Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-841-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-841-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Emergence of representative signals for sudden stratospheric warmings beyond current predictable lead times
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Bernat Jiménez-Esteve
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Raphaël de Fondeville
Swiss Data Science Center, ETH Zürich and EPFL, Zurich, Switzerland
Enikő Székely
Swiss Data Science Center, ETH Zürich and EPFL, Zurich, Switzerland
Guillaume Obozinski
Swiss Data Science Center, ETH Zürich and EPFL, Zurich, Switzerland
William T. Ball
Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, TU Delft, Delft, the Netherlands
Daniela I. V. Domeisen
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Related authors
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Cristiana Stan, Saisri Kollapaneni, Andrea Jenney, Jiabao Wang, Zheng Wu, Cheng Zheng, Hyemi Kim, Chaim Garfinkel, and Ayush Singh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1142, https://doi.org/10.5194/egusphere-2025-1142, 2025
Short summary
Short summary
The MJO-Teleconnections diagnostics package is an open-source Python software package to be used for evaluation of MJO-Teleconnections predicted by subseasonal-to-seasonal (S2S) forecast systems.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Raphaël de Fondeville, Zheng Wu, Enikő Székely, Guillaume Obozinski, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 287–307, https://doi.org/10.5194/wcd-4-287-2023, https://doi.org/10.5194/wcd-4-287-2023, 2023
Short summary
Short summary
We propose a fully data-driven, interpretable, and computationally scalable framework to characterize sudden stratospheric warmings (SSWs), extract statistically significant precursors, and produce machine learning (ML) forecasts. By successfully leveraging the long-lasting impact of SSWs, the ML predictions outperform sub-seasonal numerical forecasts for lead times beyond 25 d. Post-processing numerical predictions using their ML counterparts yields a performance increase of up to 20 %.
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Short summary
Accurate predictions of the stratospheric polar vortex can enhance surface weather predictability. Stratospheric events themselves are less predictable, with strong inter-event differences. We assess the predictability of stratospheric acceleration and deceleration events in a sub-seasonal prediction system, finding that the predictability of events is largely dependent on event magnitude, while extreme drivers of deceleration events are not fully represented in the model.
Annie Y.-Y. Chang, Shaun Harrigan, Maria-Helena Ramos, Massimiliano Zappa, Christian M. Grams, Daniela I. V. Domeisen, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3411, https://doi.org/10.5194/egusphere-2025-3411, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study presents a machine learning-aided hybrid forecasting framework to improve early warnings of low flows in the European Alps. It combines weather regime information, streamflow observations, and model simulations (EFAS). Even using only weather regime data improves predictions over climatology, while integrating different data sources yields the best result, emphasizing the value of integrating diverse data sources.
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
Earth Syst. Dynam., 16, 1029–1051, https://doi.org/10.5194/esd-16-1029-2025, https://doi.org/10.5194/esd-16-1029-2025, 2025
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Monika Feldmann, Daniela I. V. Domeisen, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2025-2296, https://doi.org/10.5194/egusphere-2025-2296, 2025
Short summary
Short summary
Severe thunderstorm outbreaks are a source of major damage across Europe. Using historical data, we analysed the large-scale weather patterns that lead to these outbreaks in eight different regions. Three types of regions emerge: those limited by temperature, limited by moisture and overall favourable for thunderstorms; consistent with their associated weather patterns and the general climate. These findings help explain regional differences and provide a basis for future forecast improvements.
Quentin Duchemin, Maria Grazia Zanoni, Marius G. Floriancic, Hansjörg Seybold, Guillaume Obozinski, James W. Kirchner, and Paolo Benettin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1591, https://doi.org/10.5194/egusphere-2025-1591, 2025
Short summary
Short summary
We introduce GAMCR, a data-driven model that estimates how catchments respond to individual precipitation events. We validate GAMCR on synthetic data and demonstrate its ability to investigate the characteristic runoff responses from real-world hydrologic series. GAMCR provides new data-driven opportunities to understand and compare hydrological behavior across different catchments worldwide.
Wolfgang Wicker, Emmanuele Russo, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1197, https://doi.org/10.5194/egusphere-2025-1197, 2025
Short summary
Short summary
Heatwaves are becoming more frequent, but the contribution by atmospheric circulation changes is unclear. Experiments with an idealized model that simulates atmospheric dynamics, but excludes clouds, radiation, and moisture, show how a poleward storm track shift increases the eastward phase speed of Rossby waves and reduces mid-latitude heatwave frequency. New evidence suggests that this mechanism is already active in the Southern Hemisphere and may soon emerge in the Northern Hemisphere.
Cristiana Stan, Saisri Kollapaneni, Andrea Jenney, Jiabao Wang, Zheng Wu, Cheng Zheng, Hyemi Kim, Chaim Garfinkel, and Ayush Singh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1142, https://doi.org/10.5194/egusphere-2025-1142, 2025
Short summary
Short summary
The MJO-Teleconnections diagnostics package is an open-source Python software package to be used for evaluation of MJO-Teleconnections predicted by subseasonal-to-seasonal (S2S) forecast systems.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Y. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 6, 171–195, https://doi.org/10.5194/wcd-6-171-2025, https://doi.org/10.5194/wcd-6-171-2025, 2025
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere is coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too weak; however downward coupling from the lower stratosphere to the near surface is too strong.
Pauline Rivoire, Sonia Dupuis, Antoine Guisan, Pascal Vittoz, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3482, https://doi.org/10.5194/egusphere-2024-3482, 2024
Short summary
Short summary
Our study investigates the conditions in temperature, precipitation, humidity, and soil moisture leading to the browning of the European forests in summer. Using a Random Forest model and satellite measurement of vegetation greenness, we identify key conditions that predict forest damage. We conclude that hot and dry conditions in spring and summer are adverse conditions, in particular for broad-leaved trees. The hydro-meteorological conditions during the preceding year can also have an impact.
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024, https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
Short summary
Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264, https://doi.org/10.5194/gmd-17-2247-2024, https://doi.org/10.5194/gmd-17-2247-2024, 2024
Short summary
Short summary
This paper introduces a new method for detecting atmospheric cloud bands to identify long convective cloud bands that extend from the tropics to the midlatitudes. The algorithm allows for easy use and enables researchers to study the life cycle and climatology of cloud bands and associated rainfall. This method provides insights into the large-scale processes involved in cloud band formation and their connections between different regions, as well as differences across ocean basins.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Maria Pyrina, Wolfgang Wicker, Andries Jan de Vries, Georgios Fragkoulidis, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3088, https://doi.org/10.5194/egusphere-2023-3088, 2024
Preprint withdrawn
Short summary
Short summary
We investigate the atmospheric dynamics behind heatwaves, specifically of those occurring simultaneously across regions, known as concurrent heatwaves. We find that heatwaves are strongly modulated by Rossby wave packets, being Rossby waves whose amplitude has a local maximum and decays at larger distances. High amplitude Rossby wave packets increase the occurrence probabilities of concurrent and non-concurrent heatwaves by a factor of 15 and 18, respectively, over several regions globally.
David Martin Straus, Daniela I. V. Domeisen, Sarah-Jane Lock, Franco Molteni, and Priyanka Yadav
Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023, https://doi.org/10.5194/wcd-4-1001-2023, 2023
Short summary
Short summary
The global response to the Madden–Julian oscillation (MJO) is potentially predictable. Yet the diabatic heating is uncertain even within a particular episode of the MJO. Experiments with a global model probe the limitations imposed by this uncertainty. The large-scale tropical heating is predictable for 25 to 45 d, yet the associated Rossby wave source that links the heating to the midlatitude circulation is predictable for 15 to 20 d. This limitation has not been recognized in prior work.
Gabriel Chiodo, Marina Friedel, Svenja Seeber, Daniela Domeisen, Andrea Stenke, Timofei Sukhodolov, and Franziska Zilker
Atmos. Chem. Phys., 23, 10451–10472, https://doi.org/10.5194/acp-23-10451-2023, https://doi.org/10.5194/acp-23-10451-2023, 2023
Short summary
Short summary
Stratospheric ozone protects the biosphere from harmful UV radiation. Anthropogenic activity has led to a reduction in the ozone layer in the recent past, but thanks to the implementation of the Montreal Protocol, the ozone layer is projected to recover. In this study, we show that projected future changes in Arctic ozone abundances during springtime will influence stratospheric climate and thereby actively modulate large-scale circulation changes in the Northern Hemisphere.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Raphaël de Fondeville, Zheng Wu, Enikő Székely, Guillaume Obozinski, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 287–307, https://doi.org/10.5194/wcd-4-287-2023, https://doi.org/10.5194/wcd-4-287-2023, 2023
Short summary
Short summary
We propose a fully data-driven, interpretable, and computationally scalable framework to characterize sudden stratospheric warmings (SSWs), extract statistically significant precursors, and produce machine learning (ML) forecasts. By successfully leveraging the long-lasting impact of SSWs, the ML predictions outperform sub-seasonal numerical forecasts for lead times beyond 25 d. Post-processing numerical predictions using their ML counterparts yields a performance increase of up to 20 %.
Wolfgang Wicker, Inna Polichtchouk, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 81–93, https://doi.org/10.5194/wcd-4-81-2023, https://doi.org/10.5194/wcd-4-81-2023, 2023
Short summary
Short summary
Sudden stratospheric warmings are extreme weather events where the winter polar stratosphere warms by about 25 K. An improved representation of small-scale gravity waves in sub-seasonal prediction models can reduce forecast errors since their impact on the large-scale circulation is predictable multiple weeks ahead. After a sudden stratospheric warming, vertically propagating gravity waves break at a lower altitude than usual, which strengthens the long-lasting positive temperature anomalies.
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys., 22, 13997–14017, https://doi.org/10.5194/acp-22-13997-2022, https://doi.org/10.5194/acp-22-13997-2022, 2022
Short summary
Short summary
In spring, winds the Arctic stratosphere change direction – an event called final stratospheric warming (FSW). Here, we examine whether the interannual variability in Arctic stratospheric ozone impacts the timing of the FSW. We find that Arctic ozone shifts the FSW to earlier and later dates in years with high and low ozone via the absorption of UV light. The modulation of the FSW by ozone has consequences for surface climate in ozone-rich years, which may result in better seasonal predictions.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022, https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring–summer time in the Southern Hemisphere. Using chemistry-climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models' circulations.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Short summary
Accurate predictions of the stratospheric polar vortex can enhance surface weather predictability. Stratospheric events themselves are less predictable, with strong inter-event differences. We assess the predictability of stratospheric acceleration and deceleration events in a sub-seasonal prediction system, finding that the predictability of events is largely dependent on event magnitude, while extreme drivers of deceleration events are not fully represented in the model.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021, https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Short summary
This paper features the new atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0 and its validation. The model performance is evaluated against reanalysis products and observations of atmospheric circulation and trace gas distribution, with a focus on stratospheric processes. Although we identified some problems to be addressed in further model upgrades, we demonstrated that SOCOLv4.0 is already well suited for studies related to chemistry–climate–aerosol interactions.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Cited articles
Albers, J. R. and Newman, M.: Subseasonal predictability of the North Atlantic Oscillation, Environ. Res. Lett., 16, 2021, https://doi.org/10.1088/1748-9326/abe781, 2021. a
Ayarzagüena, B., Langematz, U., and Serrano, E.: Tropospheric forcing of
the stratosphere: A comparative study of the two different major stratospheric warmings in 2009 and 2010, J. Geophys. Res., 116, D18114, https://doi.org/10.1029/2010JD015023, 2011. a
Ayarzagüena, B., Polvani, L. M., Langematz, U., Akiyoshi, H., Bekki, S., Butchart, N., Dameris, M., Deushi, M., Hardiman, S. C., Jöckel, P., Klekociuk, A., Marchand, M., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L. D., Plummer, D. A., Revell, L., Rozanov, E., Saint-Martin, D., Scinocca, J., Stenke, A., Stone, K., Yamashita, Y., Yoshida, K., and Zeng, G.: No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, 2018. a
Ayarzagüena, B., Palmeiro, F. M., Barriopedro, D., Calvo, N., Langematz,
U., and Shibata, K.: On the representation of major stratospheric warmings
in reanalyses, Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019, 2019. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a, b
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H.,
Charlton‐Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, 1–37, https://doi.org/10.1029/2020rg000708, 2021. a
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II:
Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data
sets, Q. J. Roy. Meteorol. Soc., 112, 693–709, https://doi.org/10.1002/qj.49711247308, 1986. a
Birner, T. and Albers, J. R.: Sudden stratospheric warmings and anomalous
upward wave activity flux, Scient. Onl. Lett. Atmos., 13, 8–12, https://doi.org/10.2151/sola.13A-002, 2017. a
Blume, C., Matthes, K., and Horenko, I.: Supervised learning approaches to
classify sudden stratospheric warming events, J. Atmos. Sci., 69, 1824–1840, https://doi.org/10.1175/JAS-D-11-0194.1, 2012. a
Boljka, L. and Birner, T.: Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling, Weather Clim. Dynam., 1, 555—575, https://doi.org/10.5194/wcd-1-555-2020, 2020. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015. a
Charney, J. G. and Drazin, P.: Propagation of Planetary-Scale Disturbances
from the Lower into the Upper Atmosphere, J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083, 1961. a, b, c
Charney, J. G. and Eliassen, A.: A Numerical Method for Predicting the
Perturbations of the Middle Latitude Westerlies, Tellus, 1, 38–54,
https://doi.org/10.3402/tellusa.v1i2.8500, 1949. a
Cohen, J. and Jones, J.: Tropospheric precursors and stratospheric warmings,
J. Climate, 24, 6562–6572, https://doi.org/10.1175/2011JCLI4160.1, 2011. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
de la Cámara, A., Birner, T., and Albers, J. R.: Are sudden stratospheric warmings preceded by anomalous tropospheric wave activity?, J. Climate, 32, 7173–7189, https://doi.org/10.1175/JCLI-D-19-0269.1, 2019. a
Domeisen, D. I. V.: Estimating the Frequency of Sudden Stratospheric Warming
Events From Surface Observations of the North Atlantic Oscillation, J. Geophys. Res.-Atmos., 124, 3180–3194, https://doi.org/10.1029/2018JD030077, 2019. a, b
Domeisen, D. I. V. and Plumb, A. R.: Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability,
Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2012GL053684, 2012. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E. P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S. W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere, J. Geophys. Res.-Atmos., 125, 1–17, https://doi.org/10.1029/2019JD030920, 2020a. a, b, c, d, e
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena,
B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E. P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S. W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 2. Predictability of the Stratosphere, J. Geophys. Res.-Atmos. 125, 1–20, https://doi.org/10.1029/2019JD030923, 2020b. a
Dommenget, D. and Latif, M.: A cautionary note on the interpretation of EOFs,
J. Climate, 15, 216–225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2, 2002. a
Edmon, H. J., Hoskins, B. J., and McIntyre, M. E.: Eliassen-Palm Cross
Sections for the Troposphere, J. Atmos. Sci., 37, 2600–2616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2, 1981. a
Esler, J. G. and Matthewman, N. J.: Stratospheric sudden warmings as self-tuning resonances. Part II: Vortex displacement events, J. Atmos. Sci., 68, 2505–2523, https://doi.org/10.1175/JAS-D-11-08.1, 2011. a
Gerber, E. . and Polvani, L. M.: Stratosphere-Troposphere Coupling in a
Relatively Simple AGCM: The Importance of Stratospheric Variability, J. Climate, 22, 1920–1933, 2009. a
Held, I. M., Ting, M., and Wang, H.: Northern winter stationary waves: Theory
and modeling, J. Climate, 15, 2125–2144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2, 2002. a
Hitchcock, P. and Haynes, P. H.: Stratospheric control of planetary waves,
Geophys. Res. Lett., 43, 884–11, https://doi.org/10.1002/2016GL071372, 2016. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002, 1985. a
Jiménez-Esteve, B. and Domeisen, D. I. V.: Nonlinearity in the North
Pacific Atmospheric Response to a Linear ENSO Forcing, Geophys. Res. Lett., 46, 2271–2281, https://doi.org/10.1029/2018GL081226, 2019. a, b
Jucker, M.: Are Sudden Stratospheric Warmings Generic? Insights from an
Idealized GCM, J. Atmos. Sci., 73, 5061–5080, https://doi.org/10.1175/JAS-D-15-0353.1, 2016. a
Jucker, M. and Reichler, T.: Dynamical Precursors for Statistical Prediction
of Stratospheric Sudden Warming Events, Geophys. Res. Lett., 45, 13–124, https://doi.org/10.1029/2018GL080691, 2018. a
Karpechko, A. Y.: Predictability of sudden stratospheric warmings in the ECMWF extended-range forecast system, Mon. Weather Rev., 146, 1063–1075,
https://doi.org/10.1175/MWR-D-17-0317.1, 2018. a
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.:
Predictability of downward propagation of major sudden stratospheric warmings, Q. J. Roy. Meteorol. Soc., 60, 1459–1470, https://doi.org/10.1002/qj.3017, 2017. a, b
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424, 2015. a
King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I.: Observed
Relationships Between Sudden Stratospheric Warmings and European Climate
Extremes, J. Geophys. Res.-Atmos., 124, 13943–13961, https://doi.org/10.1029/2019JD030480, 2019. a
Kolstad, E. W., Breiteig, T., and Scaife, A. A.: The association between
stratospheric weak polar vortex events and cold air outbreaks in the Northern
Hemisphere, Q. J. Roy. Meteorol. Soc., 136, 886–893, https://doi.org/10.1002/qj.620, 2010. a
Labitzke, K.: Stratospheric-mesospheric midwinter disturbances: A summary of
observed characteristics, J. Geophys. Res., 86, 9665, https://doi.org/10.1029/jc086ic10p09665, 1981. a, b
Limpasuvan, V., Thompson, D. W., and Hartmann, D. L.: The life cycle of the
Northern Hemisphere sudden stratospheric warmings, J. Climate, 17, 2584–2596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2, 2004. a
Lindgren, E. A., Sheshadri, A., and Plumb, R. A.: Sudden Stratospheric Warming Formation in an Idealized General Circulation Model Using Three Types of Tropospheric Forcing, J. Geophys. Res.-Atmos., 123, 10–125, https://doi.org/10.1029/2018JD028537, 2018. a
Manney, G., Farrara, J., and Mechoso, C.: Simulations of the February 1979
Stratospheric Sudden Warming: Model Comparisons and Three-Dimensional Evolution, Mon. Weather Rev., 122, 1115–1140, 1994. a
Matsuno, T.: A Dynamical Model of the Stratospheric Sudden Warming, J. Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971. a, b, c
Matthewman, N. J. and Esler, J. G.: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/JAS-D-11-07.1, 2011. a
Matthewman, N. J., Esler, J. G., Charlton-Perez, A. J., and Polvani, L. M.: A
new look at stratospheric sudden warmings. Part III: Polar vortex evolution
and vertical structure, J. Climate, 22, 1566–1585, https://doi.org/10.1175/2008JCLI2365.1, 2009. a, b, c
McIntyre, E.: How Well do we Understand the Dynamics of Stratospheric Warmings?, J. Meteorol. Soc. Jpn., 60, 37–65, https://doi.org/10.2151/jmsj1965.60.1_37, 1982. a, b
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Monahan, A. H., Fyfe, J. C., Ambaum, M. H., Stephenson, D. B., and North, G. R.: Empirical orthogonal functions: The medium is the message, J. Climate, 22, 6501–6514, https://doi.org/10.1175/2009JCLI3062.1, 2009. a
Mukougawa, H., Hirooka, T., and Kuroda, Y.: Influence of stratospheric
circulation on the predictability of the tropospheric Northern Annular Mode,
Geophys. Res. Lett., 36, L08814, https://doi.org/10.1029/2008GL037127, 2009. a
Nakagawa, K. I. and Yamazaki, K.: What kind of stratospheric sudden warming
propagates to the troposphere?, Geophys. Res. Lett., 33, 3–6,
https://doi.org/10.1029/2005GL024784, 2006. a, b
Plumb, R. A.: Planetary waves and the extratropical winter stratosphere, in:
The Stratosphere: Dynamics, Transport, and Chemistry, Geophysical Monograph Series, 190, 23–41, https://doi.org/10.1029/2009GM000888, 2010. a
Polvani, L. M. and Waugh, D. W.: Upward wave activity flux as a precursor to
extreme stratospheric events and subsequent anomalous surface weather regimes, J. Climate, 17, 3548–3554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2, 2004.
a, b
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science,
npj Clim. Atmos. Sci., 1, 1–8, https://doi.org/10.1038/s41612-018-0038-4, 2018. a
Scaife, A. A., Karpechko, A. Y., Baldwin, M. P., Brookshaw, A., Butler, A. H., Eade, R., Gordon, M., Maclachlan, C., Martin, N., Dunstone, N., and Smith, D.: Seasonal winter forecasts and the stratosphere, Atmos. Sci. Lett., 17, 51–56, https://doi.org/10.1002/asl.598, 2016. a
Scinocca, J. F. and Haynes, P. H.: Dynamical forcing of stratospheric
planetary waves by tropospheric baroclinic eddies, J. Atmos. Sci., 55, 2361–2392, https://doi.org/10.1175/1520-0469(1998)055<2361:DFOSPW>2.0.CO;2, 1998. a
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced
seasonal forecast skill following stratospheric sudden warmings, Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698, 2013. a
Smith, D. M., Scaife, A. A., Eade, R., and Knight, J. R.: Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects, Q. J. Roy. Meteorol. Soc., 142, 611–617, https://doi.org/10.1002/qj.2479, 2016. a
Smith, K. L. and Kushner, P. J.: Linear interference and the initiation of
extratropical stratosphere-troposphere interactions, J. Geophys. Res.-Atmos., 117, 1–16, https://doi.org/10.1029/2012JD017587, 2012. a, b, c, d
Taguchi, M.: Comparison of Subseasonal-to-Seasonal Model Forecasts for Major
Stratospheric Sudden Warmings, J. Geophys. Res.-Atmos., 123, 10231–10247, https://doi.org/10.1029/2018JD028755, 2018. a, b, c
Vallis, G. K., Colyer, G., Geen, R., Gerber, E., Jucker, M., Maher, P.,
Paterson, A., Pietschnig, M., Penn, J., and Thomson, S. I.: Isca, v1.0: A
framework for the global modelling of the atmospheres of Earth and other
planets at varying levels of complexity, Geosci. Model Dev., 11, 843–859, https://doi.org/10.5194/gmd-11-843-2018, 2018 (data available at: https://github.com/ ExeClim/Isca, last access: May 2020). a, b
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C.,
Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H. S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P.,
Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F.,
Waliser, D., Woolnough, S., Wu, T., Won, D.-J., Xiao, H., Zaripov, R., and
Zhang, L.: The Subseasonal to Seasonal (S2S) Prediction Project Database, B. Am. Meteorol. Soc., 98, 163–173, 2017. a
Short summary
We use an advanced statistical approach to investigate the dynamics of the development of sudden stratospheric warming (SSW) events in the winter Northern Hemisphere. We identify distinct signals that are representative of these events and their event type at lead times beyond currently predictable lead times. The results can be viewed as a promising step towards improving the predictability of SSWs in the future by using more advanced statistical methods in operational forecasting systems.
We use an advanced statistical approach to investigate the dynamics of the development of sudden...