Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-173-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-173-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology and impacts
Institute of Oceanography, Hellenic Centre for Marine Research,
Athens, Greece
Silvio Davolio
Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Bologna, Italy
Shira Raveh-Rubin
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, Israel
Florian Pantillon
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS,
IRD, Toulouse, France
Mario Marcello Miglietta
Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Padua, Italy
Miguel Angel Gaertner
Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
Maria Hatzaki
Department of Geology and Geoenvironment, National and Kapodistrian
University of Athens, 10679 Athens, Greece
Victor Homar
Meteorology Group, Physics Department, Universitat de les Illes
Balears, Palma, Mallorca, Spain
Samira Khodayar
Mediterranean Centre for Environmental Studies (CEAM), Valencia, Spain
Gerasimos Korres
Institute of Oceanography, Hellenic Centre for Marine Research,
Athens, Greece
Vassiliki Kotroni
Institute of Environmental Research and Sustainable Development,
National Observatory of Athens (NOA), Athens, Greece
Jonilda Kushta
Climate and Atmosphere Research Centre (CARE-C), The Cyprus
Institute, Nicosia 2121, Cyprus
Marco Reale
National Institute of Oceanography and Applied Geophysics – OGS, Via Beirut, 2, 34151, Trieste, Italy
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Didier Ricard
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Related authors
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Emmanouil Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, Marco Reale, and Romualdo Romero
Weather Clim. Dynam., 6, 901–926, https://doi.org/10.5194/wcd-6-901-2025, https://doi.org/10.5194/wcd-6-901-2025, 2025
Short summary
Short summary
Storms strongly resembling hurricanes are sometimes observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become much colder locally than the underlying ocean, creating the conditions for hurricanes to form but only over small areas and for short times. We call the resulting storms "CYCLOPs".
This article is included in the Encyclopedia of Geosciences
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
Weather Clim. Dynam., 6, 627–643, https://doi.org/10.5194/wcd-6-627-2025, https://doi.org/10.5194/wcd-6-627-2025, 2025
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The findings highlight the regional coupled model's ability to coherently represent the thermodynamic and dynamic processes of the cyclones across both the atmosphere and the ocean.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
This article is included in the Encyclopedia of Geosciences
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024, https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary
Short summary
We show that the formation of Mediterranean cyclones follows the presence of cyclones over the North Atlantic. The distinct regions of cyclone activity in the Mediterranean in the different seasons can be linked to the atmospheric state, in particular the position of the polar jet over the North Atlantic. With this we now better understand the processes that lead to the formation of Mediterranean cyclones. We used a novel simulation framework in which we directly show and probe this connection.
This article is included in the Encyclopedia of Geosciences
Dimitra Denaxa, Gerasimos Korres, Emmanouil Flaounas, and Maria Hatzaki
Ocean Sci., 20, 433–461, https://doi.org/10.5194/os-20-433-2024, https://doi.org/10.5194/os-20-433-2024, 2024
Short summary
Short summary
This study explores extreme marine summers (EMSs) in the Mediterranean Sea using sea surface temperature (SST) data. EMSs arise mainly due to the warmest summer days being unusually warm. Air–sea heat fluxes drive EMSs in northern regions, where also enhanced marine heatwave conditions are found during EMSs. Long-term SST changes lead to warmer EMSs while not affecting the way daily SST values are organized during EMSs. Findings enhance comprehension of anomalously warm conditions in the basin.
This article is included in the Encyclopedia of Geosciences
Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
Short summary
Short summary
A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
This article is included in the Encyclopedia of Geosciences
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
This article is included in the Encyclopedia of Geosciences
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023, https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Short summary
We investigate the dynamical origin of the lower-atmospheric potential vorticity (PV; linked to the intensity of cyclones) in Mediterranean cyclones. We quantify the contribution of the cyclone and the environment by tracing PV backward in time and space and linking it to the track of the cyclone. We find that the lower-tropospheric PV is produced shortly before the cyclone's stage of highest intensity. We investigate the driving processes and use a global dataset and a process-resolving one.
This article is included in the Encyclopedia of Geosciences
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
This article is included in the Encyclopedia of Geosciences
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Emmanouil Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, Marco Reale, and Romualdo Romero
Weather Clim. Dynam., 6, 901–926, https://doi.org/10.5194/wcd-6-901-2025, https://doi.org/10.5194/wcd-6-901-2025, 2025
Short summary
Short summary
Storms strongly resembling hurricanes are sometimes observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become much colder locally than the underlying ocean, creating the conditions for hurricanes to form but only over small areas and for short times. We call the resulting storms "CYCLOPs".
This article is included in the Encyclopedia of Geosciences
Silvio Davolio, Isacco Sala, Alessandro Comunian, Daniele Mastrangelo, Mario Marcello Miglietta, Lucia Drago Pitura, and Federico Grazzini
EGUsphere, https://doi.org/10.5194/egusphere-2025-3447, https://doi.org/10.5194/egusphere-2025-3447, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Atmospheric rivers, narrow and elongated corridors of intense horizontal moisture transport, may produce heavy precipitation where they are forced to rise over the orography. This has been recently shown to occur also in the Mediterranean basin. The present study analyses the presence of atmospheric rivers in this area, in the period 1961–2024, and reveals a strong connection with extreme rainfall over northern-central Italy.
This article is included in the Encyclopedia of Geosciences
Anthony Rey-Pommier, Alexandre Héraud, Frédéric Chevallier, Philippe Ciais, Theodoros Christoudias, Jonilda Kushta, and Jean Sciare
Earth Syst. Sci. Data, 17, 3329–3351, https://doi.org/10.5194/essd-17-3329-2025, https://doi.org/10.5194/essd-17-3329-2025, 2025
Short summary
Short summary
In this study, we estimate emissions of nitrogen oxides (NOx) in 2022 at high resolution at the global scale, using satellite observations. We provide maps of the emissions and identify several types of sources. Our results are similar to the EDGAR emission inventory. However, differences are found in countries with lower observation densities and lower emissions.
This article is included in the Encyclopedia of Geosciences
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
Weather Clim. Dynam., 6, 627–643, https://doi.org/10.5194/wcd-6-627-2025, https://doi.org/10.5194/wcd-6-627-2025, 2025
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The findings highlight the regional coupled model's ability to coherently represent the thermodynamic and dynamic processes of the cyclones across both the atmosphere and the ocean.
This article is included in the Encyclopedia of Geosciences
Adrien Marcel, Sébastien Riette, Didier Ricard, and Christine Lac
EGUsphere, https://doi.org/10.5194/egusphere-2025-2504, https://doi.org/10.5194/egusphere-2025-2504, 2025
Short summary
Short summary
This paper provides substantial consistent updates to the atmospheric boundary layer schemes of the AROME model, yet they can be used for both forecasting and climate modelling. The study employs a single-column model versus large eddy simulations comparison and uses a machine learning tool to calibrate parameterizations. The model's ability to simulate shallow clouds has been enhanced, especially for shallow precipitating cumulus and stratocumulus clouds.
This article is included in the Encyclopedia of Geosciences
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
This article is included in the Encyclopedia of Geosciences
Konstantinos V. Varotsos, Gianna Kitsara, Anna Karali, Ioannis Lemesios, Platon Patlakas, Maria Hatzaki, Vassilis Tenentes, George Katavoutas, Athanasios Sarantopoulos, Basil Psiloglou, Aristeidis G. Koutroulis, Manolis G. Grillakis, and Christos Giannakopoulos
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-29, https://doi.org/10.5194/essd-2025-29, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
CLIMADAT-GRid is the first, publicly available, daily air temperature and precipitation gridded climate dataset for Greece at a high resolution of 1 km x 1 km and for the period 1981–2019.The dataset is based on quality-controlled station data while various interpolation techniques were evaluated for generating the daily grids. CLIMADAT-GRid serves as a valuable resource for research and information in climate studies as well as in other areas such as hydrology, agriculture, energy and health.
This article is included in the Encyclopedia of Geosciences
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025, https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETCs) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
This article is included in the Encyclopedia of Geosciences
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024, https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary
Short summary
Medicane Ianos was a very intense cyclone that led to harmful impacts over Greece. We explore what processes are important for the forecasting of Medicane Ianos, with the use of the Met Office weather model. There was a preceding precipitation event before Ianos’s birth, whose energetics generated a bubble in the tropopause. This bubble created the necessary conditions for Ianos to emerge and strengthen, and the processes are enhanced in simulations with a warmer Mediterranean Sea.
This article is included in the Encyclopedia of Geosciences
Benjamin Doiteau, Florian Pantillon, Matthieu Plu, Laurent Descamps, and Thomas Rieutord
Weather Clim. Dynam., 5, 1409–1427, https://doi.org/10.5194/wcd-5-1409-2024, https://doi.org/10.5194/wcd-5-1409-2024, 2024
Short summary
Short summary
The predictability of Mediterranean cyclones is investigated through a large dataset of 1960 cyclones tracks, ensuring robust statistical results. The motion speed of the cyclone appears to determine the predictability of its location. In particular, the location of specific slow cyclones concentrated in the Gulf of Genoa is remarkably well predicted. It is also shown that the intensity of deep cyclones, occurring in winter, is particularly poorly predicted in the Mediterranean region.
This article is included in the Encyclopedia of Geosciences
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet, 4-osr8, 11, https://doi.org/10.5194/sp-4-osr8-11-2024, https://doi.org/10.5194/sp-4-osr8-11-2024, 2024
Short summary
Short summary
We investigate the air–sea heat flux during marine heatwaves (MHWs) in the Mediterranean Sea. Surface heat flux drives 44 % of the onset and only 17 % of the declining MHW phases, suggesting a key role of oceanic processes. Heat flux is more important in warmer months and onset phases, with latent heat dominating. Shorter events show a weaker heat flux contribution. In most cases, mixed layer shoaling occurs over the entire MHW duration, followed by vertical mixing after the MHW end day.
This article is included in the Encyclopedia of Geosciences
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
This article is included in the Encyclopedia of Geosciences
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
This article is included in the Encyclopedia of Geosciences
Dimitra Denaxa, Gerasimos Korres, Sophia Darmaraki, and Maria Hatzaki
State Planet Discuss., https://doi.org/10.5194/sp-2024-4, https://doi.org/10.5194/sp-2024-4, 2024
Revised manuscript accepted for SP
Short summary
Short summary
The Mediterranean Sea experiences a basin-wide increase in sea surface temperature (SST) and extreme SST occurrences. Stronger warming trends are found in the eastern basin where a decrease in SST variability is also observed. Our findings on the origin of marine heatwave (MHW) trends in the basin suggest that the mean SST warming drives the long-term trends for most MHW properties across the basin except for mean MHW intensity, where interannual variability emerges as the dominant driver.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
This article is included in the Encyclopedia of Geosciences
Raphaël Rousseau-Rizzi, Shira Raveh-Rubin, Jennifer L. Catto, Alice Portal, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024, https://doi.org/10.5194/wcd-5-1079-2024, 2024
Short summary
Short summary
We identify situations when rain and wind, rain and wave, or heat and dust hazards co-occur within Mediterranean cyclones. These hazard combinations are associated with risk to infrastructure, risk of coastal flooding and risk of respiratory issues. The presence of Mediterranean cyclones is associated with increased probability of all three hazard combinations. We identify weather configurations and cyclone structures, particularly those associated with specific co-occurrence combinations.
This article is included in the Encyclopedia of Geosciences
Alice Portal, Shira Raveh-Rubin, Jennifer L. Catto, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1043–1060, https://doi.org/10.5194/wcd-5-1043-2024, https://doi.org/10.5194/wcd-5-1043-2024, 2024
Short summary
Short summary
Mediterranean cyclones are associated with extended rain, wind, and wave impacts. Although beneficial for regional water resources, their passage may induce extreme weather, which is especially impactful when multiple hazards combine together. Here we show how the passage of Mediterranean cyclones increases the likelihood of rain–wind and wave–wind compounding and how compound–cyclone statistics vary by region and season, depending on the presence of specific airflows around the cyclone.
This article is included in the Encyclopedia of Geosciences
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024, https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary
Short summary
The upgraded systems SENSE2 and NextSENSE2 focus on improving the quality of solar nowcasting and forecasting. SENSE2 provides real-time estimates of solar irradiance across a wide region every 15 min. NextSENSE2 offers short-term forecasts of irradiance up to 3 h ahead. Evaluation with actual data showed that the instantaneous comparison yields the most discrepancies due to the uncertainties of cloud-related information and satellite versus ground-based spatial representativeness limitations.
This article is included in the Encyclopedia of Geosciences
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024, https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary
Short summary
We show that the formation of Mediterranean cyclones follows the presence of cyclones over the North Atlantic. The distinct regions of cyclone activity in the Mediterranean in the different seasons can be linked to the atmospheric state, in particular the position of the polar jet over the North Atlantic. With this we now better understand the processes that lead to the formation of Mediterranean cyclones. We used a novel simulation framework in which we directly show and probe this connection.
This article is included in the Encyclopedia of Geosciences
Dimitra Denaxa, Gerasimos Korres, Emmanouil Flaounas, and Maria Hatzaki
Ocean Sci., 20, 433–461, https://doi.org/10.5194/os-20-433-2024, https://doi.org/10.5194/os-20-433-2024, 2024
Short summary
Short summary
This study explores extreme marine summers (EMSs) in the Mediterranean Sea using sea surface temperature (SST) data. EMSs arise mainly due to the warmest summer days being unusually warm. Air–sea heat fluxes drive EMSs in northern regions, where also enhanced marine heatwave conditions are found during EMSs. Long-term SST changes lead to warmer EMSs while not affecting the way daily SST values are organized during EMSs. Findings enhance comprehension of anomalously warm conditions in the basin.
This article is included in the Encyclopedia of Geosciences
Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
Short summary
Short summary
A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
This article is included in the Encyclopedia of Geosciences
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Jonilda Kushta, Theodoros Christoudias, I. Safak Bayram, and Jean Sciare
Atmos. Chem. Phys., 23, 13565–13583, https://doi.org/10.5194/acp-23-13565-2023, https://doi.org/10.5194/acp-23-13565-2023, 2023
Short summary
Short summary
We use four years (2019–2022) of TROPOMI NO2 data to map NOx emissions in Qatar. We estimate average monthly emissions for the country and industrial facilities and derive an emission factor for the power sector. Monthly emissions have a weekly cycle reflecting the social norms in Qatar and an annual cycle consistent with the electricity production by gas-fired power plants. Their mean value is lower than the NOx emissions in global inventories but similar to the emissions reported for 2007.
This article is included in the Encyclopedia of Geosciences
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
This article is included in the Encyclopedia of Geosciences
Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori
Nat. Hazards Earth Syst. Sci., 23, 2443–2448, https://doi.org/10.5194/nhess-23-2443-2023, https://doi.org/10.5194/nhess-23-2443-2023, 2023
Short summary
Short summary
Tornadoes represent disruptive and dangerous weather events. The prediction of these small-scale phenomena depends on the resolution of present weather forecast and climatic projections. This work discusses the occurrence of tornadoes in terms of atmospheric variables and provides analytical expressions for their conditional probability. These formulas represent a tool for tornado alert systems and for estimating the future evolution of tornado frequency and intensity in climate projections.
This article is included in the Encyclopedia of Geosciences
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
This article is included in the Encyclopedia of Geosciences
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
This article is included in the Encyclopedia of Geosciences
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
This article is included in the Encyclopedia of Geosciences
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
This article is included in the Encyclopedia of Geosciences
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023, https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Short summary
We investigate the dynamical origin of the lower-atmospheric potential vorticity (PV; linked to the intensity of cyclones) in Mediterranean cyclones. We quantify the contribution of the cyclone and the environment by tracing PV backward in time and space and linking it to the track of the cyclone. We find that the lower-tropospheric PV is produced shortly before the cyclone's stage of highest intensity. We investigate the driving processes and use a global dataset and a process-resolving one.
This article is included in the Encyclopedia of Geosciences
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Short summary
3D cloud envelope and development velocity are retrieved from realistic simulations of multi-view
CLOUD (C3IEL) images. Cloud development velocity is derived by finding matching features
between acquisitions separated by 20 s. The tie points are then mapped from image to space via 3D
reconstruction of the cloud envelope obtained from 2 simultaneous images. The retrieved cloud
topography as well as the velocities are in good agreement with the estimates obtained from the
physical models.
This article is included in the Encyclopedia of Geosciences
Charikleia L. G. Oikonomou, Dimitra Denaxa, and Gerasimos Korres
State Planet Discuss., https://doi.org/10.5194/sp-2022-16, https://doi.org/10.5194/sp-2022-16, 2022
Preprint withdrawn
Short summary
Short summary
We explore the wave energy resource within the Mediterranean basin, along with the dominant wave regime. Results suggest that although the basin is not characterised by high energy potential, it could serve as a deployment zone for low-power devices due to low peak period variability and high site accessibility levels. Results suggest that further research is required to determine the dominant wave regime, as the high contribution of swell partitions hints the occurrence of mixed sea states.
This article is included in the Encyclopedia of Geosciences
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Grégoire Broquet, Theodoros Christoudias, Jonilda Kushta, Didier Hauglustaine, and Jean Sciare
Atmos. Chem. Phys., 22, 11505–11527, https://doi.org/10.5194/acp-22-11505-2022, https://doi.org/10.5194/acp-22-11505-2022, 2022
Short summary
Short summary
Emission inventories for air pollutants can be uncertain in developing countries. In order to overcome these uncertainties, we model nitrogen oxide emissions in Egypt using satellite retrievals. We detect a weekly cycle reflecting Egyptian social norms, an annual cycle consistent with electricity consumption and an activity drop due to the COVID-19 pandemic. However, discrepancies with inventories remain high, illustrating the needs for additional data to improve the potential of our method.
This article is included in the Encyclopedia of Geosciences
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
This article is included in the Encyclopedia of Geosciences
George K. Georgiou, Theodoros Christoudias, Yiannis Proestos, Jonilda Kushta, Michael Pikridas, Jean Sciare, Chrysanthos Savvides, and Jos Lelieveld
Geosci. Model Dev., 15, 4129–4146, https://doi.org/10.5194/gmd-15-4129-2022, https://doi.org/10.5194/gmd-15-4129-2022, 2022
Short summary
Short summary
We evaluate the skill of the WRF-Chem model to perform high-resolution air quality forecasts (including ozone, nitrogen dioxide, and fine particulate matter) over the Eastern Mediterranean, during winter and summer. We compare the forecast output to observational data from background and urban locations and the forecast output from CAMS. WRF-Chem was found to forecast the concentrations and diurnal profiles of gas-phase pollutants in urban areas with higher accuracy.
This article is included in the Encyclopedia of Geosciences
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
This article is included in the Encyclopedia of Geosciences
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
This article is included in the Encyclopedia of Geosciences
Douglas Keller Jr., Yonatan Givon, Romain Pennel, Shira Raveh-Rubin, and Philippe Drobinski
Ocean Sci., 18, 483–510, https://doi.org/10.5194/os-18-483-2022, https://doi.org/10.5194/os-18-483-2022, 2022
Short summary
Short summary
The mistral winds are believed to be the primary source of cooling of the Gulf of Lion, leading to deep convection in the region, a process that mixes the ocean column from the seafloor to the sea surface. However, we have found that seasonal atmospheric changes also significantly cool the Gulf of Lion waters to cause deep convection, rather than mistral winds being the sole source, contributing roughly two-thirds of the required cooling, with the mistral winds contributing the final third.
This article is included in the Encyclopedia of Geosciences
Mario Marcello Miglietta and Silvio Davolio
Hydrol. Earth Syst. Sci., 26, 627–646, https://doi.org/10.5194/hess-26-627-2022, https://doi.org/10.5194/hess-26-627-2022, 2022
Short summary
Short summary
The main results emerging from the HyMeX SOP1 campaign and in the subsequent research activity in three Italian target areas are highlighted through conceptual models and through the identification of the relevant mesoscale environmental characteristics conducive to heavy rain events.
This article is included in the Encyclopedia of Geosciences
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
This article is included in the Encyclopedia of Geosciences
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
This article is included in the Encyclopedia of Geosciences
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
This article is included in the Encyclopedia of Geosciences
Yonatan Givon, Douglas Keller Jr., Vered Silverman, Romain Pennel, Philippe Drobinski, and Shira Raveh-Rubin
Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, https://doi.org/10.5194/wcd-2-609-2021, 2021
Short summary
Short summary
Mistral wind is a renowned phenomenon in the Mediterranean, yet its large-scale controlling mechanisms have not been systematically mapped. Here, using a new mistral database for 1981–2016, the upper-tropospheric flow patterns are classified by a self-organizing map algorithm, resulting in 16 distinct patterns related to Rossby wave life cycles. Each pattern has unique surface impact, having implications to understanding mistral predictability, air–sea interaction and their future projections.
This article is included in the Encyclopedia of Geosciences
Elissavet Galanaki, Konstantinos Lagouvardos, Vassiliki Kotroni, Theodore Giannaros, and Christos Giannaros
Nat. Hazards Earth Syst. Sci., 21, 1983–2000, https://doi.org/10.5194/nhess-21-1983-2021, https://doi.org/10.5194/nhess-21-1983-2021, 2021
Short summary
Short summary
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes in medium-catchment-size basins in Greece. The results showed the capability of WRF-Hydro to adequately simulate the observed discharge and the slight improvement in terms of quantitative precipitation forecasting compared to the WRF-only simulations.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
This article is included in the Encyclopedia of Geosciences
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 2, 37–53, https://doi.org/10.5194/wcd-2-37-2021, https://doi.org/10.5194/wcd-2-37-2021, 2021
Short summary
Short summary
Rare aircraft observations in the warm conveyor belt outflow associated with an extratropical cyclone are complemented with convection-permitting simulations. They reveal a complex tropopause structure with two jet stream cores, from which one is reinforced by bands of negative potential vorticity. They show that negative potential vorticity takes its origin in mid-level convection, which indirectly accelerates the jet stream and, thus, may influence the downstream large-scale circulation.
This article is included in the Encyclopedia of Geosciences
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
This article is included in the Encyclopedia of Geosciences
Saoussen Dhib, Víctor Homar, Zoubeida Bargaoui, and Mariadelmar Vich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-376, https://doi.org/10.5194/nhess-2020-376, 2021
Revised manuscript not accepted
Short summary
Short summary
Previous evaluation of rainfall estimation by satellite algorithms showed an insufficient over Northern Tunisia. That was why we tried the WRF. We selected four heavy rainy days. For each day, 99 combinations of Cu and PBL are simulated. The sensitivity study highlighted the large difference in the estimation by the different schemes. The use of several verification techniques was extremely helpful to choose the best combinations for each event. The ensemble method gave very satisfying results.
This article is included in the Encyclopedia of Geosciences
Samiro Khodayar and Johannes Hoerner
Atmos. Chem. Phys., 20, 12011–12031, https://doi.org/10.5194/acp-20-12011-2020, https://doi.org/10.5194/acp-20-12011-2020, 2020
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 1, 617–634, https://doi.org/10.5194/wcd-1-617-2020, https://doi.org/10.5194/wcd-1-617-2020, 2020
Short summary
Short summary
The study presents the first results from the airborne RASTA observations measured during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). Our combined Eulerian–Lagrangian analysis found three types of organized convection (frontal, banded and mid-level) in the warm conveyor belt (WCB) of the Stalactite cyclone. The results emphasize that convection embedded in WCBs occurs in a coherent and organized manner rather than as isolated cells.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aebischer, U. and Schär, C.: Low-level potential vorticity and cyclogenesis to the lee of the Alps, J. Atmos. Sci., 55, 186–207, 1998.
Ahmadi-Givi, F., Nasr-Esfahany, M., and Mohebalhojeh, A. R.: Interaction of
North Atlantic baroclinic wave packets and the Mediterranean storm track:
Interaction of baroclinic wave packets and storm tracks, Q. J. Roy. Meteorol.
Soc., 140, 754–765, https://doi.org/10.1002/qj.2171, 2014.
Aksoy, A., Dowell, D. C., and Snyder, C.: A Multicase Comparative Assessment
of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part
II: Short-Range Ensemble Forecasts, Mon. Weather Rev., 138, 1273–1292,
https://doi.org/10.1175/2009MWR3086.1, 2010.
Alpert, P. and Ziv, B.: The Sharav Cyclone: Observations and some
theoretical considerations, J. Geophys. Res., 94, 18495,
https://doi.org/10.1029/JD094iD15p18495, 1989.
Alpert, P., Neeman, B. U., and Shay-El, Y.: Climatological analysis of
Mediterranean cyclones using ECMWF data, Tellus A, 42, 65–77,
https://doi.org/10.1034/j.1600-0870.1990.00007.x, 1990.
Amengual, A., Carrió, D. S., Ravazzani, G., and Homar, V.: A Comparison
of Ensemble Strategies for Flash Flood Forecasting: The 12 October 2007 Case
Study in Valencia, Spain, J. Hydrometeorol., 18, 1143–1166,
https://doi.org/10.1175/JHM-D-16-0281.1, 2017.
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and
Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and
trends under future climatic conditions, Dynam. Atmos. Oceans,
71, 56–82, https://doi.org/10.1016/j.dynatmoce.2015.06.001, 2015.
Anwender, D., Harr, P. A., and Jones, S. C.: Predictability Associated with
the Downstream Impacts of the Extratropical Transition of Tropical Cyclones:
Case Studies, Mon. Weather Rev., 136, 3226–3247, https://doi.org/10.1175/2008MWR2249.1, 2008.
Argence, S., Lambert, D., Richard, E., Chaboureau, J. P., and Söhne, N.:
Impact of initial condition uncertainties on the predictability of heavy
rainfall in the Mediterranean: A case study, Q. J. Roy. Meteorol. Soc., 134, 1775–1788, https://doi.org/10.1002/qj.314, 2008.
Baars, H., Herzog, A., Heese, B., Ohneiser, K., Hanbuch, K., Hofer, J., Yin, Z., Engelmann, R., and Wandinger, U.: Validation of Aeolus wind products above the Atlantic Ocean, Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, 2020.
Bartholy, J., Pongrácz, R., and Pattantyús-Ábrahám, M.:
Analyzing the genesis, intensity, and tracks of western Mediterranean
cyclones, Theor. Appl. Climatol., 96, 133–144,
https://doi.org/10.1007/s00704-008-0082-9, 2009.
Bengtsson, L., Hodges, K. I., and Roeckner, E.: Storm Tracks and Climate
Change, J. Climate, 19, 3518–3543, https://doi.org/10.1175/JCLI3815.1, 2006.
Bertotti, L. and Cavaleri, L.: The predictability of the “Voyager” accident, Nat. Hazards Earth Syst. Sci., 8, 533–537, https://doi.org/10.5194/nhess-8-533-2008, 2008.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bitsa, E., Flocas, H., Kouroutzoglou, J., Hatzaki, M., Rudeva, I., and
Simmonds, I.: Development of a Front Identification Scheme for Compiling a
Cold Front Climatology of the Mediterranean, Climate, 7, 130, https://doi.org/10.3390/cli7110130, 2019.
Bladé, I., Liebmann, B., Fortuny, D., and van Oldenborgh, G. J.:
Observed and simulated impacts of the summer NAO in Europe: implications for
projected drying in the Mediterranean region, Clim. Dynam., 39, 709–727,
https://doi.org/10.1007/s00382-011-1195-x, 2012.
Bouin, M.-N. and Lebeaupin Brossier, C.: Impact of a medicane on the oceanic surface layer from a coupled, kilometre-scale simulation, Ocean Sci., 16, 1125–1142, https://doi.org/10.5194/os-16-1125-2020, 2020.
Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., and Williams, E.: Dust
emission and transport associated with a Saharan depression: February 2007
case, J. Geophys. Res., 115, D00H27, https://doi.org/10.1029/2009JD012390,
2010.
Bouttier, F., Raynaud, L., Nuissier, O., and Ménétrier, B.:
Sensitivity of the AROME ensemble to initial and surface perturbations
during HyMeX, Q. J. Roy. Meteorol. Soc., 142, 390–403,
https://doi.org/10.1002/qj.2622, 2016.
Brâncuş, M., Schultz, D. M., Antonescu, B., Dearden, C., and
Ştefan, S.: Origin of Strong Winds in an Explosive Mediterranean
Extratropical Cyclone, Mon. Weather Rev., 147, 3649–3671,
https://doi.org/10.1175/MWR-D-19-0009.1, 2019.
Buzzi, A.: Synoptic scale variability in the Mediterranean, Proc. of 2010
ECMWF Annual Seminar, 6–9 September 2012, Reading, UK, ECMWF, 16 pp., available at:
https://www.ecmwf.int/sites/default/files/elibrary/2012/8502-synoptic-scale-variability-mediterranean.pdf
(last access: 30 June 2021), 2012.
Buzzi, A. and Tibaldi, S.: Cyclogenesis in the lee of the Alps: a case
study, Q. J. Roy. Meteorol. Soc., 104, 271–287, 1978.
Buzzi, A., D'Isidoro, M., and Davolio, S.: A case study of an orographic
cyclone formation south of the Alps during the MAP-SOP, Q. J. Roy. Meteorol.
Soc., 129, 1795–1818, 2003.
Buzzi, A., Davolio, S., and Fantini, M.: Cyclogenesis in the lee of the
Alps: a review of theories, Bull. Atmos. Sci. Technol., 1, 433–457,
https://doi.org/10.1007/s42865-020-00021-6, 2020.
Čampa, J. and Wernli, H.: A PV Perspective on the Vertical Structure of Mature Midlatitude Cyclones in the Northern Hemisphere, J. Atmos. Sci., 69, 725–740, https://doi.org/10.1175/JAS-D-11-050.1, 2012.
Campins, J., Genovìes, A., Jansà, A., Guijarroa, J. A., and Ramis,C.: A
catalogue and a classification of surface ciclones for theWestern
Mediterranean, Int. J. Climatol., 20, 969–984, 2000.
Campins, J., Genoveìs, A., Picornell, M. A., and Jansà, A.: Climatology of
Mediterranean cyclones using the ERA-40 dataset, Int. J. Climatol., 31,
1596–1614, https://doi.org/10.1002/joc.2183, 2011.
Campins, J., Navascués, B., Santos, C., and Amo-Baladrón, A.: Influence of targeted observations on short-term forecasts of high-impact weather events in the Mediterranean, Nat. Hazards Earth Syst. Sci., 13, 2891–2910, https://doi.org/10.5194/nhess-13-2891-2013, 2013.
Carlson, T. N.: Airflow through midlatitude cyclones and the comma cloud
pattern, Mon. Weather Rev., 108, 1498–1509, 1980.
Carrió, D. S. and Homar, V.: Potential of sequential EnKF for the
short-range prediction of a maritime severe weather event, Atmos.
Res., 178–179, 426–444,
https://doi.org/10.1016/j.atmosres.2016.04.011, 2016.
Carrió, D. S., Homar, V., Jansa, A., Romero, R., and Picornell, M. A.:
Tropicalization process of the 7 November 2014 Mediterranean cyclone:
Numerical sensitivity study, Atmos. Res., 197, 300–312,
https://doi.org/10.1016/j.atmosres.2017.07.018, 2017.
Carrió, D. S., Homar, V., and Wheatley, D. M.: Potential of an EnKF
Storm-Scale Data Assimilation System Over Sparse Observation Regions with
Complex Orography, Atmos. Res., 216, 186–206,
https://doi.org/10.1016/j.atmosres.2018.10.004, 2019.
Carrió, D. S., Homar, V., Jansà, A., Picornell, M. A., and Campins,
J.: Diagnosis of a high-impact secondary cyclone during HyMeX-SOP1 IOP18,
Atmos. Res., 242, 104983,
https://doi.org/10.1016/j.atmosres.2020.104983, 2020.
Catto, J. L. and Raveh-Rubin, S.: Climatology and dynamics of the link
between dry intrusions and cold fronts during winter. Part I: global
climatology, Clim. Dynam., 53, 1873–1892, 2019.
Cavaleri, L. and Bertotti, L.: The Attenuation of Swell Waves by Rain: The
Attenuation of Swell Waves by Rain, Geophys. Res. Lett., 44, 10504–10510,
https://doi.org/10.1002/2017GL075458, 2017.
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M.,
and Onorato, M.: Rogue waves in crossing seas: The Louis Majesty accident,
J. Geophys. Res., 117, C00J10, https://doi.org/10.1029/2012JC007923, 2012.
Cavaleri, L., Barbariol, F., Bastianini, M., Benetazzo, A., Bertotti, L.,
Bajo, M., Chiggiato, J., Davolio, S., Ferrarin, C., Magnusson, L., Papa, A.,
Pezzutto, P., Pomaro, A., and Umgiesser, G.: The October 29, 2018 storm in
Northern Italy – an exceptional event and its modeling, Prog.
Oceanogr., 178, 102178, https://doi.org/10.1016/j.pocean.2019.102178, 2019.
Cavicchia, L., von Storch, H., and Gualdi, S.: A long-term climatology of
medicanes, Clim. Dynam., 43, 1183–1195, 2014a.
Cavicchia, L., von Storch, H., and Gualdi, S.: Mediterranean Tropical-Like
Cyclones in Present and Future Climate, J. Climate, 27, 7493–7501, 2014b.
Chaboureau, J. P., Pantillon, F., Lambert, D., Richard, E., and Claud, C.:
Tropical transition of a Mediterranean storm by jet crossing, Q. J. Roy.
Meteorol. Soc., 138, 596–611, https://doi.org/10.1002/qj.960, 2012.
Chazette, P., Flamant, C., Raut, J.-C., Totems, J., and Shang, X.: Tropical
moisture enriched storm tracks over the Mediterranean and their link with
intense rainfall in the Cevennes-Vivarais area during HyMeX, Q. J. Roy.
Meteorol. Soc., 142, 320–334, https://doi.org/10.1002/qj.2674, 2016.
Chronis, T., Raitsos, D. E., Kassis, D., and Sarantopoulos, A.: The Summer
North Atlantic Oscillation Influence on the Eastern Mediterranean, J. Climate, 24, 5584–5596, https://doi.org/10.1175/2011JCLI3839.1, 2011.
Cioni, G., Malguzzi, P., and Buzzi, A.: Thermal structure and dynamical
precursor of a Mediterranean tropical-like cyclone, Q. J. Roy. Meteorol.
Soc., 142, 1757–1766, https://doi.org/10.1002/qj.2773, 2016.
Cioni, G., Cerrai, D., and Klocke, D.: Investigating the predictability of a
Mediterranean tropical-like cyclone using a storm-resolving model, Q. J. Roy.
Meteorol. Soc., 144, 1598–1610, https://doi.org/10.1002/qj.3322, 2018.
Clark, P. A. and Gray, S. L.: Sting jets in extratropical cyclones: a review,
Q. J. Roy. Meteorol. Soc., 144, 943–969, 2018.
Clark, P. A., Browning, K. A., and Wang, C.: The sting at the end of the
tail: Model diagnostics of fine-scale three-dimensional structure of the
cloud head, Q. J. Roy. Meteorol. Soc., 131, 2263–2292,
https://doi.org/10.1256/qj.04.36, 2005.
Claud, C., Alhammoud, B., Funatsu, B. M., and Chaboureau, J.-P.: Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations, Nat. Hazards Earth Syst. Sci., 10, 2199–2213, https://doi.org/10.5194/nhess-10-2199-2010, 2010.
Dafis, S., Rysman, J., Claud, C., and Flaounas, E.: Remote sensing of deep
convection within a tropical-like cyclone over the Mediterranean Sea, Atmos.
Sci. Lett., 19, e823, https://doi.org/10.1002/asl.823, 2018.
Dafis, S., Claud, C., Kotroni, V., Lagouvardos, K., and Rysman, J.: Insights
into the convective evolution of Mediterranean tropical-like cyclones,
Q. J. Roy. Meteorol. Soc., 146, 4147–4169, https://doi.org/10.1002/qj.3896,
2020.
Davis, C. A. and Bosart, L. F.: The TT problem: forecasting thetropical
transition of cyclones, B. Am. Meteorol. Soc., 85, 1657–1662, 2004.
Davolio, S., Volontè, A., Manzato, A., Pucillo, A., Cicogna, A., and
Ferrario, M. E.: Mechanisms producing different precipitation patterns over
North-Eastern Italy: insights from HyMeX-SOP1 and previous events, Q. J. Roy.
Meteorol. Soc., 142, 188–205, https://doi.org/10.1002/qj.2731, 2016.
Davolio, S., Della Fera, S., Laviola, S., Miglietta, M. M., and Levizzani,
V.: Heavy precipitation over Italy from the Mediterranean storm “Vaia” in
October 2018: Assessing the role of an atmospheric river, Mon. Weather Rev.,
148, 3571–3588, 2020.
Dayan, U., Ziv, B., Shoob, T., and Enzel, Y.: Suspended dust over
southeastern Mediterranean and its relation to atmospheric circulations,
Int. J. Climatol., 28, 915–924, https://doi.org/10.1002/joc.1587, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de la Vara, A., Gutiérrez-Fernández, J., González-Alemán, J.
J., and Gaertner, M. Á.: Characterization of medicanes with a minimal
number of geopotential levels, Int. J. Climatol., 41, 3300–3316, https://doi.org/10.1002/joc.7020, 2021.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D.,
Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre,
O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M.,
du-Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic
Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First
Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological
Observatory, J. Hydrometeorol., 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005.
Di Muzio, E., Riemer, M., Fink, A. H., and Maier-Gerber, M.: Assessing the
predictability of Medicanes in ECMWF ensemble forecasts using an
object-based approach, Q. J. Roy. Meteorol. Soc., 145, 1202–1217,
https://doi.org/10.1002/qj.3489, 2019.
Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the
North Atlantic summer storm track: mechanisms and impacts on European
climate, Environ. Res. Lett., 8, 034037,
https://doi.org/10.1088/1748-9326/8/3/034037, 2013.
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C., Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V., Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle, B. Am. Meteorol. Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1: The field campaign
dedicated to heavy precipitation and flash flooding in the northwestern
Mediterranean, B. Am. Meteorol. Soc., 95, 1083–1100, 2014.
Duffourg, F., Lee, K. O., Ducrocq, V., Flamant, C., Chazette, P., and Di
Girolamo, P.: Role of moisture patterns in the backbuilding formation of
HyMeX IOP13 Heavy Precipitating Systems, Q. J. Roy. Meteor. Soc., 144,
291–303, https://doi.org/10.1002/qj.3201, 2018.
Egger, J., Alpert, P., Tafferner, A., and Ziv, B.: Numerical experiments on
the genesis of Sharav cyclones: idealized simulations, Tellus A, 47,
162–174, https://doi.org/10.1034/j.1600-0870.1995.t01-1-00002.x, 1995.
Emanuel, K.: Genesis and maintenance of Mediterranean hurricanes, Adv.
Geosci., 2, 217–220, 2005.
Emanuel, K. A.: An air–sea interaction theory for tropical cyclones. Part
I: Steady-state maintenance, J. Atmos. Sci., 43, 585–604, 1986.
Fantini, M. and Davolio, S.: Instability of Neutral Eady Waves and
orography, J. Atmos. Sci., 58, 1146–1154, 2001.
Ferrarin, C., Bajo, M., Benetazzo, A., Cavaleri, L., Chiggiato, J.,
Davison, S., Davolio S., Lionello, P., Orlić, M., and Umgiesser, G: Local and large-scale controls of the exceptional Venice floods of November 2019, Prog. Oceanogr., 197, 102628, https://doi.org/10.1016/j.pocean.2021.102628, 2021.
Fiedler, S., Schepanski, K., Knippertz, P., Heinold, B., and Tegen, I.: How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?, Atmos. Chem. Phys., 14, 8983–9000, https://doi.org/10.5194/acp-14-8983-2014, 2014.
Fita, L. and Flaounas, E.: Medicanes as subtropical cyclones: the December
2005 case from the perspective of surface pressure tendency diagnostics and
atmospheric water budget, Q. J. Roy. Meteorol. Soc., 144, 1028–1044, https://doi.org/10.1002/qj.3273, 2018.
Fita, L., Romero, R., and Ramis, C.: Intercomparison of intense cyclogenesis
events over the Mediterranean basin based on baroclinic and diabatic
influences, Adv. Geosci., 7, 333–342,
https://doi.org/10.5194/adgeo-7-333-2006, 2006.
Fita, L., Romero, R., Luque, A., Emanuel, K., and Ramis, C.: Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model, Nat. Hazards Earth Syst. Sci., 7, 41–56, https://doi.org/10.5194/nhess-7-41-2007, 2007.
Flaounas, E., Drobinski, P., and Bastin, S.: Dynamical downscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis, Clim. Dynam., 40, 2497–2513, https://doi.org/10.1007/s00382-012-1606-7, 2013.
Flaounas, E., Kotroni, V., Lagouvardos, K., and Flaounas, I.: CycloTRACK (v1.0) – tracking winter extratropical cyclones based on relative vorticity: sensitivity to data filtering and other relevant parameters, Geosci. Model Dev., 7, 1841–1853, https://doi.org/10.5194/gmd-7-1841-2014, 2014.
Flaounas, E., Raveh-Rubin, S., Wernli, H., Drobinski, P., and Bastin, S.:
The dynamical structure of intense Mediterranean cyclones, Clim. Dynam.,
44, 2411–2427, https://doi.org/10.1007/s00382-014-2330-2, 2015.
Flaounas, E., Lagouvardos, K., Kotroni, V., Claud, C., Delanoë, J.,
Flamant, C., and Wernli, H.: Processes leading to heavy precipitation
associated with two Mediterranean cyclones observed during the HyMeX SOP1,
Q. J. Roy. Meteorol. Soc., 142, 275–286, 2016.
Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, S. L., Rysman, J.-F., and
Claud, C.: Heavy rainfall in Mediterranean cyclones. Part I: contribution of
deep convection and warm conveyor belt, Clim. Dynam., 50, 2935–2949,
https://doi.org/10.1007/s00382-017-3783-x, 2018.
Flaounas, E., Fita, L., Lagouvardos, K., and Kotroni, V.: Heavy rainfall in
Mediterranean cyclones, Part II: Water budget, precipitation efficiency and
remote water sources, Clim. Dynam., 53, 2539–2555,
https://doi.org/10.1007/s00382-019-04639-x, 2019.
Flaounas, E., Gray, S. L., and Teubler, F.: A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems, Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, 2021.
Flocas, H. A.: Diagnostics of cyclogenesis over the Aegean sea using
potential vorticity inversion, Meteorol. Atmos. Phys., 73, 25–33, https://doi.org/10.1007/s007030050061, 2000.
Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M.,
Bricolas, V., and Asimakopoulos, D.: On Cyclonic Tracks over the Eastern
Mediterranean, J. Climate, 23, 5243–5257, https://doi.org/10.1175/2010JCLI3426.1, 2010.
Fourrié, N., Bresson, É., Nuret, M., Jany, C., Brousseau, P., Doerenbecher, A., Kreitz, M., Nuissier, O., Sevault, E., Bénichou, H., Amodei, M., and Pouponneau, F.: AROME-WMED, a real-time mesoscale model designed for the HyMeX special observation periods, Geosci. Model Dev., 8, 1919–1941, https://doi.org/10.5194/gmd-8-1919-2015, 2015.
Fourrié, N., Nuret, M., Brousseau, P., Caumont, O., Doerenbecher, A., Wattrelot, E., Moll, P., Bénichou, H., Puech, D., Bock, O., Bosser, P., Chazette, P., Flamant, C., Di Girolamo, P., Richard, E., and Saïd, F.: The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX), Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, 2019.
Fourrié, N., Nuret, M., Brousseau, P., and Caumont, O.: Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment, Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, 2021.
Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E.,
Sánchez, E., and Castro, M.: Tropical cyclones over the Mediterranean
Sea in climate change simulations, Geophys. Res. Lett., 34, L14711, https://doi.org/10.1029/2007GL029977, 2007.
Gaertner, M. A., González-Alemán, J.J., Romera, R., Domínguez,
M., Gil, V., Sánchez, E., Gallardo, C., Miglietta, M., Walsh, K.J.E.,
Sein, D.V., Somot, S., Dell'Aquila, A., Teichmann, C., Ahrens, B., Buonomo,
E., Colette, A., Bastin, S., van Meijgaard, E., and Nikulin, G.: Simulation
of medicanes over the Mediterranean Sea in a regional climate model
ensemble: impact of ocean–atmosphere coupling and increased resolution, Clim. Dynam., 51, 1041–1057, 2018.
Galanaki, E., Flaounas, E., Kotroni, V., Lagouvardos, K., and Argiriou, A.:
Lightning activity in the Mediterranean: quantification of cyclones
contribution and relation to their intensity, Atmos. Sci. Lett., 17,
510–516, https://doi.org/10.1002/asl.685, 2016.
Garcies, L. and Homar, V.: Ensemble sensitivities of the real atmosphere:
application to Mediterranean intense cyclones, Tellus A, 61, 394–406,
https://doi.org/10.1111/j.1600-0870.2009.00392.x, 2009.
Garcies, L. and Homar, V.: An optimized ensemble sensitivity climatology of Mediterranean intense cyclones, Nat. Hazards Earth Syst. Sci., 10, 2441–2450, https://doi.org/10.5194/nhess-10-2441-2010, 2010.
Garcies, L. and Homar, V.: Are current sensitivity products sufficiently
informative in targeting campaigns? A DTS-MEDEX-2009 case study: Testing
DTS-MEDEX-2009 Sensitivity Products, Q. J. Roy. Meteorol. Soc., 140, 525–538,
https://doi.org/10.1002/qj.2148, 2014.
Gariano, S. L., Petrucci, O., and Guzzetti, F.: Changes in the occurrence of rainfall-induced landslides in Calabria, southern Italy, in the 20th century, Nat. Hazards Earth Syst. Sci., 15, 2313–2330, https://doi.org/10.5194/nhess-15-2313-2015, 2015.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006GL025734, 2006.
Giovannini, L., Davolio, S., Zaramella, M., Zardi, D., and Borga, M.,:
Multi-model convection-resolving simulations of the October 2018 Vaia storm
over northeastern Italy, Atmos. Res., 253, 105455,
https://doi.org/10.1016/j.atmosres.2021.105455, 2021.
Givon, Y., Keller Jr., D., Silverman, V., Pennel, R., Drobinski, P., and Raveh-Rubin, S.: Large-scale drivers of the mistral wind: link to Rossby wave life cycles and seasonal variability, Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, 2021.
Goldreich, Y.: Climatic Forecast, in: The Climate of Israel, Springer US,
Boston, MA, 173–181, https://doi.org/10.1007/978-1-4615-0697-3_10, 2003.
González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J.,
Murakami, H., Gaertner, M. A., and Vecchi, G. A.: Potential increase in
hazard from Mediterranean hurricane activity with global warming.
Geophys. Res. Lett., 46, 1754–1764, 2019.
Grams, C. M., Wernli, H., Böttcher, M., Čampa, J., Corsmeier, U.,
Jones, S. C., Keller, J. H., Lenz, C.-J., and Wiegand, L.: The key role of
diabatic processes in modifying the upper-tropospheric wave guide: a North
Atlantic case-study, Q. J. Roy. Meteorol. Soc., 137, 2174–2193,
https://doi.org/10.1002/qj.891, 2011.
Gutiérrez-Fernández, J., González-Alemán, J. J., de la Vara,
A., Cabos, W., Sein, D. V., and Gaertner, M. Á.: Impact of
ocean–atmosphere coupling on future projection of Medicanes in the
Mediterranean sea. Int. J. Climatol., 41, 2226–2238,
https://doi.org/10.1002/joc.6955, 2021.
Hakim, G. J.: Developing Wave Packets in the North Pacific Storm Track, Mon. Weather Rev., 131, 2824–2837,
https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2, 2003.
Hart, R. E.: A cyclone phase space derived from thermal wind andthermal
asymmetry, Mon. Weather Rev., 131, 585–616, 2003.
Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., and Dacre, H. F.: How much
Northern Hemisphere precipitation is associated with extratropical
cyclones?, Geophys. Res. Lett., 39, 2012GL053866,
https://doi.org/10.1029/2012GL053866, 2012.
Hermoso, A., Homar, V., Greybush, S. J., and Stensrud, D. J.: Tailored
Ensemble Prediction Systems: Application of Seamless Scale Bred Vectors,
J. Meteorol. Soc. Jpn., 98, 1029–1050,
https://doi.org/10.2151/jmsj.2020-053, 2020.
Hermoso, A., Homar, V., and Amengual, A.: The Sequence of Heavy
Precipitation and Flash Flooding of 12 and 13 September 2019 in Eastern
Spain. Part I: Mesoscale Diagnostic and Sensitivity Analysis of
Precipitation, J. Hydrometeorol., 22, 1117–1138, https://doi.org/10.1175/JHM-D-20-0182.1, 2021.
HMSO: Weather in the Mediterranean I: General Meteorology, 2nd edn., Her
Majesty's Stationery Office, 362 pp., OCLC 637451093, 1962.
Hochman, A., Harpaz, T., Saaroni, H., and Alpert, P.: Synoptic
classification in 21st century CMIP5 predictions over the Eastern
Mediterranean with focus on cyclones, Int. J. Climatol., 38, 1476–1483,
https://doi.org/10.1002/joc.5260, 2018.
Hofstätter, M. and Blöschl, G.: Vb cyclones synchronized with the
Arctic-/North Atlantic Oscillation, J. Geophys. Res., 124, 3259–3278,
https://doi.org/10.1029/2018JD029420, 2019.
Homar, V., Ramis, C., and Alonso, S.: A deep cyclone of African origin over the Western Mediterranean: diagnosis and numerical simulation, Ann. Geophys., 20, 93–106, https://doi.org/10.5194/angeo-20-93-2002, 2002.
Homar, V., Romero R., Stensrud, D. J., Ramis C., and Alonso, S.: Numerical
diagnosis of a small, quasi-tropical cyclone over the western
Mediterranean: Dynamical vs. boundary factors, Q. J. Roy. Meteorol. Soc.,
129, 1469–1490, 2003.
Homar, V., Jansà, A., Campins, J., and Ramis, C.: Towards a climatology of
sensitivities of Mediterranean high impact weather – first approach, Adv
Geosci., 7, 259–267, 2006.
Homar, V., Jansà, A., Campins, J., Genovés, A., and Ramis, C.: Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones, Nat. Hazards Earth Syst. Sci., 7, 445–454, https://doi.org/10.5194/nhess-7-445-2007, 2007.
Horányi, A., Cardinali, C., Rennie, M., and Isaksen, L.: The
assimilation of horizontal line-of-sight wind information into the ECMWF
data assimilation and forecasting system. Part I: The assessment of wind
impact, Q. J. Roy. Meteorol. Soc., 141, 1223–1232,
https://doi.org/10.1002/qj.2430, 2015.
Horvath, K., Lin, Y.-L., and Ivančan-Picek, B.: Classification of
cyclone tracks over the Apennines and the Adriatic Sea, Mon. Weather Rev., 136, 2210-2227, 2008.
Hurrell, J. W. and van Loon, H.: Decadal variations in climate asso-ciated
with the north Atlantic oscillation, Climatic Change, 36, 301–326, 1997.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 2021.
Jansa, A., Genoves, A., Picornell, M. A., Campins, J., Riosalido, R., and
Carretero, O.: Western Mediterranean cyclones and heavy rain. Part 2:
Statistical approach, Meteorol. Appl., 8, 43–56,
https://doi.org/10.1017/S1350482701001049, 2001.
Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., Llasat, M. C., Ramis, C., Richard, E., Romero, R., and Speranza, A.: MEDEX: a general overview, Nat. Hazards Earth Syst. Sci., 14, 1965–1984, https://doi.org/10.5194/nhess-14-1965-2014, 2014.
Joos, H. and Forbes, R. M.: Impact of different IFS microphysics on a warm
conveyor belt and the downstream flow evolution, Q. J. Roy. Meteorol. Soc.,
142, 2727–2739, https://doi.org/10.1002/qj.2863, 2016.
Joos, H. and Wernli, H.: Influence of microphysical processes on the
potential vorticity development in a warm conveyor belt: A case-study with
the limited-area model COSMO, Q. J. Roy. Meteorol. Soc., 138, 407–418,
2012.
Jourdan, A. and Loubière, P.: Sensitivity Analysis, in: TORUS 1 –
Toward an Open Resource Using Services, edited by: Laffly, D., Wiley,
107–128, https://doi.org/10.1002/9781119720492.ch9, 2020.
Kalkstein, A. J, Rudich, Y., Raveh-Rubin, S., Kloog, I., and Novack, V.: A
Closer Look at the Role of the Cyprus Low on Dust Events in the Negev
Desert, Atmosphere, 11, 1020, https://doi.org/10.3390/atmos11101020,
2020.
Khodayar, S., Kalthoff, N., and Kottmeier, C.: Atmospheric conditions
associated with heavy precipitation events in comparison to seasonal means
in the western mediterranean region, Clim. Dynam., 51, 951–967,
https://doi.org/10.1007/s00382-016-3058-y, 2018a.
Khodayar, S., Czajka, B., Caldas-Alvarez, A., Helgert, S., Flamant, C., Di
Girolamo, P., Bock, O., and Chazette, P.: Multi-scale observations of
atmospheric moisture variability in relation to heavy precipitating systems
in the northwestern Mediterranean during HyMeX IOP12, Q. J. Roy. Meteorol.
Soc., 144, 2761–2780, https://doi.org/10.1002/qj.3402, 2018b.
Koseki, S., Mooney, P. A., Cabos, W., Gaertner, M. Á., de la Vara, A., and González-Alemán, J. J.: Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate, Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, 2021.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., and Hatzaki, M.:
Climatological aspects of explosive cyclones in the Mediterranean, Int. J.
Climatol., 31, 1785–1802, https://doi.org/10.1002/joc.2203, 2011.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., and Hatzaki, M.:
On the vertical structure of Mediterranean explosive cyclones, Theor. Appl.
Climatol., 110, 155–176, https://doi.org/10.1007/s00704-012-0620-3, 2012.
Krichak, S. O. and Alpert, P.: Signatures of the NAO in the atmospheric
circulation during wet winter months over the Mediterranean region, Theor.
Appl. Climatol., 82, 27–39, 2005a.
Krichak, S. O. and Alpert, P.: Decadal trends in the East-AtlanticWest
Russia pattern and the Mediterranean precipitation, Int. J. Climatol., 25,
183–192, 2005b.
Krichak, S. O., Feldstein, S. B., Alpert, P., Gualdi, S., Scoccimarro, E., and Yano, J.-I.: Discussing the role of tropical and subtropical moisture sources in cold season extreme precipitation events in the Mediterranean region from a climate change perspective, Nat. Hazards Earth Syst. Sci., 16, 269–285, https://doi.org/10.5194/nhess-16-269-2016, 2016.
Lagouvardos, K., Kotroni, V., and Defer, E.: The 21-22 January 2004
explosive cyclogenesis over the Aegean Sea: Observations and model analysis,
Q. J. Roy. Meteorol. Soc., 133, 1519–1531, https://doi.org/10.1002/qj.121, 2007.
Lagouvardos, K., Kotroni, V., Defer E., and Bousquet, O.: Study of a heavy
precipitation event over southern France, in the frame of HYMEX project:
Observational analysis and model results using assimilation of lightning,
Atmos. Res., 134, 45-55, 2013.
Lagouvardos, K., Karagiannidis, A., Dafis, S., Kalimeris, T., and Kotroni,
V.: Ianos – A hurricane in the Mediterranean, B. Am. Meteorol. Soc.,
1–31, https://doi.org/10.1175/BAMS-D-20-0274.1, online first, 2021.
Lee, K.-O., Flamant, C., Ducrocq, V., Duffourg, F., Fourrié, N.,
Delanoë, J., and Bech, J.: Initiation and development of a mesoscale
convective system in the Ebro River Valley and related heavy precipitation
over north-eastern Spain during HyMeX IOP 15a, Q. J. Roy. Meteor. Soc., 143,
942–956, https://doi.org/10.1002/qj.2978, 2017.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.: Global Air Pollution Crossroads over the Mediterranean,
Science, 298, 794–799, https://doi.org/10.1126/science.1075457, 2002.
Liberato, M. L.: The 19 January 2013 windstorm over the North Atlantic:
large-scale dynamics and impacts on Iberia, Weather and Climate Extremes, 5,
16–28, 2014.
Liberato, M. L., Pinto, J. G., Trigo, I. F., and Trigo, R. M.: Klaus–an
exceptional winter storm over northern Iberia and southern France, Weather,
66, 330–334, 2011.
Lin, Y.: Mesoscale Dynamics, Cambridge University Press, https://doi.org/10.1017/CBO9780511619649, 2007.
Lionello, P. and Giorgi, F.: Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation, Adv. Geosci., 12, 153–158, https://doi.org/10.5194/adgeo-12-153-2007, 2007.
Lionello, P., Dalan, F., and Elvini, E.: Cyclones in the Mediterranean
region: the present and the doubled CO2 climate scenarios, Clim. Res., 22,
147–159, https://doi.org/10.3354/cr022147, 2002.
Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S. O.,
Jansà, A., Maheras, P., Sanna, A., Trigo, I. F., and Trigo, R.: Chapter
6 Cyclones in the Mediterranean region: Climatology and effects on the
environment, Developments in Earth and Environmental Sciences, 4,
325–372, https://doi.org/10.1016/S1571-9197(06)80009-1, 2006.
Lionello, P., Trig,o I. F., Gil, V., Liberato, M. L. R., Nissen, K. M.,
Pinto, J. G., Raible, C. C., Reale M., Tanzarella, A., Trigo, R. M.,
Ulbrich, S., and Ulbrich, U.: Objective climatology of cyclones in the
Mediterranean region: a consensus view among methods with different system
identification and tracking criteria, Tellus A, 68, 29391,
https://doi.org/10.3402/tellusa.v68.29391, 2016.
Lionello, P., Conte, D., and Reale, M.: The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast, Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, 2019.
Lionello, P., Barriopedro, D., Ferrarin, C., Nicholls, R. J., Orlić, M., Raicich, F., Reale, M., Umgiesser, G., Vousdoukas, M., and Zanchettin, D.: Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article), Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, 2021.
Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.: Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project, Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, 2013.
Lorenzo-Lacruz, J., Amengual, A., Garcia, C., Morán-Tejeda, E., Homar, V., Maimó-Far, A., Hermoso, A., Ramis, C., and Romero, R.: Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain), Nat. Hazards Earth Syst. Sci., 19, 2597–2617, https://doi.org/10.5194/nhess-19-2597-2019, 2019.
Maheras, P., Flocas, H., Patrikas, I., and Anagnostopoulou, C.: A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution, Int. J. Climatol., 21, 109–130, 2001.
Marcos, M., Jordà, G., Gomis, D., and Pérez, B.: Changes in storm
surges in southern Europe from a regional model under climate change
scenarios, Global Planet. Change, 77, 116–128,
https://doi.org/10.1016/j.gloplacha.2011.04.002, 2011.
Martius, O. and Wernli, H.:. A Trajectory-Based Investigation of Physical and
Dynamical Processes That Govern the Temporal Evolution of the Subtropical
Jet Streams over Africa, J. Atmos. Sci., 69, 1602–1616,
https://doi.org/10.1175/JAS-D-11-0190.1, 2012.
Massacand, A. C., Wernli, H., and Davies, H. C.: Influence of Upstream
Diabatic Heating upon an Alpine Event of Heavy Precipitation, Mon. Weather Rev., 129, 2822–2828, 2001.
Mazoyer, M., Ricard D., Rivière, G., Delanoë, J., Arbogast, P.,
Vié, B., Lac, C., Cazenave, Q., and Pelon, J.: Microphysics impacts on
the warm conveyor belt and ridge building of the NAWDEX IOP6 cyclone, Mon. Weather Rev., 149, 3961–3980, 2021.
Mazza, E., Ulbrich, U., and Klein, R.: The Tropical Transition of the
October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion
Event, Mon. Weather Rev., 145, 2575–2595,
https://doi.org/10.1175/MWR-D-16-0474.1, 2017.
McTaggart-Cowan, R., Galarneau, T. J., Bosart, L. F., and Milbrandt, J. A.:
Development and tropical transition of an Alpine lee cyclone. Part II:
orographic influence on the development pathway. Mon. Weather Rev., 138,
2308–2326, 2010.
McTaggart-Cowan, R., Davies, E. L., Fairman Jr., J. G., Galarneau
Jr., T. J., and Schultz, D. M.: Revisiting the 26.5 ∘C Sea Surface
Temperature Threshold for Tropical Cyclone Development, B. Am. Meteorol.
Soc., 96, 1929–1943, 2015.
Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe, Earth Syst. Dynam., 6, 541–553, https://doi.org/10.5194/esd-6-541-2015, 2015.
Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes, Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, 2017.
Michaelides, S., Karacostas, T., Sánchez, J. L., Retalis, A.,
Pytharoulis, I., Homar, V., Romero, R., Zanis, P., Giannakopoulos, C.,
Bühl, J., Ansmann, A., Merino, A., Melcón, P., Lagouvardos, K.,
Kotroni, V., Bruggeman, A., López-Moreno, J. I., Berthet, C., Katragkou,
E., Tymvios, F., Hadjimitsis, D. G., Mamouri, R.-E., and Nisantzi, A.:
Reviews and perspectives of high impact atmospheric processes in the
Mediterranean, Atmos. Res., 208, 4–44,
https://doi.org/10.1016/j.atmosres.2017.11.022, 2018.
Miglietta, M. M.: Mediterranean tropical-like cyclones (Medicanes),
Atmosphere, 10, 206, https://doi.org/10.3390/atmos10040206, 2019.
Miglietta, M. M. and Rotunno, R.: Development mechanisms for Mediterranean
tropical-like cyclones (Medicanes), Q. J. Roy. Meteorol. Soc., 145,
1444–1460, https://doi.org/10.1002/qj.3503, 2019.
Miglietta, M. M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G.,
and Rotunno, R.: Numerical analysis of a Mediterranean “hurricane” over
south-eastern Italy: Sensitivity experiments to sea surface temperature,
Atmos. Res., 101, 412–426, 2011.
Miglietta, M. M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V., and
Price, C.: Analysis of tropical-like cyclones over the Mediterranean Sea
through a combined modelling and satellite approach, Geophys. Res. Lett.,
40, 2400–2405, https://doi.org/10.1002/grl.50432, 2013.
Miglietta, M. M., Mastrangelo, D., and Conte, D.: Influence of physics
parameterization schemes on the simulation of a tropical-like cyclone in the
Mediterranean Sea, Atmos. Res., 153, 360–375,
https://doi.org/10.1016/j.atmosres.2014.09.008, 2015.
Miglietta, M. M., Cerrai, D., Laviola, S., Cattani, E., and Levizzani, V.:
Potential vorticity patterns in Mediterranean “hurricanes”, Geophys. Res.
Lett., 44, 2537–2545, https://doi.org/10.1002/2017GL072670, 2017.
Miglietta, M. M., Carnevale, D., Levizzani, V., and Rotunno, R.: Role of
moist and dry air advection in the development of Mediterranean
Tropical-Like Cyclones (Medicanes), Q. J. Roy. Meteor. Soc., 147, 876–899, https://doi.org/10.1002/qj.3951, 2021.
Moscatello, A., Miglietta, M. M., and Rotunno, R.: Numerical analysis of a
Mediterranean “hurricane” over southeastern Italy, Mon. Weather Rev., 136,
4373–4397, https://doi.org/10.1175/2008MWR2512.1, 2008.
Munich Re: Natural disasters of 2019 in figures, available at:
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/natural-disasters-of-2019-in-figures-tropical-cyclones-cause-highest-losses.html,
last access: 31 January 2022.
Mylonas, M. P., Douvis, K. C., Polychroni, I. D., Politi, N., and Nastos, P.
T.: Analysis of a Mediterranean Tropical-Like Cyclone, Sensitivity to WRF
Parameterizations and Horizontal Resolution, Atmosphere, 10, 425, https://doi.org/10.3390/atmos10080425, 2019.
Nasr-Esfahany, M. A., Ahmadi-Givi, F., and Mohebalhojeh, A. R.: An energetic
view of the relation between the Mediterranean storm track and the North
Atlantic Oscillation, Q. J. Roy. Meteorol. Soc., 137, 749–756,
https://doi.org/10.1002/qj.794, 2011.
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R.,
Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger,
J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F.,
Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I.
I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M.,
Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F.,
Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community
Effort to Intercompare Extratropical Cyclone Detection and Tracking
Algorithms, B. Am. Meteorol. Soc., 94, 529–547,
https://doi.org/10.1175/BAMS-D-11-00154.1, 2013.
Nicolaides, K. A., Michalelides, S. C., and Karacostas, T.: Synoptic and dynamic characteristics of selected deep depressions over Cyprus, Adv. Geosci., 7, 175–180, https://doi.org/10.5194/adgeo-7-175-2006, 2006.
Nigam, S. and Baxter, S.: General Circulation of the Atmosphere,
Teleconnections, edited by: North, G. R., Pyle, J., and Zhang, F., Encyclopedia of Atmospheric Sciences, 2nd edn., Academic Press, 90–109, https://doi.org/10.1016/B978-0-12-382225-3.00400-X, 2015.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., Renggli, D., Ulbrich, S., and Ulbrich, U.: Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns, Nat. Hazards Earth Syst. Sci., 10, 1379–1391, https://doi.org/10.5194/nhess-10-1379-2010, 2010.
Nissen, K. M., Ulbrich, U., and Leckebusch, G. C.: Vb cyclones and
associated rainfall extremes over Central Europe under present day and
climate change conditions, Meteorol. Z., 22, 649–660,
https://doi.org/10.1127/0941-2948/2013/0514, 2013.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.:
Mediterranean cyclones and windstorms in a changing climate, Reg. Environ.
Change, 14, 1873–1890, https://doi.org/10.1007/s10113-012-0400-8, 2014.
Nuissier, O., Marsigli, C., Vincendon, B., Hally, A., Bouttier, F.,Montani,
A., and Paccagnella, T.: Evaluation of two convection-permitting ensemble
systems in the HyMeX Special Observation Period (SOP1) framework, Q. J. Roy.
Meteor. Soc., 142, 404–418, https://doi.org/10.1002/qj.2859, 2016.
Palmén, E.: On the formation and structure of tropical hurricanes,
Geophysica, 3, 26–38, 1948.
Pantillon, F., Chaboureau, J.-P., Lac, C., and Mascart, P.: On therole of a
Rossby wave train during the extratropical transition
of hurricane Helene (2006), Q. J. Roy. Meteorol. Soc., 139, 370–386,
https://doi.org/10.1002/qj.1974, 2013.
Papagiannaki, K., Lagouvardos, K., and Kotroni, V.: A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736, https://doi.org/10.5194/nhess-13-727-2013, 2013.
Patlakas, P., Stathopoulos, C., Tsalis, C., and Kallos, G.: Wind and wave
extremes associated with tropical-like cyclones in the Mediterranean basin,
Int. J. Climatol., 41, 1–22, https://doi.org/10.1002/joc.6795, 2020.
Pedgley, D.: Desert depression over northeast Africa, Meteorol. Mag., 101,
228–244, 1972.
Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V.,
Grimalt, M., Llasat, Montserrat Llasat-Botija, M. C., Rosselló, J.,
Pasqua, A. A., and Vinet, F.: MEFF: the database of Mediterranean Flood
fatalities (1980 to 2015), J. Flood Risk Manag., 12, e12461, https://doi.org/10.1111/jfr3.12461, 2019.
Petterssen, S.: Weather analysis and forecasting, vol 1., McGraw-Hill, New
York, USA, 1956.
Petterssen, S. and Smebye, S. J.: On the development of extratropical
cyclones, Q. J. Roy. Meteorol. Soc., 97, 457–482, 1971.
Pfahl, S. and Wernli, H.: Quantifying the Relevance of Cyclones for
Precipitation Extremes, J. Climate, 25, 6770–6780,
https://doi.org/10.1175/JCLI-D-11-00705.1, 2012.
Pfahl, S., Madonna, E., Boettcher, M., Joos, H., and Wernli, H.: Warm
conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture
origin and relevance for precipitation, J. Climate, 27, 27–40, 2014.
Picornell, M. A., Jansà, A., Genovés, A., and Campins, J.: Automated
database of mesocyclones from the HIRLAM(INM)-0.5∘ analyses in the
western Mediterranean, Int. J. Climatol., 21, 335–354,
https://doi.org/10.1002/joc.621, 2001.
Picornell, M. A., Jansà, A., and Genovés, A.: A tool for assessing the quality of the Mediterranean cyclone forecast: a numerical index, Nat. Hazards Earth Syst. Sci., 11, 1787–1794, https://doi.org/10.5194/nhess-11-1787-2011, 2011.
Picornell, M. A., Campins, J., and Jansà, A.: Detection and thermal description of medicanes from numerical simulation, Nat. Hazards Earth Syst. Sci., 14, 1059–1070, https://doi.org/10.5194/nhess-14-1059-2014, 2014.
Pinto, J. G., Zacharias, S., Fink, A. H., Leckebusch, G. C., and Ulbrich,
U.: Factors contributing to the development of extreme North Atlantic
cyclones and their relationship with the NAO, Clim. Dynam., 32, 711–737,
https://doi.org/10.1007/s00382-008-0396-4, 2009.
Pisarski, A.: The Mediterranean cyclones and their impact on the weather in
Bulgaria (in Bulgarian) Hydrology and Meteorology, issue of the Bulgarian
Institute of Meteorology and Hydrology, vol II, no. 6, 1955.
Polemio, M. and Petrucci, O.: Occurrence of landslide events and the role of
climate in the twentieth century in Calabria, southern Italy, Q. J. Eng.
Geol. Hydroge., 43, 403–415, https://doi.org/10.1144/1470-9236/09-006, 2010.
Ponce de León, S. and Bettencourt, J. H.: Composite analysis of North
Atlantic extra-tropical cyclone waves from satellite altimetry observations,
Adv. Space Res., 68, 762–772, https://doi.org/10.1016/j.asr.2019.07.021, 2019.
Porcù, F., Carrassi, A., Medaglia, C. M., Prodi, F., and Mugnai, A.: A
study on cut-off low vertical structure and precipitation in the
Mediterranean region, Meteorol. Atmos. Phys., 96, 121–140,
https://doi.org/10.1007/s00703-006-0224-5, 2007.
Portmann, R., González-Alemán, J. J., Sprenger, M., and Wernli, H.: How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas), Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, 2020.
Portmann, R., Sprenger, M., and Wernli, H.: The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018), Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, 2021.
Pravia-Sarabia, E., Gómez-Navarro, J. J., Jiménez-Guerrero, P., and Montávez, J. P.: Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones, Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, 2021.
Prezerakos, N. G. and Flocas, H. A.: The formation of a dynamically unstable
ridge at 500 hPa as a precursor of surface cyclogenesis in the central
Mediterranean, Meteorol. Appl., 3, 101–111, https://doi.org/10.1002/met.5060030201,
1996.
Prezerakos, N. G., Flocas, H. A., and Brikas, D.: The role of the
interaction between polar and subtropical jet in a case of depression
rejuvenation over the Eastern Mediterranean, Meteorol. Atmos. Phys., 92, 139–151, https://doi.org/10.1007/s00703-005-0142-y, 2006.
Pytharoulis, I.: Analysis of a Mediterranean tropical-like cyclone and its
sensitivity to the sea surface temperatures, Atmos. Res., 208, 167–179,
2018.
Pytharoulis, I., Kartsios, S., Tegoulias, I., Feidas, H., Miglietta, M.,
Matsangouras, I., and Karacostas, T.: Sensitivity of a Mediterranean
Tropical-Like Cyclone to Physical Parameterizations, Atmosphere, 9, 436,
https://doi.org/10.3390/atmos9110436, 2018.
Radinović, D.: Cyclonic activity in Yugoslavia and surrounding areas, Arch.
Meteor. Geophys. Bioklim., A14, 391–408, 1965.
Ragone, F., Mariotti, M., Parodi, A., Von Hardenberg, J., and Pasquero, C.:
A climatological study of western mediterranean medicanes in numerical
simulations with explicit and parameterized convection, Atmosphere, 9, 397,
https://doi.org/10.3390/atmos9100397, 2018.
Raible, C. C.: On the relation between extremes of midlatitude cyclones and
the atmospheric circulation using ERA40, Geophys. Res. Lett., 34, L07703,
https://doi.org/10.1029/2006GL029084, 2007.
Raible, C. C., Ziv, B., Saaroni, H., and Wild, M.: Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5, Clim. Dynam., 35, 473–488,
https://doi.org/10.1007/s00382-009-0678-5, 2010.
Rasmussen, E. and Zick, C.: A subsynoptic vortex over the Mediterranean with
some resemblance to polar lows, Tellus A, 39A, 408–425,
https://doi.org/10.1111/j.1600-0870.1987.tb00318.x, 1987.
Raveh-Rubin, S. and Flaounas, E.: A dynamical link between deep Atlantic
extratropical cyclones and intense Mediterranean cyclones, Atmos. Sci.
Lett., 18, 215–221, https://doi.org/10.1002/asl.745, 2017.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: A climatological analysis for 1979–2012, Q. J. Roy.
Meteorol. Soc., 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: dynamical aspects of five selected cyclone events, Q.
J. Roy. Meteorol. Soc., 142, 3097–3114,
https://doi.org/10.1002/qj.2891, 2016.
Reale, M. and Lionello, P.: Synoptic climatology of winter intense precipitation events along the Mediterranean coasts, Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, 2013.
Reale, M., Liberato, M. L. R., Lionello, P., Pinto, J. G., Salon, S., and
Ulbrich, S.: A Global Climatology of Explosive Cyclones using a
Multi-Tracking Approach, Tellus A, 71, 1611340, https://doi.org/10.1080/16000870.2019.1611340, 2019.
Reale, M., Cabos, W., Cavicchia, L., Conte, D., Coppola, E., Flaounas, E.,
Giorgi, F., Gualdi, S., Hochman, A., Li, L., Lionello, P., Podrascanin, Z.,
Salon, S., Sanchez, E., Scoccimarro, E., Sein, D., and Somot, S.: Future
projections of Mediterranean cyclone characteristics using the Med-CORDEX
ensemble of coupled regional climate system models, Clim. Dynam., https://doi.org/10.1007/s00382-021-06018-x, 2021.
Rezaeian, M., Mohebalhojeh, A. R., Ahmadi-Givi, F., and Nasr-Esfahany, M.: A
wave-activity view of the relation between the Mediterranean storm track and
the North Atlantic Oscillation in winter, Q. J. Roy. Meteorol. Soc., 142,
1662–1671, https://doi.org/10.1002/qj.2760, 2016.
Ricard, D., Ducrocq, V., and Auger, L.: A Climatology of the Mesoscale
Environment Associated with Heavily Precipitating Events over a Northwestern
Mediterranean Area, J. Appl. Meteorol. Climatol., 51, 468–488, 2012.
Ricchi, A.,Miglietta, M. M., Barbariol, F., Benetazzo, A., Bergamasco, A.,
Bonaldo, D., Cassardo, C., Falcieri, F. M., Modugno, G., Russo, A., Sclavo,
M., and Carniel, S.: Sensitivity of a Mediterranean tropical-like cyclone to
different model configurations and coupling strategies, Atmosphere, 8,
1–32, https://doi.org/10.3390/atmos8050092, 2017.
Rizza, U., Barnaba, F., Miglietta, M. M., Mangia, C., Di Liberto, L., Dionisi, D., Costabile, F., Grasso, F., and Gobbi, G. P.: WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations, Atmos. Chem. Phys., 17, 93–115, https://doi.org/10.5194/acp-17-93-2017, 2017.
Rizza, U., Miglietta, M. M., Mangia, C., Ielpo, P., Morichetti, M., Iachini,
C., Virgili, S., and Passerini, G.: Sensitivity of WRF-Chem model to land
surface schemes: Assessment in a severe dust outbreak episode in the Central
Mediterranean (Apulia Region), Atmos. Res., 201, 168–180, 2018a.
Rizza, U., Canepa, E., Ricchi, A., Bonaldo, D., Carniel, S., Morichetti, M.,
Passerini, G., Santiloni, L., Scremin Puhales, F., and Miglietta, M. M.:
Influence of Wave State and Sea Spray on the Roughness Length: Feedback on
Medicanes, Atmosphere, 9, 301, https://doi.org/10.3390/atmos9080301, 2018b.
Rizza, U., Canepa, E., Miglietta, M. M., Passerini, G., Morichetti, M.,
Mancinelli, E., Virgili, S., Besio, G., De Leo, F., and Mazzino, A.:
Evaluation of drag coefficients under medicane conditions: Coupling waves,
sea spray and surface friction, Atmos. Res., 247, 105207, https://doi.org/10.1016/j.atmosres.2020.105207, 2021.
Rodwell, M. J., Magnusson, L., Bauer, P., Bechtold, P., Bonavita, M.,
Cardinali, C., Diamantakis, M., Earnshaw, P., Garcia-Mendez, A., Isaksen,
L., Källén, E., Klocke, D., Lopez, P., McNally, T., Persson, A.,
Prates, F., and Wedi, N.: Characteristics of Occasional Poor Medium-Range
Weather Forecasts for Europe, B. Am. Meteorol. Soc., 94, 1393–1405,
2013.
Romaniello, V., Oddo, P., Tonani, M., Torrisi, L., Grandi, A., and Pinardi,
N.: Impact of sea surface temperature on COSMO forecasts of a Medicane over
the western Mediterranean Sea, J. Earth Sci. Engineering, 5, 338–348, 2015.
Romera, R., Gaertner, M. Á., Sánchez, E., Domínguez, M.,
González-Alemán, J. J., and Miglietta, M. M.: Climate change
projections of medicanes with a large multi-model ensemble of regional
climate models, Global Planet. Change, 151, 134–143, 2017.
Romero, R. and Emanuel, K.: Medicane risk in a changing climate, J.
Geophys. Res.-Atmos., 118, 5992–6001, 2013.
Romero, R. and Emanuel, K.: Climate change and Hurricane-like extratropical
cyclones: Projections for North Atlantic polar lows and medicanes based on
CMIP5 models, J. Climate, 30, 279–299, 2017.
Rotunno, R. and Emanuel, K.: An Air-Sea Interaction Theory forTropical
Cyclones. Part II: Evolutionary Study Using a Nonhy-drostatic Axisymmetric
Numerical Model, J. Atmos. Sci., 44, 542–561, 1987.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O.,
Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G.,
Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage,
K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and
Vervatis, V.: Med-CORDEX Initiative for Mediterranean Climate Studies, B. Am. Meteorol. Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Ryder, C. L., Highwood, E. J., Rosenberg, P. D., Trembath, J., Brooke, J. K., Bart, M., Dean, A., Crosier, J., Dorsey, J., Brindley, H., Banks, J., Marsham, J. H., McQuaid, J. B., Sodemann, H., and Washington, R.: Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign, Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, 2013.
Saaroni, H., Ziv, B., Bitan, A., and Alpert, P.: Easterly Wind Storms over
Israel, Theor. Appl. Climatol., 59, 61–77,
https://doi.org/10.1007/s007040050013, 1998.
Saaroni, H., Halfon, N., Ziv, B., Alpert, P., and Kutiel, H.: Links between the rainfall regime in Israel and location and intensity of Cyprus lows, Int. J. Climatol., 30, 1014–1025, 2010.
Saaroni, H., Harpaz, T., and Ziv, B.: A new classification algorithm for
daughter cyclone formation with respect to the parent's frontal system –
application for the Mediterranean Basin, Int. J. Climatol., 37, 1050–1065, https://doi.org/10.1002/joc.4759, 2017.
Schäfler, A., Craig, G., Wernli, H., Arbogast, P., Doyle, J. D.,
McTaggart-Cowan, R., Methven, J., Rivière, G., Ament, F., Boettcher, M.,
Bramberger, M., Cazenave, Q., Cotton, R., Crewell, S., Delanoë, J.,
Dörnbrack, A., Ehrlich, A., Ewald, F., Fix, A., Grams, C. M., Gray, S.
L., Grob, H., Groß, S., Hagen, M., Harvey, B., Hirsch, L., Jacob, M.,
Kölling, T., Konow, H., Lemmerz, C., Lux, O., Magnusson, L., Mayer, B.,
Mech, M., Moore, R., Pelon, J., Quinting, J., Rahm, S., Rapp, M.,
Rautenhaus, M., Reitebuch, O., Reynolds, C. A., Sodemann, H., Spengler, T.,
Vaughan, G., Wendisch, M., Wirth, M., Witschas, B., Wolf, K., and Zinner,
T.: The North Atlantic Waveguide and Downstream Impact Experiment, B. Am. Meteorol. Soc., 99, 1607–1637, https://doi.org/10.1175/BAMS-D-17-0003.1, 2018.
Schär, C., Frei, C., Lüthi, D., and Davies, H. C.: Surrogate
climate-change scenarios for regional climate models, Geophys. Res. Lett.,
23, 669–672, 1996.
Schepanski, K. and Knippertz, P.: Soudano-Saharan depressions and their
importance for precipitation and dust: a new perspective on a classical
synoptic concept: Soudano-Saharan Depressions: A New Perspective, Q. J. Roy.
Meteorol. Soc., 137, 1431–1445, https://doi.org/10.1002/qj.850, 2011.
Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Bönisch, G.,
Laurent, B., and Macke, A.: Meteorological processes forcing Saharan dust
emission inferred from MSG-SEVIRI observations of subdaily dust source
activation and numerical models, J. Geophys. Res., 114, D10201,
https://doi.org/10.1029/2008JD010325, 2009.
Smart, D.: Medicane “Ianos” over the central Mediterranean 14–20 September
2020, Weather, 75, 352–353, https://doi.org/10.1002/wea.3871, 2020.
Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N.
L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegerl, G. C., Heimann, M.,
Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U.,
Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V.,
Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, P., Wood, R. A., and Wratt, D.: Technical Summary, in: Climate Change2007: The Physical
Science Basis, Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, UK, 2007.
Sotillo, M., Ramis, C., Romero, R., Alonso, S., and Homar, V.: Role of
orography in the spatial distribution of precipitation over the Spanish
Mediterranean zone, Clim. Res., 23, 247–261,
https://doi.org/10.3354/cr023247, 2003.
Stathopoulos, C., Patlakas, P., Tsalis, C., and Kallos, G.: The Role of Sea
Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones,
Remote Sens., 12, 825, https://doi.org/10.3390/rs12050825, 2020.
Strauss, C., Ricard, D., Lac, C., and Verrelle, A.: Evaluation of turbulence
parametrizations in convective clouds and their environment based on a
large-eddy simulation, Q. J. Roy. Meteorol. Soc., 145, 3195–3217,
https://doi.org/10.1002/qj.3614, 2019.
Tadesse, M., Wahl, T., and Cid, A.: Data-driven modeling of global storm
surges, Frontiers in Marine Science, 7, 260,
https://doi.org/10.3389/fmars.2020.00260, 2020.
Taylor, A. L., Kox, T., and Johnston, D.: Communicating high impact weather:
Improving warnings and decision making processes, Int. J. Disast. Risk Re., 30, 1–4, https://doi.org/10.1016/j.ijdrr.2018.04.002, 2018.
Thorncroft, C. D. and Flocas, H. A.: A case study of Saharan cyclogenesis,
Mon. Weather Rev., 125, 1147–1165, 1997.
Thorncroft, C. D., Hoskins, B. J., and McIntyre, M. E.: Two paradigms of
baroclinic-wave life-cycle behaviour, Q. J. Roy. Meteorol. Soc., 119,
17–55, 1993.
Tochimoto, E., Miglietta, M. M., Bagaglini, L., Ingrosso, R., and Niino, H.:
Characteristics of Extratropical Cyclones That Cause Tornadoes in Italy: A
Preliminary Study, Atmosphere, 12, 180,
https://doi.org/10.3390/atmos12020180, 2021.
Tous, M., Romero, R., and Ramis, C.: Surface heat fluxes influence on
medicane trajectories and intensification, Atmos. Res., 123, 400–411,
https://doi.org/10.1016/j.atmosres.2012.05.022, 2013.
Tous, M., Zappa, G., Romero, R., Shaffrey, L., and Vidale, P. L.: Projected
changes in medicanes in the HadGEM3 N512 high-resolution global climate
model, Clim. Dynam., 47, 1913–1924, 2016.
Trigo, I. F.: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses, Clim. Dynam., 26, 127–143, https://doi.org/10.1007/s00382-005-0065-9, 2006.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Objective climatology of
cyclones in the Mediterranean region, J. Climate, 12, 1685–1696, 1999.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Decline in Mediterranean
rainfall caused by weakening of Mediterranean cyclones, Geophys. Res. Lett.,
27, 2913–2916, https://doi.org/10.1029/2000GL011526, 2000.
Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of cyclogenesis
mechanisms in the Mediterranean, Mon. Weather Rev., 130, 549–569, 2002.
Trigo, R. M., Zezere, J. L., Rodrigues, M. L., and Trigo, I. F.: The
influence of the North Atlantic Oscillation on rainfall triggering of
landslides near Lisbon, Nat. Hazards, 36, 331–354, 2005.
Trigo, R. M., Valente, M. A., Trigo, I. F., Miranda, P. M. A., Ramos, A. M.,
Paredes, D., and García-Herrera, R.: The Impact of North Atlantic Wind
and Cyclone Trends on European Precipitation and Significant Wave Height in
the Atlantic, Ann. N.Y. Acad. Sci., 1146, 212–234,
https://doi.org/10.1196/annals.1446.014, 2008.
Tsidulko, M. and Alpert, P.: Synergism of upper level potential vorticity
and mountains in Genoa lee cyclogenesis – a numerical study, Meteorol.
Atmos. Phys., 78, 261–285, 2001.
Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P.,
Kuglitsch, F. G., Leckebusch, G. C., Luterbacher, J., Maugeri, M., Maheras,
P., Nissen, K. M., Pavan, V., Pinto, J. G., Saaroni, H., Seubert, S.,
Toreti, A., Xoplaki, E., and Ziv, B.: Climate of the Mediterranean, in: The
Climate of the Mediterranean Region, Elsevier, 301–346,
https://doi.org/10.1016/B978-0-12-416042-2.00005-7, 2012.
Van Bebber, W.: Die Zugstrassen der barometrischen Minima nach den
Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890,
Meteorol. Z., 8, 361–366, 1891.
van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G., and Iversen, M.
H.: The ballasting effect of Saharan dust deposition on aggregate dynamics
and carbon export: Aggregation, settling, and scavenging potential of marine
snow: Saharan dust ballasting of marine snow, Limnol. Oceanogr., 63,
1386–1394, https://doi.org/10.1002/lno.10779, 2018.
Varga, G.: Changing nature of Saharan dust deposition in the Carpathian
Basin (Central Europe): 40 years of identified North African dust events
(1979–2018), Environ. Int., 139, 105712,
https://doi.org/10.1016/j.envint.2020.105712, 2020.
Varga, G., Újvári, G., and Kovács, J.: Spatiotemporal patterns
of Saharan dust outbreaks in the Mediterranean Basin, Aeolian Res., 15,
151–160, https://doi.org/10.1016/j.aeolia.2014.06.005, 2014.
Varlas, G., Vervatis, V., Spyrou, C., Papadopoulou, E., Papadopoulos, A.,
and Katsafados, P.: Investigating the impact of atmosphere–wave–ocean
interactions on a Mediterranean tropical-like cyclone, Ocean Model., 153,
101675, https://doi.org/10.1016/j.ocemod.2020.101675, 2020.
Varlas, G., Marinou, E., Gialitaki, A., Siomos, N., Tsarpalis, K.,
Kalivitis, N., Solomos, S., Tsekeri, A., Spyrou, C., Tsichla, M., Kampouri,
A., Vervatis, V., Giannakaki, E., Amiridis, V., Mihalopoulos, N.,
Papadopoulos, A., and Katsafados, P.: Assessing Sea-State Effects on
Sea-Salt Aerosol Modeling in the Lower Atmosphere Using Lidar and In-Situ
Measurements, Remote Sens. 13, 614, https://doi.org/10.3390/rs13040614,
2021.
Verrelle, A., Ricard, D., and Lac, C.: Evaluation and Improvement of
Turbulence Parameterization inside Deep Convective Clouds at Kilometer-Scale
Resolution, Mon. Weather Rev., 145, 3947–3967, 2017.
Vich, M., Romero, R., and Homar, V.: Ensemble prediction of Mediterranean
high-impact events using potential vorticity perturbations. Part II:
Adjoint-derived sensitivity zones, Atmos. Res., 102, 311–319,
https://doi.org/10.1016/j.atmosres.2011.07.016, 2011a.
Vich, M., Romero, R., and Brooks, H. E.: Ensemble prediction of
Mediterranean high-impact events using potential vorticity perturbations.
Part I: Comparison against the multiphysics approach, Atmos. Res.,
102, 227–241, https://doi.org/10.1016/j.atmosres.2011.07.017, 2011b.
Vinet, F., Bigot, V., Petrucci, O., Papagiannaki, K., Llasat, M. C., Kotroni, V., Boissier, L., Aceto, L., Grimalt, M., Llasat-Botija, M., Pasqua, A. A., Rossello, J., Kılıç, O., Kahraman, A., and Tramblay, Y.: Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB, Water, 11, 2196, https://doi.org/10.3390/w11102196, 2019.
Walsh, K., Giorgi, F., and Coppola, E.: Mediterranean warm-core cyclones in
a warmer world, Clim. Dynam., 42, 1053–1066, 2014.
Winschall, A., Sodemann, H., Pfahl, S., and Wernli, H.: How important is
intensified evaporation for Mediterranean precipitation extremes?, J.
Geophys. Res.-Atmos., 119, 5240–5256, https://doi.org/10.1002/2013JD021175, 2014.
Winstanley, D.: Sharav, Weather, 27, 146–160,
https://doi.org/10.1002/j.1477-8696.1972.tb04279.x, 1972.
Winters, A. C., Keyser, D., Bosart, L. F., and Martin, J. E.: Composite
Synoptic-Scale Environments Conducive to North American Polar–Subtropical
Jet Superposition Events, Mon. Weather Rev., 148, 1987–2008,
https://doi.org/10.1175/MWR-D-19-0353.1, 2020.
WMO: WMO Guidelines on Multi-hazard Impact-based Forecast and Warning
Services, Geneva, Switzerland, available at: https://library.wmo.int/doc_num.php?explnum_id=7901 (last access: 31 January 2022), 2015.
Woollings, T. and Blackburn, M.: The North Atlantic Jet Stream under Climate
Change and Its Relation to the NAO and EA Patterns, J. Climate, 25,
886–902, https://doi.org/10.1175/JCLI-D-11-00087.1, 2012.
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., and
Stephenson, D. B.: A Multimodel Assessment of Future Projections of North
Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models, J. Climate, 26, 5846–5862, https://doi.org/10.1175/JCLI-D-12-00573.1, 2013.
Zappa, G., Hawcroft, M. K., Shaffrey, L., Black, E., and Brayshaw, D. J.: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models, Clim. Dynam., 45, 1727–1738, https://doi.org/10.1007/s00382-014-2426-8, 2015.
Zhang, Z. and Li, X.-M.: Global ship accidents and ocean swell-related sea states, Nat. Hazards Earth Syst. Sci., 17, 2041–2051, https://doi.org/10.5194/nhess-17-2041-2017, 2017.
Zhang, Q., Li, L., Ebert, B., Golding, B., Johnston, D., Mills, B., Panchuk,
S., Potter, S., Riemer, M., Sun, J., Taylor, A., Jones, S., Ruti, P., and
Keller, J.: Increasing the value of weather-related warnings, Sci.
Bull., 64, 647–649, https://doi.org/10.1016/j.scib.2019.04.003, 2019.
Zhang, W., Villarini, G., Scoccimarro, E., and Napolitano, F.: Examining the
precipitation associated with medicanes in the high-resolution ERA-5
reanalysis data, Int. J. Climatol., 41, 1–7, https://doi.org/10.1002/joc.6669,
2020.
Ziv, B., Saaroni, H., Romem, M., Heifetz, E., Harnik, N., and Baharad, A.:
Analysis of conveyor belts in winter Mediterranean cyclones, Theor.
Appl. Climatol., 99, 441–455, https://doi.org/10.1007/s00704-009-0150-9, 2010.
Ziv, B., Harpaz, T., Saaroni, H., and Blender, R.:A new methodology for
identifying daughter cyclogenesis: application for the Mediterranean Basin,
Int. J. Climatol., 35, 3847–3861, https://doi.org/10.1002/joc.4250, 2015.
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics,...