Articles | Volume 3, issue 4
https://doi.org/10.5194/wcd-3-1291-2022
https://doi.org/10.5194/wcd-3-1291-2022
Research article
 | 
09 Nov 2022
Research article |  | 09 Nov 2022

Stratospheric intrusion depth and its effect on surface cyclogenetic forcing: an idealized potential vorticity (PV) inversion experiment

Michael A. Barnes, Thando Ndarana, Michael Sprenger, and Willem A. Landman

Related authors

Clear-air turbulence derived from in situ aircraft observation – a weather feature-based typology using ERA5 reanalysis
Ming Hon Franco Lee and Michael Sprenger
Weather Clim. Dynam., 6, 1583–1604, https://doi.org/10.5194/wcd-6-1583-2025,https://doi.org/10.5194/wcd-6-1583-2025, 2025
Short summary
Dynamics, predictability, impacts and climate change considerations of the catastrophic Mediterranean Storm Daniel (2023)
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
Weather Clim. Dynam., 6, 1515–1538, https://doi.org/10.5194/wcd-6-1515-2025,https://doi.org/10.5194/wcd-6-1515-2025, 2025
Short summary
The role of radiation in the Northern Hemisphere troposphere-to-stratosphere transport
Tuule Müürsepp, Michael Sprenger, Heini Wernli, and Hanna Joos
EGUsphere, https://doi.org/10.5194/egusphere-2025-5224,https://doi.org/10.5194/egusphere-2025-5224, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Advective, adiabatic and diabatic contributions to heat extremes simulated with the Community Earth System Model version 2
Matthias Röthlisberger, Michael Sprenger, Urs Beyerle, Erich M. Fischer, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-5146,https://doi.org/10.5194/egusphere-2025-5146, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
The interaction of warm conveyor belt outflows with the upper-level waveguide: a four-type climatological classification
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
Weather Clim. Dynam., 6, 1195–1219, https://doi.org/10.5194/wcd-6-1195-2025,https://doi.org/10.5194/wcd-6-1195-2025, 2025
Short summary

Cited articles

Ahmadi-Givi, F., Graig, G. C., and Plant, R. S.: The dynamics of a midlatitude cyclone with very strong latent-heat release, Q. J. Roy. Meteor. Soc., 130, 295–323, https://doi.org/10.1256/qj.02.226, 2004. 
Arakane, S. and Hsu, H. H.: A tropical cyclone removal technique based on potential vorticity inversion to better quantify tropical cyclone contribution to the background circulation, Clim. Dynam., 54, 3201–3226, https://doi.org/10.1007/s00382-020-05165-x, 2020. 
Barnes, M. A., Turner, K., Ndarana, T., and Landman, W. A.: Cape storm: A dynamical study of a cut-off low and its impact on South Africa, Atmos. Res., 249, 105290, https://doi.org/10.1016/j.atmosres.2020.105290, 2021a. 
Barnes, M. A., Ndarana, T., and Landman, W. A.: Cut-off lows in the Southern Hemisphere and their extension to the surface, Clim. Dynam., 56, 3709–3732, https://doi.org/10.1007/s00382-021-05662-7, 2021b. 
Baxter, M. A., Schumacher, P. N., and Boustead, J. M.: The use of potential vorticity inversion to evaluate the effect of precipitation on downstream mesoscale processes, Q. J. Roy. Meteor. Soc., 137, 179–198, https://doi.org/10.1002/qj.730, 2011. 
Download
Short summary
Stratospheric air can intrude into the troposphere and is associated with cyclonic development throughout the atmosphere. Through a highly idealized systematic approach, the effect that different intrusion characteristics have on surface cyclogenetic forcing is investigated. The proximity of stratospheric intrusions to the surface is shown to be the main factor in surface cyclogenetic forcing, whilst its width is an additional contributing factor.
Share