bopha, and Mangkhut shows robust increases in rainfall under future warming, with nonlinear deviations from Clausius–Clapeyron scaling driven by TC intensity and structural changes, underscoring evolving rainfall hazards in a warming climate.
Lorenzo Sangelantoni, Stefano Tibaldi, Leone Cavicchia, Enrico Scoccimarro, Pier Luigi Vidale, Kevin Hodges, Vivien Mavel, Mattia Almansi, Chiara Cagnazzo, and Samuel Almond
EGUsphere, https://doi.org/10.5194/egusphere-2024-4157, https://doi.org/10.5194/egusphere-2024-4157, 2025
Preprint archived
Short summary
Short summary
We introduce a new dataset of European windstorms linked to extratropical cyclones, spanning whole ERA5 reanalysis period (1940–present). Developed under Copernicus Climate Change Service, the dataset provides standardized, high-quality information on windstorm tracks and footprints for industries like insurance and risk management. Preliminary findings show an increase in cold-season windstorms and their impacts in parts of Europe. Tracking methods contribute to uncertainties in key statistics.
Suzanne L. Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
Weather Clim. Dynam., 5, 1523–1544, https://doi.org/10.5194/wcd-5-1523-2024, https://doi.org/10.5194/wcd-5-1523-2024, 2024
Short summary
Short summary
Sting jets occur in some of the most damaging cyclones impacting Europe. We present the first climatology of sting-jet cyclones over the major ocean basins. Cyclones with sting-jet precursors occur over the North Atlantic, North Pacific, and Southern Oceans, with implications for wind warnings. Precursor cyclones have distinct characteristics, even in reanalyses that are too coarse to fully resolve sting jets, evidencing the climatological consequences of strong diabatic cloud processes.
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024, https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary
Short summary
Medicane Ianos was a very intense cyclone that led to harmful impacts over Greece. We explore what processes are important for the forecasting of Medicane Ianos, with the use of the Met Office weather model. There was a preceding precipitation event before Ianos’s birth, whose energetics generated a bubble in the tropopause. This bubble created the necessary conditions for Ianos to emerge and strengthen, and the processes are enhanced in simulations with a warmer Mediterranean Sea.
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024, https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024, https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Short summary
Cut-off lows (COLs) are weather systems with varied structures and lifecycles, from upper atmospheric to deep vortices. Deep, strong COLs are common around Australia and the southwestern Pacific in autumn and spring, while shallow, weak COLs occur more in summer near the Equator. Jet streams play a crucial role in COL development, with different jets influencing its depth and strength. The study also emphasizes the need for better representation of diabatic processes in reanalysis data.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Sam Hardy, John Methven, Juliane Schwendike, Ben Harvey, and Mike Cullen
Weather Clim. Dynam., 4, 1019–1043, https://doi.org/10.5194/wcd-4-1019-2023, https://doi.org/10.5194/wcd-4-1019-2023, 2023
Short summary
Short summary
We examine a Borneo vortex case using computer simulations and satellite observations. The vortex is identified with high humidity through the atmosphere and has heaviest rainfall on its northern flank. Simulations represent circulation and rainfall accumulation well. The low-level Borneo vortex is coupled with a higher-level wave, which moves westwards along a layer with a sharp vertical gradient in moisture. Vortex growth occurs through mechanisms usually considered outside the tropics.
Charlie C. Suitters, Oscar Martínez-Alvarado, Kevin I. Hodges, Reinhard K. H. Schiemann, and Duncan Ackerley
Weather Clim. Dynam., 4, 683–700, https://doi.org/10.5194/wcd-4-683-2023, https://doi.org/10.5194/wcd-4-683-2023, 2023
Short summary
Short summary
Atmospheric blocking describes large and persistent high surface pressure. In this study, the relationship between block persistence and smaller-scale systems is examined. Persistent blocks result from more interactions with small systems, but a block's persistence does not depend as strongly on the strength of these smaller features. This work is important because it provides more knowledge as to how blocks can be allowed to persist, which is something we still do not fully understand.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023, https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, and Pier Luigi Vidale
Nat. Hazards Earth Syst. Sci., 22, 3285–3307, https://doi.org/10.5194/nhess-22-3285-2022, https://doi.org/10.5194/nhess-22-3285-2022, 2022
Short summary
Short summary
We showed the effects of altering the choice of cumulus schemes, surface flux options, and spectral nudging with a high level of sensitivity to cumulus schemes in simulating an intense typhoon. We highlight the advantage of using an ensemble of cumulus parameterizations to take into account the uncertainty in simulating typhoons such as Haiyan in 2013. This study is useful in addressing the growing need to plan and prepare for as well as reduce the impacts of intense typhoons in the Philippines.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
Cited articles
Anderson, D., Hodges, K. I., and Hoskins, B. J.: Sensitivity of Feature-Based
Analysis Methods of Storm Tracks to the Form of Background Field Removal,
Mon. Weather Rev., 131, 565–573,
https://doi.org/10.1175/1520-0493(2003)131<0565:SOFBAM>2.0.CO;2, 2003. a
Čampa, J. and Wernli, H.: A PV Perspective on the Vertical Structure of
Mature Midlatitude Cyclones in the Northern Hemisphere, J. Atmos. Sci., 69,
725–740, https://doi.org/10.1175/JAS-D-11-050.1, 2012. a, b, c
Capute, P. K. and Torn, R. D.: A Comparison of Arctic and Atlantic Cyclone
Predictability, Mon. Weather Rev., 149, 3837–3849, https://doi.org/10.1175/MWR-D-20-0350.1, 2021. a
Cavallo, S. M. and Hakim, G. J.: Physical Mechanisms of Tropopause Polar
Vortex Intensity Change, J. Atmos. Sci., 70, 3359–3373,
https://doi.org/10.1175/JAS-D-13-088.1, 2013. a
Chagnon, J. M., Gray, S. L., and Methven, J.: Diabatic processes modifying
potential vorticity in a North Atlantic cyclone, Q. J. Roy. Meteor.
Soc., 139, 1270–1282, https://doi.org/10.1002/qj.2037, 2013. a
Crawford, A. and Serreze, M.: A New Look at the Summer Arctic Frontal Zone,
J. Climate, 28, 737–754, https://doi.org/10.1175/JCLI-D-14-00447.1, 2015. a
Crawford, A. D. and Serreze, M. C.: Does the Summer Arctic Frontal Zone
Influence Arctic Ocean Cyclone Activity?, J. Climate, 29, 4977–4993,
https://doi.org/10.1175/JCLI-D-15-0755.1, 2016. a
Dacre, H. F., Hawcroft, M. K., Stringer, M. A., and Hodges, K. I.: An
Extratropical Cyclone Atlas: A Tool for Illustrating Cyclone Structure and
Evolution Characteristics, B. Am. Meteorol. Soc., 93, 1497–1502,
https://doi.org/10.1175/BAMS-D-11-00164.1, 2012. a, b
Day, J. J. and Hodges, K. I.: Growing Land-Sea Temperature Contrast and the
Intensification of Arctic Cyclones, Geophys. Res. Lett., 45, 3673–3681,
https://doi.org/10.1029/2018GL077587, 2018. a, b
Day, J. J., Holland, M. M., and Hodges, K. I.: Seasonal differences in the
response of Arctic cyclones to climate change in CESM1, Clim. Dynam., 50,
3885–3903, https://doi.org/10.1007/s00382-017-3767-x, 2018. a
Deveson, A. C. L., Browning, K. A., and Hewson, T. D.: A classification of
FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion
diagnostic, Q. J. Roy. Meteor. Soc., 128, 93–117,
https://doi.org/10.1256/00359000260498806, 2002. a
Finocchio, P. M., Doyle, J. D., Stern, D. P., and Fearon, M. G.: Short-term
Impacts of Arctic Summer Cyclones on Sea Ice Extent in the Marginal Ice Zone,
Geophys. Res. Lett., 47, e2020GL088338,
https://doi.org/10.1029/2020GL088338, 2020. a
Gray, S. L. and Dacre, H. F.: Classifying dynamical forcing mechanisms using a
climatology of extratropical cyclones, Q. J. Roy. Meteor. Soc., 132,
1119–1137, https://doi.org/10.1256/qj.05.69, 2006. a
Hakim, G. J. and Canavan, A. K.: Observed Cyclone–Anticyclone Tropopause
Vortex Asymmetries, J. Atmos. Sci., 62, 231–240, https://doi.org/10.1175/JAS-3353.1,
2005. a, b, c, d
Heifetz, E., Bishop, C., Hoskins, B., and Methven, J.: The counter-propagating
Rossby wave perspective on baroclinic instability. Part I:
Mathematical basis, Q. J. Roy. Meteor. Soc., 130, 211–231, 2004. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on
single levels from 1979 to present, Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.adbb2d47, 2018a. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on
pressure levels from 1979 to present, Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.bd0915c6, 2018b. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Hodges, K. I.: Feature Tracking on the Unit Sphere, Mon. Weather Rev., 123,
3458–3465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2, 1995. a
Hodges, K. I.: Spherical Nonparametric Estimators Applied to the UGAMP Model
Integration for AMIP, Mon. Weather Rev., 124, 2914–2932,
https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2, 1996. a
Hodges, K. I.: Adaptive Constraints for Feature Tracking, Mon. Weather Rev.,
127, 1362–1373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2, 1999. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. Roy. Meteor.
Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002, 1985. a, b
Ishiyama, R. and Tanaka, H. L.: Analysis of Vorticity Budget for a Developing
Extraordinary Arctic Cyclone in August 2016, SOLA, 17, 120–124,
https://doi.org/10.2151/sola.2021-020, 2021. a
Joos, H. and Wernli, H.: Influence of microphysical processes on the potential
vorticity development in a warm conveyor belt: a case-study with the
limited-area model COSMO, Q. J. Roy. Meteor. Soc., 138, 407–418,
https://doi.org/10.1002/qj.934, 2012. a
Jung, T. and Matsueda, M.: Verification of global numerical weather forecasting
systems in polar regions using TIGGE data, Q. J. Roy. Meteor. Soc.,
142, 574–582, https://doi.org/10.1002/qj.2437, 2016. a
Lander, J. and Hoskins, B. J.: Believable Scales and Parameterizations in a
Spectral Transform Model, Mon. Weather Rev., 125, 292–303,
https://doi.org/10.1175/1520-0493(1997)125<0292:BSAPIA>2.0.CO;2, 1997. a
Lillo, S. P., Cavallo, S. M., Parsons, D. B., and Riedel, C.: The Role of a
Tropopause Polar Vortex in the Generation of the January 2019 Extreme
Arctic Outbreak, J. Atmos. Sci., 78, 2801–2821,
https://doi.org/10.1175/JAS-D-20-0285.1, 2021. a
Lukovich, J. V., Stroeve, J. C., Crawford, A., Hamilton, L., Tsamados, M.,
Heorton, H., and Massonnet, F.: Summer Extreme Cyclone Impacts on Arctic
Sea Ice, J. Climate, 34, 4817–4834, https://doi.org/10.1175/JCLI-D-19-0925.1, 2021. a
Martínez-Alvarado, O., Baker, L., Gray, S., Methven, J., and Plant, R.:
Distinguishing the cold conveyor belt and sting jet air streams in an intense
extratropical cyclone, Mon. Weather Rev., 142, 2571–2595,
https://doi.org/10.1175/MWR-D-13-00348.1, 2014. a
Martínez-Alvarado, O., Gray, S. L., and Methven, J.: Diabatic Processes and
the Evolution of Two Contrasting Summer Extratropical Cyclones, Mon. Weather
Rev., 144, 3251–3276, https://doi.org/10.1175/MWR-D-15-0395.1, 2016. a
Methven, J., Heifetz, E., Hoskins, B., and Bishop, C.: The counter-propagating
Rossby wave perspective on baroclinic instability. Part III:
Primitive equation disturbances on the sphere, Q. J. Roy. Meteor.
Soc., 131, 1393–1424, https://doi.org/10.1256/qj.04.22, 2005. a
National Weather Service Climate Prediction Center: North Atlantic
Oscillation (NAO) Historical Index, available at:
https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml, last access: 12 May 2021. a
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero,
R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev,
S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I.,
Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto,
J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I.,
Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S.,
Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community Effort to
Intercompare Extratropical Cyclone Detection and Tracking Algorithms:, B.
Am. Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/BAMS-D-11-00154.1, 2013. a
Overland, J. E. and Wang, M.: When will the summer Arctic be nearly sea ice
free?, Geophys. Res. Lett., 40, 2097–2101, https://doi.org/10.1002/grl.50316, 2013. a
Petterssen, S. and Smebye, S. J.: On the development of extratropical cyclones,
Q. J. Roy. Meteor. Soc., 97, 457–482, https://doi.org/10.1002/qj.49709741407,
1971. a
Polvani, L.: Two-layer geostrophic vortex dynamics. Part 2. Alignment and
two-layer V-states, J. Fluid Mech., 225, 241–270,
https://doi.org/10.1017/S0022112091002045, 1991. a
Reasor, P. and Montgomery, M.: Three-dimensional alignment and co-rotation of
weak, TC-like vortices via linear vortex Rossby waves, J. Atmos. Sci.,
58, 2306–2330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2, 2001. a
Rossa, A. M., Wernli, H., and Davies, H. C.: Growth and Decay of an
Extra-Tropical Cyclone's PV-Tower, Meteorol. Atmos. Phys., 73, 139–156,
https://doi.org/10.1007/s007030050070, 2000. a, b
Schreiber, E. A. P. and Serreze, M. C.: Impacts of synoptic-scale cyclones on
Arctic sea-ice concentration: a systematic analysis, Ann. Glaciol., 61,
139–153, https://doi.org/10.1017/aog.2020.23, 2020. a
Screen, J., Bracegirdle, T., and Simmonds, I.: Polar Climate Change as Manifest
in Atmospheric Circulation, Curr. Clim. Change Rep., 4, 383–395,
https://doi.org/10.1007/s40641-018-0111-4, 2018. a
Shapiro, M. and Keyser, D.: Fronts, jet streams, and the tropopause, in:
Extratropical cyclones, the Erik Pálmen memorial volume, edited by:
Newton, C. W. and Holopainen, E. O., Amer. Meteor. Soc., Boston, MA, 167–191, 1990. a
Simmonds, I. and Rudeva, I.: The great Arctic cyclone of August 2012,
Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259, 2012. a
Simmonds, I. and Rudeva, I.: A comparison of tracking methods for extreme
cyclones in the Arctic basin, Tellus, 66, 25252,
https://doi.org/10.3402/tellusa.v66.25252, 2014. a
Stephenson, S. R., Smith, L. C., Brigham, L. W., and Agnew, J. A.: Projected
21st-century changes to Arctic marine access, Clim. Change, 118,
885–899, https://doi.org/10.1007/s10584-012-0685-0, 2013. a
Stoelinga, M. T.: A Potential Vorticity-Based Study of the Role of Diabatic
Heating and Friction in a Numerically Simulated Baroclinic Cyclone, Mon.
Weather Rev., 124, 849–874,
https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2, 1996. a
Tanaka, H., Yamagami, A., and Takahashi, S.: The structure and behavior of the
arctic cyclone in summer analyzed by the JRA-25/JCDAS data, Polar Sci., 6,
55–69, https://doi.org/10.1016/j.polar.2012.03.001, 2012. a
Tao, W., Zhang, J., Fu, Y., and Zhang, X.: Driving Roles of Tropospheric and
Stratospheric Thermal Anomalies in Intensification and Persistence of the
Arctic Superstorm in 2012, Geophys. Res. Lett., 44, 10017–10025,
https://doi.org/10.1002/2017GL074778, 2017a. a, b, c
Tao, W., Zhang, J., and Zhang, X.: The role of stratosphere vortex downward
intrusion in a long-lasting late-summer Arctic storm, Q. J. Roy.
Meteor. Soc., 143, 1953–1966, https://doi.org/10.1002/qj.3055, 2017b. a
Thorpe, A. J.: Synoptic Scale Disturbances with Circular Symmetry, Mon. Weather
Rev., 114, 1384–1389, https://doi.org/10.1175/1520-0493(1986)114<1384:SSDWCS>2.0.CO;2,
1986. a
Tilinina, N., Gulev, S. K., and Bromwich, D. H.: New view of Arctic cyclone
activity from the Arctic system reanalysis, Geophys. Res. Lett., 41,
1766–1772, https://doi.org/10.1002/2013GL058924, 2014. a
Waugh, D. W., Sobel, A. H., and Polvani, L. M.: What Is the Polar Vortex and
How Does It Influence Weather?, B. Am. Meteorol. Soc., 98, 37–44,
https://doi.org/10.1175/BAMS-D-15-00212.1, 2017. a
Wickström, S., Jonassen, M. O., Vihma, T., and Uotila, P.: Trends in cyclones
in the high-latitude North Atlantic during 1979–2016, Q. J. Roy.
Meteor. Soc., 146, 762–779, https://doi.org/10.1002/qj.3707, 2020. a
Yamagami, A., Matsueda, M., and Tanaka, H. L.: Extreme Arctic cyclone in
August 2016, Atmos. Sci. Lett., 18, 307–314, https://doi.org/10.1002/asl.757, 2017. a, b, c, d
Yamagami, A., Matsueda, M., and Tanaka, H. L.: Medium-Range Forecast Skill for
Extraordinary Arctic Cyclones in Summer of 2008–2016, Geophys. Res. Lett.,
45, 4429–4437, https://doi.org/10.1029/2018GL077278, 2018b. a
Yamazaki, A., Inoue, J., Dethloff, K., Maturilli, M., and König-Langlo, G.:
Impact of radiosonde observations on forecasting summertime Arctic cyclone
formation, J. Geophys. Res., 120, 3249–3273, https://doi.org/10.1002/2014JD022925,
2015. a
Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S., and Ikeda, M.: Climatology
and interannual variability of Arctic cyclone activity: 1948–2002, J.
Climate, 17, 2300–2317,
https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2, 2004. a
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
This research demonstrates, using feature identification and tracking, that anticlockwise...