Review article
14 Feb 2022
Review article
| 14 Feb 2022
Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology and impacts
Emmanouil Flaounas et al.
Related authors
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Vassiliki Kotroni, Konstantinos Lagouvardos, Martina Klose, Cyrille Flamant, and Theodore M. Giannaros
Geosci. Model Dev., 10, 2925–2945, https://doi.org/10.5194/gmd-10-2925-2017, https://doi.org/10.5194/gmd-10-2925-2017, 2017
Emmanouil Flaounas, Vassiliki Kotroni, Konstantinos Lagouvardos, Martina Klose, Cyrille Flamant, and Theodore M. Giannaros
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-307, https://doi.org/10.5194/acp-2016-307, 2016
Revised manuscript not accepted
E. Flaounas, V. Kotroni, K. Lagouvardos, and I. Flaounas
Geosci. Model Dev., 7, 1841–1853, https://doi.org/10.5194/gmd-7-1841-2014, https://doi.org/10.5194/gmd-7-1841-2014, 2014
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-140, https://doi.org/10.5194/nhess-2022-140, 2022
Preprint under review for NHESS
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
This article is included in the Encyclopedia of Geosciences
George K. Georgiou, Theodoros Christoudias, Yiannis Proestos, Jonilda Kushta, Michael Pikridas, Jean Sciare, Chrysanthos Savvides, and Jos Lelieveld
Geosci. Model Dev., 15, 4129–4146, https://doi.org/10.5194/gmd-15-4129-2022, https://doi.org/10.5194/gmd-15-4129-2022, 2022
Short summary
Short summary
We evaluate the skill of the WRF-Chem model to perform high-resolution air quality forecasts (including ozone, nitrogen dioxide, and fine particulate matter) over the Eastern Mediterranean, during winter and summer. We compare the forecast output to observational data from background and urban locations and the forecast output from CAMS. WRF-Chem was found to forecast the concentrations and diurnal profiles of gas-phase pollutants in urban areas with higher accuracy.
This article is included in the Encyclopedia of Geosciences
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
This article is included in the Encyclopedia of Geosciences
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
This article is included in the Encyclopedia of Geosciences
Douglas Keller Jr., Yonatan Givon, Romain Pennel, Shira Raveh-Rubin, and Philippe Drobinski
Ocean Sci., 18, 483–510, https://doi.org/10.5194/os-18-483-2022, https://doi.org/10.5194/os-18-483-2022, 2022
Short summary
Short summary
The mistral winds are believed to be the primary source of cooling of the Gulf of Lion, leading to deep convection in the region, a process that mixes the ocean column from the seafloor to the sea surface. However, we have found that seasonal atmospheric changes also significantly cool the Gulf of Lion waters to cause deep convection, rather than mistral winds being the sole source, contributing roughly two-thirds of the required cooling, with the mistral winds contributing the final third.
This article is included in the Encyclopedia of Geosciences
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-61, https://doi.org/10.5194/amt-2022-61, 2022
Preprint under review for AMT
Short summary
Short summary
3D cloud envelope and cloud development velocity are derived from realistic simulations of multi-view C3IEL/CLOUD images. Cloud development velocity is derived by finding matching features for acquisitions separated by 20 s and by mapping points from image to space via 3D reconstruction of the cloud envelope. The retrieved cloud topography as well as the velocities derived from features tracked over several acquisitions are in good agreement with the estimates obtained from the physical models.
This article is included in the Encyclopedia of Geosciences
Mario Marcello Miglietta and Silvio Davolio
Hydrol. Earth Syst. Sci., 26, 627–646, https://doi.org/10.5194/hess-26-627-2022, https://doi.org/10.5194/hess-26-627-2022, 2022
Short summary
Short summary
The main results emerging from the HyMeX SOP1 campaign and in the subsequent research activity in three Italian target areas are highlighted through conceptual models and through the identification of the relevant mesoscale environmental characteristics conducive to heavy rain events.
This article is included in the Encyclopedia of Geosciences
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Grégoire Broquet, Theodoros Christoudias, Jonilda Kushta, Didier Hauglustaine, and Jean Sciare
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1051, https://doi.org/10.5194/acp-2021-1051, 2022
Revised manuscript under review for ACP
Short summary
Short summary
Emission inventories for air pollutants can be uncertain in developing countries. In order to overcome these uncertainties, we model nitrogen oxides emissions in Egypt using satellite retrievals. We detect a weekly cycle reflecting Egyptian social norms, an annual cycle consistent with electricity consumption, and the activity drop due to the Covid-19 pandemic. However, discrepancies with inventories remain high, illustrating the needs for additional data to improve the potential of our method.
This article is included in the Encyclopedia of Geosciences
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
This article is included in the Encyclopedia of Geosciences
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
This article is included in the Encyclopedia of Geosciences
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
This article is included in the Encyclopedia of Geosciences
Yonatan Givon, Douglas Keller Jr., Vered Silverman, Romain Pennel, Philippe Drobinski, and Shira Raveh-Rubin
Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, https://doi.org/10.5194/wcd-2-609-2021, 2021
Short summary
Short summary
Mistral wind is a renowned phenomenon in the Mediterranean, yet its large-scale controlling mechanisms have not been systematically mapped. Here, using a new mistral database for 1981–2016, the upper-tropospheric flow patterns are classified by a self-organizing map algorithm, resulting in 16 distinct patterns related to Rossby wave life cycles. Each pattern has unique surface impact, having implications to understanding mistral predictability, air–sea interaction and their future projections.
This article is included in the Encyclopedia of Geosciences
Elissavet Galanaki, Konstantinos Lagouvardos, Vassiliki Kotroni, Theodore Giannaros, and Christos Giannaros
Nat. Hazards Earth Syst. Sci., 21, 1983–2000, https://doi.org/10.5194/nhess-21-1983-2021, https://doi.org/10.5194/nhess-21-1983-2021, 2021
Short summary
Short summary
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes in medium-catchment-size basins in Greece. The results showed the capability of WRF-Hydro to adequately simulate the observed discharge and the slight improvement in terms of quantitative precipitation forecasting compared to the WRF-only simulations.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
This article is included in the Encyclopedia of Geosciences
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 2, 37–53, https://doi.org/10.5194/wcd-2-37-2021, https://doi.org/10.5194/wcd-2-37-2021, 2021
Short summary
Short summary
Rare aircraft observations in the warm conveyor belt outflow associated with an extratropical cyclone are complemented with convection-permitting simulations. They reveal a complex tropopause structure with two jet stream cores, from which one is reinforced by bands of negative potential vorticity. They show that negative potential vorticity takes its origin in mid-level convection, which indirectly accelerates the jet stream and, thus, may influence the downstream large-scale circulation.
This article is included in the Encyclopedia of Geosciences
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
This article is included in the Encyclopedia of Geosciences
Saoussen Dhib, Víctor Homar, Zoubeida Bargaoui, and Mariadelmar Vich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-376, https://doi.org/10.5194/nhess-2020-376, 2021
Revised manuscript not accepted
Short summary
Short summary
Previous evaluation of rainfall estimation by satellite algorithms showed an insufficient over Northern Tunisia. That was why we tried the WRF. We selected four heavy rainy days. For each day, 99 combinations of Cu and PBL are simulated. The sensitivity study highlighted the large difference in the estimation by the different schemes. The use of several verification techniques was extremely helpful to choose the best combinations for each event. The ensemble method gave very satisfying results.
This article is included in the Encyclopedia of Geosciences
Samiro Khodayar and Johannes Hoerner
Atmos. Chem. Phys., 20, 12011–12031, https://doi.org/10.5194/acp-20-12011-2020, https://doi.org/10.5194/acp-20-12011-2020, 2020
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 1, 617–634, https://doi.org/10.5194/wcd-1-617-2020, https://doi.org/10.5194/wcd-1-617-2020, 2020
Short summary
Short summary
The study presents the first results from the airborne RASTA observations measured during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). Our combined Eulerian–Lagrangian analysis found three types of organized convection (frontal, banded and mid-level) in the warm conveyor belt (WCB) of the Stalactite cyclone. The results emphasize that convection embedded in WCBs occurs in a coherent and organized manner rather than as isolated cells.
This article is included in the Encyclopedia of Geosciences
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
This article is included in the Encyclopedia of Geosciences
Enzo Papandrea, Stefano Casadio, Elisa Castelli, Bianca Maria Dinelli, and Mario Marcello Miglietta
Atmos. Meas. Tech., 12, 6683–6693, https://doi.org/10.5194/amt-12-6683-2019, https://doi.org/10.5194/amt-12-6683-2019, 2019
Short summary
Short summary
Lee waves have been detected in clear-sky conditions over the Mediterranean Sea using the total column water vapour (TCWV) fields. The products were generated applying the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) retrieval algorithm to the thermal infrared measurements of the Along Track Scanning Radiometer (ATSR) instrument series. A subset of the occurrences has been compared with both independent observations and model simulations.
This article is included in the Encyclopedia of Geosciences
Jorge Lorenzo-Lacruz, Arnau Amengual, Celso Garcia, Enrique Morán-Tejeda, Víctor Homar, Aina Maimó-Far, Alejandro Hermoso, Climent Ramis, and Romualdo Romero
Nat. Hazards Earth Syst. Sci., 19, 2597–2617, https://doi.org/10.5194/nhess-19-2597-2019, https://doi.org/10.5194/nhess-19-2597-2019, 2019
Short summary
Short summary
On 9 October 2018, an extreme convective storm (> 300 mm accumulated in 6 h) generated a flash flood (305 m3 s−1) in the Ses Planes torrent that devastated the town of Sant Llorenç (Mallorca, Spain). Water reached a depth of 3 m in the most affected areas, and there was greatly increased flow velocity at bridges crossing the town. The floodwaters were very powerful and modified the channel morphology: more than 5000 t of sediment was deposited in the 2 km reach upstream of the town.
This article is included in the Encyclopedia of Geosciences
Maria Laura Poletti, Francesco Silvestro, Silvio Davolio, Flavio Pignone, and Nicola Rebora
Hydrol. Earth Syst. Sci., 23, 3823–3841, https://doi.org/10.5194/hess-23-3823-2019, https://doi.org/10.5194/hess-23-3823-2019, 2019
Short summary
Short summary
In this work a probabilistic rainfall nowcasting model, a non-hydrostatic high-resolution numerical weather prediction (NWP) model corrected with data assimilation, and a distributed hydrological model are used together with radar observations to implement a hydrological nowcasting chain. This chain is used to obtain a useful discharge prediction in small catchments with a time horizon of 2–8 h.
This article is included in the Encyclopedia of Geosciences
Naama Reicher, Carsten Budke, Lukas Eickhoff, Shira Raveh-Rubin, Ifat Kaplan-Ashiri, Thomas Koop, and Yinon Rudich
Atmos. Chem. Phys., 19, 11143–11158, https://doi.org/10.5194/acp-19-11143-2019, https://doi.org/10.5194/acp-19-11143-2019, 2019
Short summary
Short summary
We characterized size-segregated airborne ice-nucleating particles (INPs) during dust storm events in the eastern Mediterranean. We found that particle size can predict its activity, and in general, larger particles are better INPs. The activity of supermicron particles dominated by desert mineral dust was similar between the different dust events regardless of the high variability of the geographic source desert and atmospheric journey.
This article is included in the Encyclopedia of Geosciences
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.
This article is included in the Encyclopedia of Geosciences
Piero Lionello, Dario Conte, and Marco Reale
Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, https://doi.org/10.5194/nhess-19-1541-2019, 2019
Short summary
Short summary
Large positive and negative sea level anomalies on the coast of the Mediterranean Sea are produced by cyclones moving along the Mediterranean storm track, which are mostly generated in the western Mediterranean. The wind around the cyclone center is the main cause of sea level anomalies when a shallow water fetch is present. The inverse barometer effect produces a positive anomaly near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea.
This article is included in the Encyclopedia of Geosciences
Katerina Papagiannaki, Vassiliki Kotroni, Kostas Lagouvardos, and Giorgos Papagiannakis
Nat. Hazards Earth Syst. Sci., 19, 1329–1346, https://doi.org/10.5194/nhess-19-1329-2019, https://doi.org/10.5194/nhess-19-1329-2019, 2019
Short summary
Short summary
The aim of this work is to advance knowledge on the mechanisms of flood precautionary behavior in an area not adequately addressed. Risk managers may identify gaps in risk communication, advance their understanding of citizens' precautionary behaviors, and adjust their strategies to improve flood resilience. The survey was launched by meteo.gr. This work is part of the study of weather-related hazards and societal impact conducted by IERSD/NOA.
This article is included in the Encyclopedia of Geosciences
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158, https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
Short summary
A statistical-dynamical observation operator (SOSSTA) for satellite SST data assimilation able to account for SST diurnal variability, is formulated and implemented into the POSEIDON forecasting system (Aegean Sea). Model experiments where daytime SST retrievals from the SEVIRI infrared radiometer are introduced into the data assimilation procedure through the application of the observation operator, showed an improvement of the POSEIDON modelling system performance.
This article is included in the Encyclopedia of Geosciences
Michalis Ravdas, Anna Zacharioudaki, and Gerasimos Korres
Nat. Hazards Earth Syst. Sci., 18, 2675–2695, https://doi.org/10.5194/nhess-18-2675-2018, https://doi.org/10.5194/nhess-18-2675-2018, 2018
Short summary
Short summary
A high-resolution operational wave forecasting system for the Mediterranean Sea has been developed within the framework of the Copernicus Marine Environment Monitoring Service, which provides open, cost-free, and quality-controlled products. The system accounts for waves arriving through the Straight of Gibraltar and for the effect of surface currents on waves. It provides accurate results over well-exposed locations and satisfactory results within enclosed basins and near the coast.
This article is included in the Encyclopedia of Geosciences
George Petihakis, Leonidas Perivoliotis, Gerasimos Korres, Dionysios Ballas, Constantin Frangoulis, Paris Pagonis, Manolis Ntoumas, Manos Pettas, Antonis Chalkiopoulos, Maria Sotiropoulou, Margarita Bekiari, Alkiviadis Kalampokis, Michalis Ravdas, Evi Bourma, Sylvia Christodoulaki, Anna Zacharioudaki, Dimitris Kassis, Emmanuel Potiris, George Triantafyllou, Kostas Tsiaras, Evangelia Krasakopoulou, Spyros Velanas, and Nikos Zisis
Ocean Sci., 14, 1223–1245, https://doi.org/10.5194/os-14-1223-2018, https://doi.org/10.5194/os-14-1223-2018, 2018
Short summary
Short summary
Integrated oceanic observations on multiple processes including biogeochemistry are scarce. In the eastern Mediterranean (Cretan Sea) the spatiotemporal coverage of such observations has increased with the expansion of the POSEIDON observatory. The observatory addresses scientific questions, provides services to policy makers and society, and serves as a technological test bed. It plays a key role in European and international observing programs, in harmonization procedures and data handling.
This article is included in the Encyclopedia of Geosciences
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
This article is included in the Encyclopedia of Geosciences
Florian Pantillon, Andreas Wieser, Bianca Adler, Ulrich Corsmeier, and Peter Knippertz
Adv. Sci. Res., 15, 91–97, https://doi.org/10.5194/asr-15-91-2018, https://doi.org/10.5194/asr-15-91-2018, 2018
Short summary
Short summary
The Wind and Storms Experiment (WASTEX) was conducted during the winter 2016–2017 in the Upper Rhine Valley to better understand the formation of wind gusts during the passage of storms. The key instrument of the field campaign was a scanning Doppler lidar, which provides accurate wind observations along its beam with high spatial and temporal resolutions and within a range of several km. Results from WASTEX should help improving the representation of wind gusts in weather and climate models.
This article is included in the Encyclopedia of Geosciences
George K. Georgiou, Theodoros Christoudias, Yiannis Proestos, Jonilda Kushta, Panos Hadjinicolaou, and Jos Lelieveld
Atmos. Chem. Phys., 18, 1555–1571, https://doi.org/10.5194/acp-18-1555-2018, https://doi.org/10.5194/acp-18-1555-2018, 2018
Short summary
Short summary
We investigate the impact of the choice of gas-phase and aerosol mechanisms, on the simulated summertime concentrations of several pollutants over the eastern Mediterranean, using the WRF-Chem model. The selection of mechanisms significantly affects ozone and fine particulate matter concentrations, and to a lesser extent other gaseous pollutants (NOx, CO). Meteorological components are also affected by the choice of mechanisms due to the interaction of aerosols with radiation.
This article is included in the Encyclopedia of Geosciences
Climent Ramis, Romualdo Romero, Víctor Homar, Sergio Alonso, Agustí Jansà, and Arnau Amengual
Nat. Hazards Earth Syst. Sci., 17, 2351–2364, https://doi.org/10.5194/nhess-17-2351-2017, https://doi.org/10.5194/nhess-17-2351-2017, 2017
Short summary
Short summary
During the hydrological year 2015–2016 (September to August) a severe drought affected the Balearic Islands, with substantial consequences on water availability. In this paper we analyze this anomalous episode in terms of the corresponding water balance. It is shown that the drought was the result of a lack of winter precipitation, the lowest in the last 43 years. In several analyzed meteorological stations, evaporation was greater than precipitation during all the months of the year.
This article is included in the Encyclopedia of Geosciences
Florian Pantillon, Peter Knippertz, and Ulrich Corsmeier
Nat. Hazards Earth Syst. Sci., 17, 1795–1810, https://doi.org/10.5194/nhess-17-1795-2017, https://doi.org/10.5194/nhess-17-1795-2017, 2017
Short summary
Short summary
The predictability of 25 historical winter storms over Europe is revisited by taking advantage of a homogeneous dataset of retrospective forecasts for the 1995–2015 period. The forecasts well predict the storms up to 2–4 days ahead only but also show clear potential for the early warning of storms up to 10 days ahead. However, the predictability of individual storms exhibits large variability and physical characteristics are identified for outliers with a poor predictability.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Vassiliki Kotroni, Konstantinos Lagouvardos, Martina Klose, Cyrille Flamant, and Theodore M. Giannaros
Geosci. Model Dev., 10, 2925–2945, https://doi.org/10.5194/gmd-10-2925-2017, https://doi.org/10.5194/gmd-10-2925-2017, 2017
Toni López Mayol, Víctor Homar, Climent Ramis, and José Antonio Guijarro
Nat. Hazards Earth Syst. Sci., 17, 1061–1074, https://doi.org/10.5194/nhess-17-1061-2017, https://doi.org/10.5194/nhess-17-1061-2017, 2017
Short summary
Short summary
This paper presents a very high-resolution atlas of daily precipitations across the Balearic Islands. The generation of this data set not only allows us to lay the groundwork for future updates ingesting a myriad of observation sources but also aims to provide support to local and network–topology independent studies of precipitation–sensitive systems such as ecosystems, water resources and energy systems. As an example, a better understanding of the negative precipitation trends is found.
This article is included in the Encyclopedia of Geosciences
Andrea Tateo, Mario Marcello Miglietta, Francesca Fedele, Micaela Menegotto, Alfonso Monaco, and Roberto Bellotti
Adv. Sci. Res., 14, 95–102, https://doi.org/10.5194/asr-14-95-2017, https://doi.org/10.5194/asr-14-95-2017, 2017
Umberto Rizza, Francesca Barnaba, Mario Marcello Miglietta, Cristina Mangia, Luca Di Liberto, Davide Dionisi, Francesca Costabile, Fabio Grasso, and Gian Paolo Gobbi
Atmos. Chem. Phys., 17, 93–115, https://doi.org/10.5194/acp-17-93-2017, https://doi.org/10.5194/acp-17-93-2017, 2017
Emmanouil Flaounas, Vassiliki Kotroni, Konstantinos Lagouvardos, Martina Klose, Cyrille Flamant, and Theodore M. Giannaros
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-307, https://doi.org/10.5194/acp-2016-307, 2016
Revised manuscript not accepted
P. Stocchi and S. Davolio
Adv. Sci. Res., 13, 7–12, https://doi.org/10.5194/asr-13-7-2016, https://doi.org/10.5194/asr-13-7-2016, 2016
Short summary
Short summary
Three heavy rain events over NE Alps were simulated using a high-resolution model to evaluate the effect of the SST of the Adriatic Sea.
These preliminary results show that SST influences the surface heat fluxes over the sea, but does not necessary affect the vertical integrated water vapour flux across the coast.
The response of heavy precipitation to a SST change is complex: SST affects the PBL characteristics and thus the flow dynamics and its interaction with orography.
This article is included in the Encyclopedia of Geosciences
P. Katsafados, A. Papadopoulos, G. Korres, and G. Varlas
Geosci. Model Dev., 9, 161–173, https://doi.org/10.5194/gmd-9-161-2016, https://doi.org/10.5194/gmd-9-161-2016, 2016
Short summary
Short summary
This paper includes the entire steps and processes to develop a two-way fully coupled atmosphere-ocean wave model (WEW) aiming a better description and understanding of the exchange processes near the ocean surface. WEW offers a more realistic representation of the extreme weather and sea state events over the ocean bodies and finally leads in an overall improved simulations.
This article is included in the Encyclopedia of Geosciences
E. Defer, J.-P. Pinty, S. Coquillat, J.-M. Martin, S. Prieur, S. Soula, E. Richard, W. Rison, P. Krehbiel, R. Thomas, D. Rodeheffer, C. Vergeiner, F. Malaterre, S. Pedeboy, W. Schulz, T. Farges, L.-J. Gallin, P. Ortéga, J.-F. Ribaud, G. Anderson, H.-D. Betz, B. Meneux, V. Kotroni, K. Lagouvardos, S. Roos, V. Ducrocq, O. Roussot, L. Labatut, and G. Molinié
Atmos. Meas. Tech., 8, 649–669, https://doi.org/10.5194/amt-8-649-2015, https://doi.org/10.5194/amt-8-649-2015, 2015
Short summary
Short summary
The paper summarizes the scientific objectives and the observational/modeling strategy of the atmospheric electricity PEACH project of the HyMeX program focusing on the lightning activity and the electrical state of Mediterranean thunderstorms. Examples of concurrent observations from radio frequency to acoustic for regular and atypical lightning flashes and for storms are discussed, showing the unique and comprehensive description of lightning flashes recorded during a dedicated field campaign.
This article is included in the Encyclopedia of Geosciences
E. Flaounas, V. Kotroni, K. Lagouvardos, and I. Flaounas
Geosci. Model Dev., 7, 1841–1853, https://doi.org/10.5194/gmd-7-1841-2014, https://doi.org/10.5194/gmd-7-1841-2014, 2014
E. Kostopoulou, C. Giannakopoulos, M. Hatzaki, A. Karali, P. Hadjinicolaou, J. Lelieveld, and M. A. Lange
Nat. Hazards Earth Syst. Sci., 14, 1565–1577, https://doi.org/10.5194/nhess-14-1565-2014, https://doi.org/10.5194/nhess-14-1565-2014, 2014
A. Buzzi, S. Davolio, P. Malguzzi, O. Drofa, and D. Mastrangelo
Nat. Hazards Earth Syst. Sci., 14, 1325–1340, https://doi.org/10.5194/nhess-14-1325-2014, https://doi.org/10.5194/nhess-14-1325-2014, 2014
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, https://doi.org/10.5194/hess-18-1953-2014, 2014
F. De Biasio, M. M. Miglietta, S. Zecchetto, and A. della Valle
Adv. Sci. Res., 11, 41–48, https://doi.org/10.5194/asr-11-41-2014, https://doi.org/10.5194/asr-11-41-2014, 2014
I. M. Mazzitelli, M. Cassol, M. M. Miglietta, U. Rizza, A. M. Sempreviva, and A. S. Lanotte
Nonlin. Processes Geophys., 21, 489–501, https://doi.org/10.5194/npg-21-489-2014, https://doi.org/10.5194/npg-21-489-2014, 2014
I. Koletsis, V. Kotroni, and K. Lagouvardos
Nat. Hazards Earth Syst. Sci., 14, 459–472, https://doi.org/10.5194/nhess-14-459-2014, https://doi.org/10.5194/nhess-14-459-2014, 2014
A. Karali, M. Hatzaki, C. Giannakopoulos, A. Roussos, G. Xanthopoulos, and V. Tenentes
Nat. Hazards Earth Syst. Sci., 14, 143–153, https://doi.org/10.5194/nhess-14-143-2014, https://doi.org/10.5194/nhess-14-143-2014, 2014
S. Davolio, M. M. Miglietta, T. Diomede, C. Marsigli, and A. Montani
Hydrol. Earth Syst. Sci., 17, 2107–2120, https://doi.org/10.5194/hess-17-2107-2013, https://doi.org/10.5194/hess-17-2107-2013, 2013
Related subject area
Dynamical processes in midlatitudes
Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes
Quantifying climate model representation of the wintertime Euro-Atlantic circulation using geopotential-jet regimes
Circumglobal Rossby wave patterns during boreal winter highlighted by space–time spectral analysis
How intense daily precipitation depends on temperature and the occurrence of specific weather systems – an investigation with ERA5 reanalyses in the extratropical Northern Hemisphere
Differentiating lightning in winter and summer with characteristics of the wind field and mass field
Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure
Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review
Is it north or west foehn? A Lagrangian analysis of Penetration and Interruption of Alpine Foehn intensive observation period 1 (PIANO IOP 1)
Past evolution of western Europe large-scale circulation and link to precipitation trend in the northern French Alps
How well is Rossby wave activity represented in the PRIMAVERA coupled simulations?
Automated detection and classification of synoptic-scale fronts from atmospheric data grids
The role of cyclones and PV cutoffs for the occurrence of unusually long wet spells in Europe
Multi-day hail clusters and isolated hail days in Switzerland – large-scale flow conditions and precursors
Characteristics of extratropical cyclones and precursors to windstorms in northern Europe
Diabatic processes modulating the vertical structure of the jet stream above the cold front of an extratropical cyclone: sensitivity to deep convection schemes
Systematic assessment of the diabatic processes that modify low-level potential vorticity in extratropical cyclones
The impact of deep convection representation in a global atmospheric model on the warm conveyor belt and jet stream during NAWDEX IOP6
A global analysis of the dry-dynamic forcing during cyclone growth and propagation
Smoother versus sharper Gulf Stream and Kuroshio sea surface temperature fronts: effects on cyclones and climatology
Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region
Oceanic moisture sources contributing to wintertime Euro-Atlantic blocking
Reconstructing winter climate anomalies in the Euro-Atlantic sector using circulation patterns
Summertime circumglobal Rossby waves in climate models: Small biases in upper-level circulation create substantial biases in surface imprint
Linking air stagnation in Europe with the synoptic- to large-scale atmospheric circulation
Relative importance of tropopause structure and diabatic heating for baroclinic instability
On the occurrence of strong vertical wind shear in the tropopause region: a 10-year ERA5 northern hemispheric study
Large-scale drivers of the mistral wind: link to Rossby wave life cycles and seasonal variability
An unsupervised learning approach to identifying blocking events: the case of European summer
Potential-vorticity dynamics of troughs and ridges within Rossby wave packets during a 40-year reanalysis period
The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018)
Influence of ENSO on North American subseasonal surface air temperature variability
A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems
Representation by two climate models of the dynamical and diabatic processes involved in the development of an explosively deepening cyclone during NAWDEX
A regime view of future atmospheric circulation changes in northern mid-latitudes
A global climatological perspective on the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events
Observations and simulation of intense convection embedded in a warm conveyor belt – how ambient vertical wind shear determines the dynamical impact
The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective
Mid-level convection in a warm conveyor belt accelerates the jet stream
The role of heat-flux–temperature covariance in the evolution of weather systems
Organization of convective ascents in a warm conveyor belt
Vertical cloud structure of warm conveyor belts – a comparison and evaluation of ERA5 reanalysis, CloudSat and CALIPSO data
Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling
The life cycle of upper-level troughs and ridges: a novel detection method, climatologies and Lagrangian characteristics
The sensitivity of atmospheric blocking to upstream latent heating – numerical experiments
The role of large-scale dynamics in an exceptional sequence of severe thunderstorms in Europe May–June 2018
Atmospheric blocking in an aquaplanet and the impact of orography
Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution
A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe
Front–orography interactions during landfall of the 1992 New Year's Day Storm
Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam., 3, 535–553, https://doi.org/10.5194/wcd-3-535-2022, https://doi.org/10.5194/wcd-3-535-2022, 2022
Short summary
Short summary
In climate models, improvements obtained in the winter mid-latitude circulation following horizontal resolution increase are mainly caused by the more detailed representation of the mean orography. A high-resolution climate model with low-resolution orography might underperform compared to a low-resolution model with low-resolution orography. The absence of proper model tuning at high resolution is considered the potential reason behind such lack of improvements.
This article is included in the Encyclopedia of Geosciences
Joshua Dorrington, Kristian Strommen, and Federico Fabiano
Weather Clim. Dynam., 3, 505–533, https://doi.org/10.5194/wcd-3-505-2022, https://doi.org/10.5194/wcd-3-505-2022, 2022
Short summary
Short summary
We investigate how well current state-of-the-art climate models reproduce the wintertime weather of the North Atlantic and western Europe by studying how well different "regimes" of weather are captured. Historically, models have struggled to capture these regimes, making it hard to predict future changes in wintertime extreme weather. We show models can capture regimes if the right method is used, but they show biases, partially as a result of biases in jet speed and eddy strength.
This article is included in the Encyclopedia of Geosciences
Jacopo Riboldi, Efi Rousi, Fabio D'Andrea, Gwendal Rivière, and François Lott
Weather Clim. Dynam., 3, 449–469, https://doi.org/10.5194/wcd-3-449-2022, https://doi.org/10.5194/wcd-3-449-2022, 2022
Short summary
Short summary
A revisited space and time spectral decomposition allows us to determine which harmonics dominate the upper-tropospheric flow evolution over a given time period as well as their propagation. This approach is used to identify Rossby wave patterns with a circumglobal extent, affecting weather evolution over different Northern Hemisphere regions. The results cast light on the processes originating and supporting these wave patterns, advocating at the same time for the usefulness of the technique.
This article is included in the Encyclopedia of Geosciences
Philipp Zschenderlein and Heini Wernli
Weather Clim. Dynam., 3, 391–411, https://doi.org/10.5194/wcd-3-391-2022, https://doi.org/10.5194/wcd-3-391-2022, 2022
Short summary
Short summary
Precipitation and temperature are two of the most important variables describing our weather and climate. The relationship between these variables has been studied extensively; however, the role of specific weather systems in shaping this relationship has not been analysed yet. We therefore analyse whether intense precipitation occurs on warmer or on colder days and identify the relevant weather systems. In general, weather systems strongly influence this relationship, especially in winter.
This article is included in the Encyclopedia of Geosciences
Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis
Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022, https://doi.org/10.5194/wcd-3-361-2022, 2022
Short summary
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.
This article is included in the Encyclopedia of Geosciences
Matthew D. K. Priestley and Jennifer L. Catto
Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, https://doi.org/10.5194/wcd-3-337-2022, 2022
Short summary
Short summary
We use the newest set of climate model experiments from CMIP6 to investigate changes to mid-latitude storm tracks and cyclones from global warming. The overall number of cyclones will decrease. However in winter there will be more of the most intense cyclones, and these intense cyclones are likely to be stronger. Cyclone wind speeds will increase in winter, and as a result the area of strongest wind speeds will increase. By 2100 the area of strong wind speeds may increase by over 30 %.
This article is included in the Encyclopedia of Geosciences
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Short summary
Atmospheric blocking is associated with stationary, self-sustaining and long-lasting high-pressure systems. They can cause or at least influence surface weather extremes, such as heat waves, cold spells, heavy precipitation events, droughts or wind extremes. The location of the blocking determines where and what type of extreme event will occur. These relationships are also important for weather prediction and may change due to global warming.
This article is included in the Encyclopedia of Geosciences
Manuel Saigger and Alexander Gohm
Weather Clim. Dynam., 3, 279–303, https://doi.org/10.5194/wcd-3-279-2022, https://doi.org/10.5194/wcd-3-279-2022, 2022
Short summary
Short summary
In this work a special form of a foehn wind in an Alpine valley with a large-scale northwesterly flow is investigated. The study clarifies the origin of the air mass and the mechanisms by which this air enters the valley. A trajectory analysis shows that the location where the main airstream passes the crest line is more suitable for a foehn classification than the local or large-scale wind direction. Mountain waves and a lee rotor were crucial for importing air into the valley.
This article is included in the Encyclopedia of Geosciences
Antoine Blanc, Juliette Blanchet, and Jean-Dominique Creutin
Weather Clim. Dynam., 3, 231–250, https://doi.org/10.5194/wcd-3-231-2022, https://doi.org/10.5194/wcd-3-231-2022, 2022
Short summary
Short summary
Precipitation variability and extremes in the northern French Alps are governed by the atmospheric circulation over western Europe. In this work, we study the past evolution of western Europe large-scale circulation using atmospheric descriptors. We show some discrepancies in the trends obtained from different reanalyses before 1950. After 1950, we find trends in Mediterranean circulations that appear to be linked with trends in seasonal and extreme precipitation in the northern French Alps.
This article is included in the Encyclopedia of Geosciences
Paolo Ghinassi, Federico Fabiano, and Susanna Corti
Weather Clim. Dynam., 3, 209–230, https://doi.org/10.5194/wcd-3-209-2022, https://doi.org/10.5194/wcd-3-209-2022, 2022
Short summary
Short summary
In this work we examine the ability of global climate models in representing the atmospheric circulation in the upper troposphere, focusing on the eventual benefits of an increased horizontal resolution. Our results confirm that a higher horizontal resolution has a positive impact, especially in those models in which the resolution is increased in both the atmosphere and the ocean, whereas when the resolution is increased only in the atmosphere no substantial improvements are found.
This article is included in the Encyclopedia of Geosciences
Stefan Niebler, Annette Miltenberger, Bertil Schmidt, and Peter Spichtinger
Weather Clim. Dynam., 3, 113–137, https://doi.org/10.5194/wcd-3-113-2022, https://doi.org/10.5194/wcd-3-113-2022, 2022
Short summary
Short summary
We use machine learning to create a network that detects and classifies four types of synoptic-scale weather fronts from ERA5 atmospheric reanalysis data. We present an application of our method, showing its use case in a scientific context. Additionally, our results show that multiple sources of training data are necessary to perform well on different regions, implying differences within those regions. Qualitative evaluation shows that the results are physically plausible.
This article is included in the Encyclopedia of Geosciences
Matthias Röthlisberger, Barbara Scherrer, Andries Jan de Vries, and Raphael Portmann
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-4, https://doi.org/10.5194/wcd-2022-4, 2022
Preprint under review for WCD
Short summary
Short summary
We examine the palette of synoptic storylines accompanying unusually long wet spells in Europe. Thereby, we identify a hitherto not documented mechanism for generating long wet spells, which involves recurrent Rossby wave breaking and subsequent cutoff replenishment. Understanding the synoptic processes behind long wet spells is relevant in light of projected changes in wet spell characteristics, as it is a prerequisite for evaluating climate models with regard to such events.
This article is included in the Encyclopedia of Geosciences
Hélène Barras, Olivia Martius, Luca Nisi, Katharina Schroeer, Alessandro Hering, and Urs Germann
Weather Clim. Dynam., 2, 1167–1185, https://doi.org/10.5194/wcd-2-1167-2021, https://doi.org/10.5194/wcd-2-1167-2021, 2021
Short summary
Short summary
In Switzerland hail may occur several days in a row. Such multi-day hail events may cause significant damage, and understanding and forecasting these events is important. Using reanalysis data we show that weather systems over Europe move slower before and during multi-day hail events compared to single hail days. Surface temperatures are typically warmer and the air more humid over Switzerland and winds are slower on multi-day hail clusters. These results may be used for hail forecasting.
This article is included in the Encyclopedia of Geosciences
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
This article is included in the Encyclopedia of Geosciences
Meryl Wimmer, Gwendal Rivière, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-76, https://doi.org/10.5194/wcd-2021-76, 2021
Revised manuscript accepted for WCD
Short summary
Short summary
The effect of deep convection representation on the jet stream above the cold front of an extratropical cyclone is investigated in the global numerical weather prediction model ARPEGE. Two simulations using different deep convection scheme are compared with (re)-analysis datasets and NAWDEX airborne observations. A deeper jet stream is observed with the less active scheme. The diabatic origin of this difference is interpreted with backward Lagrangian trajectories and potential vorticity budgets.
This article is included in the Encyclopedia of Geosciences
Roman Attinger, Elisa Spreitzer, Maxi Boettcher, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 2, 1073–1091, https://doi.org/10.5194/wcd-2-1073-2021, https://doi.org/10.5194/wcd-2-1073-2021, 2021
Short summary
Short summary
Diabatic processes affect the development of extratropical cyclones. This work provides a systematic assessment of the diabatic processes that modify potential vorticity (PV) in model simulations. PV is primarily produced by condensation and convection. Given favorable environmental conditions, long-wave radiative cooling and turbulence become the primary process at the cold and warm fronts, respectively. Turbulence and long-wave radiative heating produce negative PV anomalies at the fronts.
This article is included in the Encyclopedia of Geosciences
Gwendal Rivière, Meryl Wimmer, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 1011–1031, https://doi.org/10.5194/wcd-2-1011-2021, https://doi.org/10.5194/wcd-2-1011-2021, 2021
Short summary
Short summary
Inacurracies in representing processes occurring at spatial scales smaller than the grid scales of the weather forecast models are important sources of forecast errors. This is the case of deep convection representation in models with 10 km grid spacing. We performed simulations of a real extratropical cyclone using a model with different representations of deep convection. These forecasts lead to different behaviors in the ascending air masses of the cyclone and the jet stream aloft.
This article is included in the Encyclopedia of Geosciences
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
This article is included in the Encyclopedia of Geosciences
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021, https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary
Short summary
Comparing simulations with realistic and smoothed SSTs, we find that the intensification of individual cyclones in the Gulf Stream and Kuroshio regions is only marginally affected by reducing the SST gradient. In contrast, we observe a reduced cyclone activity and a shift in storm tracks. Considering differences of the variables occurring within/outside of a radius of any cyclone, we find cyclones to play only a secondary role in explaining the mean states differences among the SST experiments.
This article is included in the Encyclopedia of Geosciences
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021, https://doi.org/10.5194/wcd-2-927-2021, 2021
Short summary
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
This article is included in the Encyclopedia of Geosciences
Ayako Yamamoto, Masami Nonaka, Patrick Martineau, Akira Yamazaki, Young-Oh Kwon, Hisashi Nakamura, and Bunmei Taguchi
Weather Clim. Dynam., 2, 819–840, https://doi.org/10.5194/wcd-2-819-2021, https://doi.org/10.5194/wcd-2-819-2021, 2021
Short summary
Short summary
While the key role of moist processes in blocking has recently been highlighted, their moisture sources remain unknown. Here, we investigate moisture sources for wintertime Euro-Atlantic blocks using a Lagrangian method. We show that the Gulf Stream, Kuroshio, and their extensions, along with the northeast of Hawaii, act as the primary moisture sources and springboards for particle ascent. We find that the evolution of the particle properties is sensitive to the moisture sources.
This article is included in the Encyclopedia of Geosciences
Erica Madonna, David S. Battisti, Camille Li, and Rachel H. White
Weather Clim. Dynam., 2, 777–794, https://doi.org/10.5194/wcd-2-777-2021, https://doi.org/10.5194/wcd-2-777-2021, 2021
Short summary
Short summary
The amount of precipitation over Europe varies substantially from year to year, with impacts on crop yields and energy production. In this study, we show that it is possible to infer much of the winter precipitation and temperature signal over Europe by knowing only the frequency of occurrence of certain atmospheric circulation patterns. The results highlight the importance of (daily) weather for understanding and interpreting seasonal signals.
This article is included in the Encyclopedia of Geosciences
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-48, https://doi.org/10.5194/wcd-2021-48, 2021
Revised manuscript accepted for WCD
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high magnitude values that circle around the whole global in either wavenumber 5 or wavenumber 7, are responsible for the extreme events.In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns, as well as their associated surface temperature, precipitation, sea level pressures characters.
This article is included in the Encyclopedia of Geosciences
Jacob W. Maddison, Marta Abalos, David Barriopedro, Ricardo García-Herrera, Jose M. Garrido-Perez, and Carlos Ordóñez
Weather Clim. Dynam., 2, 675–694, https://doi.org/10.5194/wcd-2-675-2021, https://doi.org/10.5194/wcd-2-675-2021, 2021
Short summary
Short summary
Air stagnation occurs when an air mass becomes settled over a region and precipitation is suppressed. Pollutant levels can rise during stagnation. The synoptic- to large-scale influence on European air stagnation and pollution is explored here. We show that around 60 % of the monthly variability in air stagnation and pollutants can be explained by dynamical indices describing the atmospheric circulation. The weather systems most related to stagnation are different for regions across Europe.
This article is included in the Encyclopedia of Geosciences
Kristine Flacké Haualand and Thomas Spengler
Weather Clim. Dynam., 2, 695–712, https://doi.org/10.5194/wcd-2-695-2021, https://doi.org/10.5194/wcd-2-695-2021, 2021
Short summary
Short summary
Given the recent focus on the influence of upper tropospheric structure in wind and temperature on midlatitude weather, we use an idealised model to investigate how structural modifications impact cyclone development. We find that cyclone intensification is less sensitive to these modifications than to changes in the amount of cloud condensation, suggesting that an accurate representation of the upper-level troposphere is less important for midlatitude weather than previously anticipated.
This article is included in the Encyclopedia of Geosciences
Thorsten Kaluza, Daniel Kunkel, and Peter Hoor
Weather Clim. Dynam., 2, 631–651, https://doi.org/10.5194/wcd-2-631-2021, https://doi.org/10.5194/wcd-2-631-2021, 2021
Short summary
Short summary
We present a 10-year analysis on the occurrence of strong wind shear in the Northern Hemisphere, focusing on the region around the transport barrier that separates the first two layers of the atmosphere. The major result of our analysis is that strong wind shear above a certain threshold occurs frequently and nearly exclusively in this region, which, as an indicator for turbulent mixing, might have major implications concerning the separation efficiency of the transport barrier.
This article is included in the Encyclopedia of Geosciences
Yonatan Givon, Douglas Keller Jr., Vered Silverman, Romain Pennel, Philippe Drobinski, and Shira Raveh-Rubin
Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, https://doi.org/10.5194/wcd-2-609-2021, 2021
Short summary
Short summary
Mistral wind is a renowned phenomenon in the Mediterranean, yet its large-scale controlling mechanisms have not been systematically mapped. Here, using a new mistral database for 1981–2016, the upper-tropospheric flow patterns are classified by a self-organizing map algorithm, resulting in 16 distinct patterns related to Rossby wave life cycles. Each pattern has unique surface impact, having implications to understanding mistral predictability, air–sea interaction and their future projections.
This article is included in the Encyclopedia of Geosciences
Carl Thomas, Apostolos Voulgarakis, Gerald Lim, Joanna Haigh, and Peer Nowack
Weather Clim. Dynam., 2, 581–608, https://doi.org/10.5194/wcd-2-581-2021, https://doi.org/10.5194/wcd-2-581-2021, 2021
Short summary
Short summary
Atmospheric blocking events are complex large-scale weather patterns which block the path of the jet stream. They are associated with heat waves in summer and cold snaps in winter. Blocking is poorly understood, and the effect of climate change is not clear. Here, we present a new method to study blocking using unsupervised machine learning. We show that this method performs better than previous methods used. These results show the potential for unsupervised learning in atmospheric science.
This article is included in the Encyclopedia of Geosciences
Franziska Teubler and Michael Riemer
Weather Clim. Dynam., 2, 535–559, https://doi.org/10.5194/wcd-2-535-2021, https://doi.org/10.5194/wcd-2-535-2021, 2021
Short summary
Short summary
Rossby wave packets impact all aspects of midlatitude weather systems, from their climatological distribution to predictability. Case studies suggest an important role of latent heat release in clouds. We investigate thousands of wave packets with a novel diagnostic. We demonstrate that, on average, the impact of moist processes is substantially different between troughs and ridges and that dry conceptual models of wave packet dynamics should be extended.
This article is included in the Encyclopedia of Geosciences
Raphael Portmann, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, https://doi.org/10.5194/wcd-2-507-2021, 2021
Short summary
Short summary
We explore the three-dimensional life cycle of cyclonic structures
(so-called PV cutoffs) near the tropopause. PV cutoffs are frequent weather systems in the extratropics that lead to high-impact weather. However, many unknowns exist regarding their evolution. We present a new method to track PV cutoffs as 3D objects in reanalysis data by following air parcels along the flow. We study the climatological life cycles of PV cutoffs in detail and propose a classification into three types.
This article is included in the Encyclopedia of Geosciences
Patrick Martineau, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 2, 395–412, https://doi.org/10.5194/wcd-2-395-2021, https://doi.org/10.5194/wcd-2-395-2021, 2021
Short summary
Short summary
To better understand the factors that impact the weather in North America, this study explores the influence of the El Niño–Southern Oscillation on wintertime surface air temperature variability using reanalysis data. Results show that La Niña enhances subseasonal variability over western North America by amplifying the baroclinic conversion of energy from the winter-mean circulation to subseasonal eddies. Changes in the structural properties of eddies are crucial for this amplification.
This article is included in the Encyclopedia of Geosciences
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
This article is included in the Encyclopedia of Geosciences
David L. A. Flack, Gwendal Rivière, Ionela Musat, Romain Roehrig, Sandrine Bony, Julien Delanoë, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 233–253, https://doi.org/10.5194/wcd-2-233-2021, https://doi.org/10.5194/wcd-2-233-2021, 2021
Short summary
Short summary
The representation of an extratropical cyclone in simulations of two climate models is studied by comparing them to observations of the international field campaign NAWDEX. We show that the current resolution used to run climate model projections (more than 100 km) is not enough to represent the life cycle accurately, but the use of 50 km resolution is good enough. Despite these encouraging results, cloud properties (partitioning liquid and solid) are found to be far from the observations.
This article is included in the Encyclopedia of Geosciences
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, https://doi.org/10.5194/wcd-2-163-2021, 2021
Short summary
Short summary
Global warming not only affects the mean state of the climate (i.e. a warmer world) but also its variability. Here we analyze a set of future climate scenarios and show how some configurations of the wintertime atmospheric flow will become more frequent and persistent under continued greenhouse forcing. For example, over Europe, models predict an increase in the NAO+ regime which drives intense precipitation in northern Europe and the British Isles and dry conditions over the Mediterranean.
This article is included in the Encyclopedia of Geosciences
Andries Jan de Vries
Weather Clim. Dynam., 2, 129–161, https://doi.org/10.5194/wcd-2-129-2021, https://doi.org/10.5194/wcd-2-129-2021, 2021
Short summary
Short summary
Heavy rainfall can cause dramatic societal impacts. This paper presents the first global study on the role of Rossby wave breaking and intense moisture transport for extreme precipitation events. Several catastrophic flood events demonstrate the importance of these two processes, complemented by a detailed climatological analysis. These findings present a new perspective on the meteorology of extreme precipitation events with implications for their prediction and studies on their future changes.
This article is included in the Encyclopedia of Geosciences
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
Short summary
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
This article is included in the Encyclopedia of Geosciences
Sebastian Schemm, Heini Wernli, and Hanin Binder
Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021, https://doi.org/10.5194/wcd-2-55-2021, 2021
Short summary
Short summary
North Pacific cyclone intensities are reduced in winter, which is in contrast to North Atlantic cyclones and unexpected from the high available growth potential in winter. We investigate this intensity suppression from a cyclone life-cycle perspective and show that in winter Kuroshio cyclones propagate away from the region where they can grow more quickly, East China Sea cyclones are not relevant before spring, and Kamchatka cyclones grow in a region of reduced growth potential.
This article is included in the Encyclopedia of Geosciences
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 2, 37–53, https://doi.org/10.5194/wcd-2-37-2021, https://doi.org/10.5194/wcd-2-37-2021, 2021
Short summary
Short summary
Rare aircraft observations in the warm conveyor belt outflow associated with an extratropical cyclone are complemented with convection-permitting simulations. They reveal a complex tropopause structure with two jet stream cores, from which one is reinforced by bands of negative potential vorticity. They show that negative potential vorticity takes its origin in mid-level convection, which indirectly accelerates the jet stream and, thus, may influence the downstream large-scale circulation.
This article is included in the Encyclopedia of Geosciences
Andrea Marcheggiani and Maarten H. P. Ambaum
Weather Clim. Dynam., 1, 701–713, https://doi.org/10.5194/wcd-1-701-2020, https://doi.org/10.5194/wcd-1-701-2020, 2020
Short summary
Short summary
In this paper, we investigate air–sea interaction by looking at the relationship between spatial variability in surface heat flux and air temperature. We observe that their interaction characterises different stages of storm evolution, thus providing a new perspective on the role played by air–sea heat exchange.
This article is included in the Encyclopedia of Geosciences
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 1, 617–634, https://doi.org/10.5194/wcd-1-617-2020, https://doi.org/10.5194/wcd-1-617-2020, 2020
Short summary
Short summary
The study presents the first results from the airborne RASTA observations measured during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). Our combined Eulerian–Lagrangian analysis found three types of organized convection (frontal, banded and mid-level) in the warm conveyor belt (WCB) of the Stalactite cyclone. The results emphasize that convection embedded in WCBs occurs in a coherent and organized manner rather than as isolated cells.
This article is included in the Encyclopedia of Geosciences
Hanin Binder, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, https://doi.org/10.5194/wcd-1-577-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important cloud- and
precipitation-producing airstreams in extratropical cyclones. By combining satellite observations with model data from a new reanalysis dataset, this study provides detailed observational insight into the vertical cloud structure of WCBs. We find that the reanalyses essentially capture the observed cloud pattern, but the observations reveal mesoscale structures not resolved by the temporally and spatially much coarser-resolution model data.
This article is included in the Encyclopedia of Geosciences
Lina Boljka and Thomas Birner
Weather Clim. Dynam., 1, 555–575, https://doi.org/10.5194/wcd-1-555-2020, https://doi.org/10.5194/wcd-1-555-2020, 2020
Short summary
Short summary
This study addresses the origin and impacts of a source of large-scale atmospheric waves in the lower stratosphere, which have not been examined before. This wave source is caused by interactions of waves of smaller scales. Here we show that as it lies in the lower stratosphere, this wave source can precede extreme events in the stratosphere and that such events can then lead to a response of the tropospheric weather patterns several weeks later (potential for long-term forecasting).
This article is included in the Encyclopedia of Geosciences
Sebastian Schemm, Stefan Rüdisühli, and Michael Sprenger
Weather Clim. Dynam., 1, 459–479, https://doi.org/10.5194/wcd-1-459-2020, https://doi.org/10.5194/wcd-1-459-2020, 2020
Short summary
Short summary
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece elements of weather and climate research. A novel method is introduced to identify and track the life cycle of troughs and ridges and their orientation. The aim is to close the existing gap between methods that detect the initiation phase and methods that detect the decaying phase of Rossby wave development. Global climatologies, the influence of ENSO and Lagrangian characteristics are discussed.
This article is included in the Encyclopedia of Geosciences
Daniel Steinfeld, Maxi Boettcher, Richard Forbes, and Stephan Pfahl
Weather Clim. Dynam., 1, 405–426, https://doi.org/10.5194/wcd-1-405-2020, https://doi.org/10.5194/wcd-1-405-2020, 2020
Short summary
Short summary
The effect of latent heating on atmospheric blocking is investigated using numerical sensitivity experiments. The modification of latent heating in the upstream cyclone has substantial effects on the upper-tropospheric circulation, demonstrating that some blocking systems do not develop at all without upstream latent heating. The results highlight the importance of moist-diabatic processes for the dynamics of prolonged anticyclonic circulation anomalies.
This article is included in the Encyclopedia of Geosciences
Susanna Mohr, Jannik Wilhelm, Jan Wandel, Michael Kunz, Raphael Portmann, Heinz Jürgen Punge, Manuel Schmidberger, Julian F. Quinting, and Christian M. Grams
Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, https://doi.org/10.5194/wcd-1-325-2020, 2020
Short summary
Short summary
We investigated an exceptional thunderstorm episode in 2018, in which atmospheric blocking provided large-scale environmental conditions favouring convection. Furthermore, blocking was accompanied by a high cut-off frequency on its upstream side, which together with filaments of high PV provided the mesoscale setting for deep moist convection. The exceptional persistence of low stability combined with weak wind speed in the mid-troposphere over more than 3 weeks has never been observed before.
This article is included in the Encyclopedia of Geosciences
Veeshan Narinesingh, James F. Booth, Spencer K. Clark, and Yi Ming
Weather Clim. Dynam., 1, 293–311, https://doi.org/10.5194/wcd-1-293-2020, https://doi.org/10.5194/wcd-1-293-2020, 2020
Short summary
Short summary
This work investigates the influence of orography on atmospheric blocking dynamics, spatial frequency, and duration. Using an idealized model, a landless integration and integrations with mountains are analyzed. The dynamical evolution of blocking in the idealized model is found to be similar to reanalysis. Orography is found to significantly increase blocking and anchors where blocks most likely occur (i.e., just upstream from mountains and near storm track exits).
This article is included in the Encyclopedia of Geosciences
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
This article is included in the Encyclopedia of Geosciences
Philipp Zschenderlein, Stephan Pfahl, Heini Wernli, and Andreas H. Fink
Weather Clim. Dynam., 1, 191–206, https://doi.org/10.5194/wcd-1-191-2020, https://doi.org/10.5194/wcd-1-191-2020, 2020
Short summary
Short summary
We analyse the formation of upper-tropospheric anticyclones connected to European surface heat waves. Tracing air masses backwards from these anticyclones, we found that trajectories are diabatically heated in two branches, either by North Atlantic cyclones or by convection closer to the heat wave anticyclone. The first branch primarily affects the onset of the anticyclone, while the second branch is more relevant for the maintenance. Our results are relevant for heat wave predictions.
This article is included in the Encyclopedia of Geosciences
Clemens Spensberger and Sebastian Schemm
Weather Clim. Dynam., 1, 175–189, https://doi.org/10.5194/wcd-1-175-2020, https://doi.org/10.5194/wcd-1-175-2020, 2020
Short summary
Short summary
In this paper, we take a second look at the development of an intense storm that made landfall in Norway a few hours into the new year of 1992, focussing on the effect of the Scandinavian mountains on the storm. We find that the cyclone core evolves largely unaffected, although both the warm and the cold fronts decay rapidly while passing over the mountains. This result suggests that the fronts of a cyclone can become detached from their cyclone core as part of the cyclone’s occlusion process.
This article is included in the Encyclopedia of Geosciences
Annika Oertel, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 127–153, https://doi.org/10.5194/wcd-1-127-2020, https://doi.org/10.5194/wcd-1-127-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important, mainly stratiform cloud forming airstreams in extratropical cyclones that can include embedded convection. This WCB case study systematically compares the characteristics of convective vs. slantwise ascent of the WCB. We find that embedded convection leads to regions of significantly stronger precipitation. Moreover, it strongly modifies the potential vorticity distribution in the lower and upper troposphere, where its also influences the waveguide.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aebischer, U. and Schär, C.: Low-level potential vorticity and cyclogenesis to the lee of the Alps, J. Atmos. Sci., 55, 186–207, 1998.
Ahmadi-Givi, F., Nasr-Esfahany, M., and Mohebalhojeh, A. R.: Interaction of
North Atlantic baroclinic wave packets and the Mediterranean storm track:
Interaction of baroclinic wave packets and storm tracks, Q. J. Roy. Meteorol.
Soc., 140, 754–765, https://doi.org/10.1002/qj.2171, 2014.
Aksoy, A., Dowell, D. C., and Snyder, C.: A Multicase Comparative Assessment
of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part
II: Short-Range Ensemble Forecasts, Mon. Weather Rev., 138, 1273–1292,
https://doi.org/10.1175/2009MWR3086.1, 2010.
Alpert, P. and Ziv, B.: The Sharav Cyclone: Observations and some
theoretical considerations, J. Geophys. Res., 94, 18495,
https://doi.org/10.1029/JD094iD15p18495, 1989.
Alpert, P., Neeman, B. U., and Shay-El, Y.: Climatological analysis of
Mediterranean cyclones using ECMWF data, Tellus A, 42, 65–77,
https://doi.org/10.1034/j.1600-0870.1990.00007.x, 1990.
Amengual, A., Carrió, D. S., Ravazzani, G., and Homar, V.: A Comparison
of Ensemble Strategies for Flash Flood Forecasting: The 12 October 2007 Case
Study in Valencia, Spain, J. Hydrometeorol., 18, 1143–1166,
https://doi.org/10.1175/JHM-D-16-0281.1, 2017.
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and
Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and
trends under future climatic conditions, Dynam. Atmos. Oceans,
71, 56–82, https://doi.org/10.1016/j.dynatmoce.2015.06.001, 2015.
Anwender, D., Harr, P. A., and Jones, S. C.: Predictability Associated with
the Downstream Impacts of the Extratropical Transition of Tropical Cyclones:
Case Studies, Mon. Weather Rev., 136, 3226–3247, https://doi.org/10.1175/2008MWR2249.1, 2008.
Argence, S., Lambert, D., Richard, E., Chaboureau, J. P., and Söhne, N.:
Impact of initial condition uncertainties on the predictability of heavy
rainfall in the Mediterranean: A case study, Q. J. Roy. Meteorol. Soc., 134, 1775–1788, https://doi.org/10.1002/qj.314, 2008.
Baars, H., Herzog, A., Heese, B., Ohneiser, K., Hanbuch, K., Hofer, J., Yin, Z., Engelmann, R., and Wandinger, U.: Validation of Aeolus wind products above the Atlantic Ocean, Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, 2020.
Bartholy, J., Pongrácz, R., and Pattantyús-Ábrahám, M.:
Analyzing the genesis, intensity, and tracks of western Mediterranean
cyclones, Theor. Appl. Climatol., 96, 133–144,
https://doi.org/10.1007/s00704-008-0082-9, 2009.
Bengtsson, L., Hodges, K. I., and Roeckner, E.: Storm Tracks and Climate
Change, J. Climate, 19, 3518–3543, https://doi.org/10.1175/JCLI3815.1, 2006.
Bertotti, L. and Cavaleri, L.: The predictability of the “Voyager” accident, Nat. Hazards Earth Syst. Sci., 8, 533–537, https://doi.org/10.5194/nhess-8-533-2008, 2008.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bitsa, E., Flocas, H., Kouroutzoglou, J., Hatzaki, M., Rudeva, I., and
Simmonds, I.: Development of a Front Identification Scheme for Compiling a
Cold Front Climatology of the Mediterranean, Climate, 7, 130, https://doi.org/10.3390/cli7110130, 2019.
Bladé, I., Liebmann, B., Fortuny, D., and van Oldenborgh, G. J.:
Observed and simulated impacts of the summer NAO in Europe: implications for
projected drying in the Mediterranean region, Clim. Dynam., 39, 709–727,
https://doi.org/10.1007/s00382-011-1195-x, 2012.
Bouin, M.-N. and Lebeaupin Brossier, C.: Impact of a medicane on the oceanic surface layer from a coupled, kilometre-scale simulation, Ocean Sci., 16, 1125–1142, https://doi.org/10.5194/os-16-1125-2020, 2020.
Bou Karam, D., Flamant, C., Cuesta, J., Pelon, J., and Williams, E.: Dust
emission and transport associated with a Saharan depression: February 2007
case, J. Geophys. Res., 115, D00H27, https://doi.org/10.1029/2009JD012390,
2010.
Bouttier, F., Raynaud, L., Nuissier, O., and Ménétrier, B.:
Sensitivity of the AROME ensemble to initial and surface perturbations
during HyMeX, Q. J. Roy. Meteorol. Soc., 142, 390–403,
https://doi.org/10.1002/qj.2622, 2016.
Brâncuş, M., Schultz, D. M., Antonescu, B., Dearden, C., and
Ştefan, S.: Origin of Strong Winds in an Explosive Mediterranean
Extratropical Cyclone, Mon. Weather Rev., 147, 3649–3671,
https://doi.org/10.1175/MWR-D-19-0009.1, 2019.
Buzzi, A.: Synoptic scale variability in the Mediterranean, Proc. of 2010
ECMWF Annual Seminar, 6–9 September 2012, Reading, UK, ECMWF, 16 pp., available at:
https://www.ecmwf.int/sites/default/files/elibrary/2012/8502-synoptic-scale-variability-mediterranean.pdf
(last access: 30 June 2021), 2012.
Buzzi, A. and Tibaldi, S.: Cyclogenesis in the lee of the Alps: a case
study, Q. J. Roy. Meteorol. Soc., 104, 271–287, 1978.
Buzzi, A., D'Isidoro, M., and Davolio, S.: A case study of an orographic
cyclone formation south of the Alps during the MAP-SOP, Q. J. Roy. Meteorol.
Soc., 129, 1795–1818, 2003.
Buzzi, A., Davolio, S., and Fantini, M.: Cyclogenesis in the lee of the
Alps: a review of theories, Bull. Atmos. Sci. Technol., 1, 433–457,
https://doi.org/10.1007/s42865-020-00021-6, 2020.
Čampa, J. and Wernli, H.: A PV Perspective on the Vertical Structure of Mature Midlatitude Cyclones in the Northern Hemisphere, J. Atmos. Sci., 69, 725–740, https://doi.org/10.1175/JAS-D-11-050.1, 2012.
Campins, J., Genovìes, A., Jansà, A., Guijarroa, J. A., and Ramis,C.: A
catalogue and a classification of surface ciclones for theWestern
Mediterranean, Int. J. Climatol., 20, 969–984, 2000.
Campins, J., Genoveìs, A., Picornell, M. A., and Jansà, A.: Climatology of
Mediterranean cyclones using the ERA-40 dataset, Int. J. Climatol., 31,
1596–1614, https://doi.org/10.1002/joc.2183, 2011.
Campins, J., Navascués, B., Santos, C., and Amo-Baladrón, A.: Influence of targeted observations on short-term forecasts of high-impact weather events in the Mediterranean, Nat. Hazards Earth Syst. Sci., 13, 2891–2910, https://doi.org/10.5194/nhess-13-2891-2013, 2013.
Carlson, T. N.: Airflow through midlatitude cyclones and the comma cloud
pattern, Mon. Weather Rev., 108, 1498–1509, 1980.
Carrió, D. S. and Homar, V.: Potential of sequential EnKF for the
short-range prediction of a maritime severe weather event, Atmos.
Res., 178–179, 426–444,
https://doi.org/10.1016/j.atmosres.2016.04.011, 2016.
Carrió, D. S., Homar, V., Jansa, A., Romero, R., and Picornell, M. A.:
Tropicalization process of the 7 November 2014 Mediterranean cyclone:
Numerical sensitivity study, Atmos. Res., 197, 300–312,
https://doi.org/10.1016/j.atmosres.2017.07.018, 2017.
Carrió, D. S., Homar, V., and Wheatley, D. M.: Potential of an EnKF
Storm-Scale Data Assimilation System Over Sparse Observation Regions with
Complex Orography, Atmos. Res., 216, 186–206,
https://doi.org/10.1016/j.atmosres.2018.10.004, 2019.
Carrió, D. S., Homar, V., Jansà, A., Picornell, M. A., and Campins,
J.: Diagnosis of a high-impact secondary cyclone during HyMeX-SOP1 IOP18,
Atmos. Res., 242, 104983,
https://doi.org/10.1016/j.atmosres.2020.104983, 2020.
Catto, J. L. and Raveh-Rubin, S.: Climatology and dynamics of the link
between dry intrusions and cold fronts during winter. Part I: global
climatology, Clim. Dynam., 53, 1873–1892, 2019.
Cavaleri, L. and Bertotti, L.: The Attenuation of Swell Waves by Rain: The
Attenuation of Swell Waves by Rain, Geophys. Res. Lett., 44, 10504–10510,
https://doi.org/10.1002/2017GL075458, 2017.
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M.,
and Onorato, M.: Rogue waves in crossing seas: The Louis Majesty accident,
J. Geophys. Res., 117, C00J10, https://doi.org/10.1029/2012JC007923, 2012.
Cavaleri, L., Barbariol, F., Bastianini, M., Benetazzo, A., Bertotti, L.,
Bajo, M., Chiggiato, J., Davolio, S., Ferrarin, C., Magnusson, L., Papa, A.,
Pezzutto, P., Pomaro, A., and Umgiesser, G.: The October 29, 2018 storm in
Northern Italy – an exceptional event and its modeling, Prog.
Oceanogr., 178, 102178, https://doi.org/10.1016/j.pocean.2019.102178, 2019.
Cavicchia, L., von Storch, H., and Gualdi, S.: A long-term climatology of
medicanes, Clim. Dynam., 43, 1183–1195, 2014a.
Cavicchia, L., von Storch, H., and Gualdi, S.: Mediterranean Tropical-Like
Cyclones in Present and Future Climate, J. Climate, 27, 7493–7501, 2014b.
Chaboureau, J. P., Pantillon, F., Lambert, D., Richard, E., and Claud, C.:
Tropical transition of a Mediterranean storm by jet crossing, Q. J. Roy.
Meteorol. Soc., 138, 596–611, https://doi.org/10.1002/qj.960, 2012.
Chazette, P., Flamant, C., Raut, J.-C., Totems, J., and Shang, X.: Tropical
moisture enriched storm tracks over the Mediterranean and their link with
intense rainfall in the Cevennes-Vivarais area during HyMeX, Q. J. Roy.
Meteorol. Soc., 142, 320–334, https://doi.org/10.1002/qj.2674, 2016.
Chronis, T., Raitsos, D. E., Kassis, D., and Sarantopoulos, A.: The Summer
North Atlantic Oscillation Influence on the Eastern Mediterranean, J. Climate, 24, 5584–5596, https://doi.org/10.1175/2011JCLI3839.1, 2011.
Cioni, G., Malguzzi, P., and Buzzi, A.: Thermal structure and dynamical
precursor of a Mediterranean tropical-like cyclone, Q. J. Roy. Meteorol.
Soc., 142, 1757–1766, https://doi.org/10.1002/qj.2773, 2016.
Cioni, G., Cerrai, D., and Klocke, D.: Investigating the predictability of a
Mediterranean tropical-like cyclone using a storm-resolving model, Q. J. Roy.
Meteorol. Soc., 144, 1598–1610, https://doi.org/10.1002/qj.3322, 2018.
Clark, P. A. and Gray, S. L.: Sting jets in extratropical cyclones: a review,
Q. J. Roy. Meteorol. Soc., 144, 943–969, 2018.
Clark, P. A., Browning, K. A., and Wang, C.: The sting at the end of the
tail: Model diagnostics of fine-scale three-dimensional structure of the
cloud head, Q. J. Roy. Meteorol. Soc., 131, 2263–2292,
https://doi.org/10.1256/qj.04.36, 2005.
Claud, C., Alhammoud, B., Funatsu, B. M., and Chaboureau, J.-P.: Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations, Nat. Hazards Earth Syst. Sci., 10, 2199–2213, https://doi.org/10.5194/nhess-10-2199-2010, 2010.
Dafis, S., Rysman, J., Claud, C., and Flaounas, E.: Remote sensing of deep
convection within a tropical-like cyclone over the Mediterranean Sea, Atmos.
Sci. Lett., 19, e823, https://doi.org/10.1002/asl.823, 2018.
Dafis, S., Claud, C., Kotroni, V., Lagouvardos, K., and Rysman, J.: Insights
into the convective evolution of Mediterranean tropical-like cyclones,
Q. J. Roy. Meteorol. Soc., 146, 4147–4169, https://doi.org/10.1002/qj.3896,
2020.
Davis, C. A. and Bosart, L. F.: The TT problem: forecasting thetropical
transition of cyclones, B. Am. Meteorol. Soc., 85, 1657–1662, 2004.
Davolio, S., Volontè, A., Manzato, A., Pucillo, A., Cicogna, A., and
Ferrario, M. E.: Mechanisms producing different precipitation patterns over
North-Eastern Italy: insights from HyMeX-SOP1 and previous events, Q. J. Roy.
Meteorol. Soc., 142, 188–205, https://doi.org/10.1002/qj.2731, 2016.
Davolio, S., Della Fera, S., Laviola, S., Miglietta, M. M., and Levizzani,
V.: Heavy precipitation over Italy from the Mediterranean storm “Vaia” in
October 2018: Assessing the role of an atmospheric river, Mon. Weather Rev.,
148, 3571–3588, 2020.
Dayan, U., Ziv, B., Shoob, T., and Enzel, Y.: Suspended dust over
southeastern Mediterranean and its relation to atmospheric circulations,
Int. J. Climatol., 28, 915–924, https://doi.org/10.1002/joc.1587, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de la Vara, A., Gutiérrez-Fernández, J., González-Alemán, J.
J., and Gaertner, M. Á.: Characterization of medicanes with a minimal
number of geopotential levels, Int. J. Climatol., 41, 3300–3316, https://doi.org/10.1002/joc.7020, 2021.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D.,
Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre,
O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M.,
du-Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic
Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First
Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological
Observatory, J. Hydrometeorol., 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005.
Di Muzio, E., Riemer, M., Fink, A. H., and Maier-Gerber, M.: Assessing the
predictability of Medicanes in ECMWF ensemble forecasts using an
object-based approach, Q. J. Roy. Meteorol. Soc., 145, 1202–1217,
https://doi.org/10.1002/qj.3489, 2019.
Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the
North Atlantic summer storm track: mechanisms and impacts on European
climate, Environ. Res. Lett., 8, 034037,
https://doi.org/10.1088/1748-9326/8/3/034037, 2013.
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C., Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V., Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle, B. Am. Meteorol. Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1: The field campaign
dedicated to heavy precipitation and flash flooding in the northwestern
Mediterranean, B. Am. Meteorol. Soc., 95, 1083–1100, 2014.
Duffourg, F., Lee, K. O., Ducrocq, V., Flamant, C., Chazette, P., and Di
Girolamo, P.: Role of moisture patterns in the backbuilding formation of
HyMeX IOP13 Heavy Precipitating Systems, Q. J. Roy. Meteor. Soc., 144,
291–303, https://doi.org/10.1002/qj.3201, 2018.
Egger, J., Alpert, P., Tafferner, A., and Ziv, B.: Numerical experiments on
the genesis of Sharav cyclones: idealized simulations, Tellus A, 47,
162–174, https://doi.org/10.1034/j.1600-0870.1995.t01-1-00002.x, 1995.
Emanuel, K.: Genesis and maintenance of Mediterranean hurricanes, Adv.
Geosci., 2, 217–220, 2005.
Emanuel, K. A.: An air–sea interaction theory for tropical cyclones. Part
I: Steady-state maintenance, J. Atmos. Sci., 43, 585–604, 1986.
Fantini, M. and Davolio, S.: Instability of Neutral Eady Waves and
orography, J. Atmos. Sci., 58, 1146–1154, 2001.
Ferrarin, C., Bajo, M., Benetazzo, A., Cavaleri, L., Chiggiato, J.,
Davison, S., Davolio S., Lionello, P., Orlić, M., and Umgiesser, G: Local and large-scale controls of the exceptional Venice floods of November 2019, Prog. Oceanogr., 197, 102628, https://doi.org/10.1016/j.pocean.2021.102628, 2021.
Fiedler, S., Schepanski, K., Knippertz, P., Heinold, B., and Tegen, I.: How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?, Atmos. Chem. Phys., 14, 8983–9000, https://doi.org/10.5194/acp-14-8983-2014, 2014.
Fita, L. and Flaounas, E.: Medicanes as subtropical cyclones: the December
2005 case from the perspective of surface pressure tendency diagnostics and
atmospheric water budget, Q. J. Roy. Meteorol. Soc., 144, 1028–1044, https://doi.org/10.1002/qj.3273, 2018.
Fita, L., Romero, R., and Ramis, C.: Intercomparison of intense cyclogenesis
events over the Mediterranean basin based on baroclinic and diabatic
influences, Adv. Geosci., 7, 333–342,
https://doi.org/10.5194/adgeo-7-333-2006, 2006.
Fita, L., Romero, R., Luque, A., Emanuel, K., and Ramis, C.: Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model, Nat. Hazards Earth Syst. Sci., 7, 41–56, https://doi.org/10.5194/nhess-7-41-2007, 2007.
Flaounas, E., Drobinski, P., and Bastin, S.: Dynamical downscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis, Clim. Dynam., 40, 2497–2513, https://doi.org/10.1007/s00382-012-1606-7, 2013.
Flaounas, E., Kotroni, V., Lagouvardos, K., and Flaounas, I.: CycloTRACK (v1.0) – tracking winter extratropical cyclones based on relative vorticity: sensitivity to data filtering and other relevant parameters, Geosci. Model Dev., 7, 1841–1853, https://doi.org/10.5194/gmd-7-1841-2014, 2014.
Flaounas, E., Raveh-Rubin, S., Wernli, H., Drobinski, P., and Bastin, S.:
The dynamical structure of intense Mediterranean cyclones, Clim. Dynam.,
44, 2411–2427, https://doi.org/10.1007/s00382-014-2330-2, 2015.
Flaounas, E., Lagouvardos, K., Kotroni, V., Claud, C., Delanoë, J.,
Flamant, C., and Wernli, H.: Processes leading to heavy precipitation
associated with two Mediterranean cyclones observed during the HyMeX SOP1,
Q. J. Roy. Meteorol. Soc., 142, 275–286, 2016.
Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, S. L., Rysman, J.-F., and
Claud, C.: Heavy rainfall in Mediterranean cyclones. Part I: contribution of
deep convection and warm conveyor belt, Clim. Dynam., 50, 2935–2949,
https://doi.org/10.1007/s00382-017-3783-x, 2018.
Flaounas, E., Fita, L., Lagouvardos, K., and Kotroni, V.: Heavy rainfall in
Mediterranean cyclones, Part II: Water budget, precipitation efficiency and
remote water sources, Clim. Dynam., 53, 2539–2555,
https://doi.org/10.1007/s00382-019-04639-x, 2019.
Flaounas, E., Gray, S. L., and Teubler, F.: A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems, Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, 2021.
Flocas, H. A.: Diagnostics of cyclogenesis over the Aegean sea using
potential vorticity inversion, Meteorol. Atmos. Phys., 73, 25–33, https://doi.org/10.1007/s007030050061, 2000.
Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M.,
Bricolas, V., and Asimakopoulos, D.: On Cyclonic Tracks over the Eastern
Mediterranean, J. Climate, 23, 5243–5257, https://doi.org/10.1175/2010JCLI3426.1, 2010.
Fourrié, N., Bresson, É., Nuret, M., Jany, C., Brousseau, P., Doerenbecher, A., Kreitz, M., Nuissier, O., Sevault, E., Bénichou, H., Amodei, M., and Pouponneau, F.: AROME-WMED, a real-time mesoscale model designed for the HyMeX special observation periods, Geosci. Model Dev., 8, 1919–1941, https://doi.org/10.5194/gmd-8-1919-2015, 2015.
Fourrié, N., Nuret, M., Brousseau, P., Caumont, O., Doerenbecher, A., Wattrelot, E., Moll, P., Bénichou, H., Puech, D., Bock, O., Bosser, P., Chazette, P., Flamant, C., Di Girolamo, P., Richard, E., and Saïd, F.: The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX), Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, 2019.
Fourrié, N., Nuret, M., Brousseau, P., and Caumont, O.: Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment, Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, 2021.
Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E.,
Sánchez, E., and Castro, M.: Tropical cyclones over the Mediterranean
Sea in climate change simulations, Geophys. Res. Lett., 34, L14711, https://doi.org/10.1029/2007GL029977, 2007.
Gaertner, M. A., González-Alemán, J.J., Romera, R., Domínguez,
M., Gil, V., Sánchez, E., Gallardo, C., Miglietta, M., Walsh, K.J.E.,
Sein, D.V., Somot, S., Dell'Aquila, A., Teichmann, C., Ahrens, B., Buonomo,
E., Colette, A., Bastin, S., van Meijgaard, E., and Nikulin, G.: Simulation
of medicanes over the Mediterranean Sea in a regional climate model
ensemble: impact of ocean–atmosphere coupling and increased resolution, Clim. Dynam., 51, 1041–1057, 2018.
Galanaki, E., Flaounas, E., Kotroni, V., Lagouvardos, K., and Argiriou, A.:
Lightning activity in the Mediterranean: quantification of cyclones
contribution and relation to their intensity, Atmos. Sci. Lett., 17,
510–516, https://doi.org/10.1002/asl.685, 2016.
Garcies, L. and Homar, V.: Ensemble sensitivities of the real atmosphere:
application to Mediterranean intense cyclones, Tellus A, 61, 394–406,
https://doi.org/10.1111/j.1600-0870.2009.00392.x, 2009.
Garcies, L. and Homar, V.: An optimized ensemble sensitivity climatology of Mediterranean intense cyclones, Nat. Hazards Earth Syst. Sci., 10, 2441–2450, https://doi.org/10.5194/nhess-10-2441-2010, 2010.
Garcies, L. and Homar, V.: Are current sensitivity products sufficiently
informative in targeting campaigns? A DTS-MEDEX-2009 case study: Testing
DTS-MEDEX-2009 Sensitivity Products, Q. J. Roy. Meteorol. Soc., 140, 525–538,
https://doi.org/10.1002/qj.2148, 2014.
Gariano, S. L., Petrucci, O., and Guzzetti, F.: Changes in the occurrence of rainfall-induced landslides in Calabria, southern Italy, in the 20th century, Nat. Hazards Earth Syst. Sci., 15, 2313–2330, https://doi.org/10.5194/nhess-15-2313-2015, 2015.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006GL025734, 2006.
Giovannini, L., Davolio, S., Zaramella, M., Zardi, D., and Borga, M.,:
Multi-model convection-resolving simulations of the October 2018 Vaia storm
over northeastern Italy, Atmos. Res., 253, 105455,
https://doi.org/10.1016/j.atmosres.2021.105455, 2021.
Givon, Y., Keller Jr., D., Silverman, V., Pennel, R., Drobinski, P., and Raveh-Rubin, S.: Large-scale drivers of the mistral wind: link to Rossby wave life cycles and seasonal variability, Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, 2021.
Goldreich, Y.: Climatic Forecast, in: The Climate of Israel, Springer US,
Boston, MA, 173–181, https://doi.org/10.1007/978-1-4615-0697-3_10, 2003.
González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J.,
Murakami, H., Gaertner, M. A., and Vecchi, G. A.: Potential increase in
hazard from Mediterranean hurricane activity with global warming.
Geophys. Res. Lett., 46, 1754–1764, 2019.
Grams, C. M., Wernli, H., Böttcher, M., Čampa, J., Corsmeier, U.,
Jones, S. C., Keller, J. H., Lenz, C.-J., and Wiegand, L.: The key role of
diabatic processes in modifying the upper-tropospheric wave guide: a North
Atlantic case-study, Q. J. Roy. Meteorol. Soc., 137, 2174–2193,
https://doi.org/10.1002/qj.891, 2011.
Gutiérrez-Fernández, J., González-Alemán, J. J., de la Vara,
A., Cabos, W., Sein, D. V., and Gaertner, M. Á.: Impact of
ocean–atmosphere coupling on future projection of Medicanes in the
Mediterranean sea. Int. J. Climatol., 41, 2226–2238,
https://doi.org/10.1002/joc.6955, 2021.
Hakim, G. J.: Developing Wave Packets in the North Pacific Storm Track, Mon. Weather Rev., 131, 2824–2837,
https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2, 2003.
Hart, R. E.: A cyclone phase space derived from thermal wind andthermal
asymmetry, Mon. Weather Rev., 131, 585–616, 2003.
Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., and Dacre, H. F.: How much
Northern Hemisphere precipitation is associated with extratropical
cyclones?, Geophys. Res. Lett., 39, 2012GL053866,
https://doi.org/10.1029/2012GL053866, 2012.
Hermoso, A., Homar, V., Greybush, S. J., and Stensrud, D. J.: Tailored
Ensemble Prediction Systems: Application of Seamless Scale Bred Vectors,
J. Meteorol. Soc. Jpn., 98, 1029–1050,
https://doi.org/10.2151/jmsj.2020-053, 2020.
Hermoso, A., Homar, V., and Amengual, A.: The Sequence of Heavy
Precipitation and Flash Flooding of 12 and 13 September 2019 in Eastern
Spain. Part I: Mesoscale Diagnostic and Sensitivity Analysis of
Precipitation, J. Hydrometeorol., 22, 1117–1138, https://doi.org/10.1175/JHM-D-20-0182.1, 2021.
HMSO: Weather in the Mediterranean I: General Meteorology, 2nd edn., Her
Majesty's Stationery Office, 362 pp., OCLC 637451093, 1962.
Hochman, A., Harpaz, T., Saaroni, H., and Alpert, P.: Synoptic
classification in 21st century CMIP5 predictions over the Eastern
Mediterranean with focus on cyclones, Int. J. Climatol., 38, 1476–1483,
https://doi.org/10.1002/joc.5260, 2018.
Hofstätter, M. and Blöschl, G.: Vb cyclones synchronized with the
Arctic-/North Atlantic Oscillation, J. Geophys. Res., 124, 3259–3278,
https://doi.org/10.1029/2018JD029420, 2019.
Homar, V., Ramis, C., and Alonso, S.: A deep cyclone of African origin over the Western Mediterranean: diagnosis and numerical simulation, Ann. Geophys., 20, 93–106, https://doi.org/10.5194/angeo-20-93-2002, 2002.
Homar, V., Romero R., Stensrud, D. J., Ramis C., and Alonso, S.: Numerical
diagnosis of a small, quasi-tropical cyclone over the western
Mediterranean: Dynamical vs. boundary factors, Q. J. Roy. Meteorol. Soc.,
129, 1469–1490, 2003.
Homar, V., Jansà, A., Campins, J., and Ramis, C.: Towards a climatology of
sensitivities of Mediterranean high impact weather – first approach, Adv
Geosci., 7, 259–267, 2006.
Homar, V., Jansà, A., Campins, J., Genovés, A., and Ramis, C.: Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones, Nat. Hazards Earth Syst. Sci., 7, 445–454, https://doi.org/10.5194/nhess-7-445-2007, 2007.
Horányi, A., Cardinali, C., Rennie, M., and Isaksen, L.: The
assimilation of horizontal line-of-sight wind information into the ECMWF
data assimilation and forecasting system. Part I: The assessment of wind
impact, Q. J. Roy. Meteorol. Soc., 141, 1223–1232,
https://doi.org/10.1002/qj.2430, 2015.
Horvath, K., Lin, Y.-L., and Ivančan-Picek, B.: Classification of
cyclone tracks over the Apennines and the Adriatic Sea, Mon. Weather Rev., 136, 2210-2227, 2008.
Hurrell, J. W. and van Loon, H.: Decadal variations in climate asso-ciated
with the north Atlantic oscillation, Climatic Change, 36, 301–326, 1997.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 2021.
Jansa, A., Genoves, A., Picornell, M. A., Campins, J., Riosalido, R., and
Carretero, O.: Western Mediterranean cyclones and heavy rain. Part 2:
Statistical approach, Meteorol. Appl., 8, 43–56,
https://doi.org/10.1017/S1350482701001049, 2001.
Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., Llasat, M. C., Ramis, C., Richard, E., Romero, R., and Speranza, A.: MEDEX: a general overview, Nat. Hazards Earth Syst. Sci., 14, 1965–1984, https://doi.org/10.5194/nhess-14-1965-2014, 2014.
Joos, H. and Forbes, R. M.: Impact of different IFS microphysics on a warm
conveyor belt and the downstream flow evolution, Q. J. Roy. Meteorol. Soc.,
142, 2727–2739, https://doi.org/10.1002/qj.2863, 2016.
Joos, H. and Wernli, H.: Influence of microphysical processes on the
potential vorticity development in a warm conveyor belt: A case-study with
the limited-area model COSMO, Q. J. Roy. Meteorol. Soc., 138, 407–418,
2012.
Jourdan, A. and Loubière, P.: Sensitivity Analysis, in: TORUS 1 –
Toward an Open Resource Using Services, edited by: Laffly, D., Wiley,
107–128, https://doi.org/10.1002/9781119720492.ch9, 2020.
Kalkstein, A. J, Rudich, Y., Raveh-Rubin, S., Kloog, I., and Novack, V.: A
Closer Look at the Role of the Cyprus Low on Dust Events in the Negev
Desert, Atmosphere, 11, 1020, https://doi.org/10.3390/atmos11101020,
2020.
Khodayar, S., Kalthoff, N., and Kottmeier, C.: Atmospheric conditions
associated with heavy precipitation events in comparison to seasonal means
in the western mediterranean region, Clim. Dynam., 51, 951–967,
https://doi.org/10.1007/s00382-016-3058-y, 2018a.
Khodayar, S., Czajka, B., Caldas-Alvarez, A., Helgert, S., Flamant, C., Di
Girolamo, P., Bock, O., and Chazette, P.: Multi-scale observations of
atmospheric moisture variability in relation to heavy precipitating systems
in the northwestern Mediterranean during HyMeX IOP12, Q. J. Roy. Meteorol.
Soc., 144, 2761–2780, https://doi.org/10.1002/qj.3402, 2018b.
Koseki, S., Mooney, P. A., Cabos, W., Gaertner, M. Á., de la Vara, A., and González-Alemán, J. J.: Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate, Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, 2021.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., and Hatzaki, M.:
Climatological aspects of explosive cyclones in the Mediterranean, Int. J.
Climatol., 31, 1785–1802, https://doi.org/10.1002/joc.2203, 2011.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., and Hatzaki, M.:
On the vertical structure of Mediterranean explosive cyclones, Theor. Appl.
Climatol., 110, 155–176, https://doi.org/10.1007/s00704-012-0620-3, 2012.
Krichak, S. O. and Alpert, P.: Signatures of the NAO in the atmospheric
circulation during wet winter months over the Mediterranean region, Theor.
Appl. Climatol., 82, 27–39, 2005a.
Krichak, S. O. and Alpert, P.: Decadal trends in the East-AtlanticWest
Russia pattern and the Mediterranean precipitation, Int. J. Climatol., 25,
183–192, 2005b.
Krichak, S. O., Feldstein, S. B., Alpert, P., Gualdi, S., Scoccimarro, E., and Yano, J.-I.: Discussing the role of tropical and subtropical moisture sources in cold season extreme precipitation events in the Mediterranean region from a climate change perspective, Nat. Hazards Earth Syst. Sci., 16, 269–285, https://doi.org/10.5194/nhess-16-269-2016, 2016.
Lagouvardos, K., Kotroni, V., and Defer, E.: The 21-22 January 2004
explosive cyclogenesis over the Aegean Sea: Observations and model analysis,
Q. J. Roy. Meteorol. Soc., 133, 1519–1531, https://doi.org/10.1002/qj.121, 2007.
Lagouvardos, K., Kotroni, V., Defer E., and Bousquet, O.: Study of a heavy
precipitation event over southern France, in the frame of HYMEX project:
Observational analysis and model results using assimilation of lightning,
Atmos. Res., 134, 45-55, 2013.
Lagouvardos, K., Karagiannidis, A., Dafis, S., Kalimeris, T., and Kotroni,
V.: Ianos – A hurricane in the Mediterranean, B. Am. Meteorol. Soc.,
1–31, https://doi.org/10.1175/BAMS-D-20-0274.1, online first, 2021.
Lee, K.-O., Flamant, C., Ducrocq, V., Duffourg, F., Fourrié, N.,
Delanoë, J., and Bech, J.: Initiation and development of a mesoscale
convective system in the Ebro River Valley and related heavy precipitation
over north-eastern Spain during HyMeX IOP 15a, Q. J. Roy. Meteor. Soc., 143,
942–956, https://doi.org/10.1002/qj.2978, 2017.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.: Global Air Pollution Crossroads over the Mediterranean,
Science, 298, 794–799, https://doi.org/10.1126/science.1075457, 2002.
Liberato, M. L.: The 19 January 2013 windstorm over the North Atlantic:
large-scale dynamics and impacts on Iberia, Weather and Climate Extremes, 5,
16–28, 2014.
Liberato, M. L., Pinto, J. G., Trigo, I. F., and Trigo, R. M.: Klaus–an
exceptional winter storm over northern Iberia and southern France, Weather,
66, 330–334, 2011.
Lin, Y.: Mesoscale Dynamics, Cambridge University Press, https://doi.org/10.1017/CBO9780511619649, 2007.
Lionello, P. and Giorgi, F.: Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation, Adv. Geosci., 12, 153–158, https://doi.org/10.5194/adgeo-12-153-2007, 2007.
Lionello, P., Dalan, F., and Elvini, E.: Cyclones in the Mediterranean
region: the present and the doubled CO2 climate scenarios, Clim. Res., 22,
147–159, https://doi.org/10.3354/cr022147, 2002.
Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S. O.,
Jansà, A., Maheras, P., Sanna, A., Trigo, I. F., and Trigo, R.: Chapter
6 Cyclones in the Mediterranean region: Climatology and effects on the
environment, Developments in Earth and Environmental Sciences, 4,
325–372, https://doi.org/10.1016/S1571-9197(06)80009-1, 2006.
Lionello, P., Trig,o I. F., Gil, V., Liberato, M. L. R., Nissen, K. M.,
Pinto, J. G., Raible, C. C., Reale M., Tanzarella, A., Trigo, R. M.,
Ulbrich, S., and Ulbrich, U.: Objective climatology of cyclones in the
Mediterranean region: a consensus view among methods with different system
identification and tracking criteria, Tellus A, 68, 29391,
https://doi.org/10.3402/tellusa.v68.29391, 2016.
Lionello, P., Conte, D., and Reale, M.: The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast, Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, 2019.
Lionello, P., Barriopedro, D., Ferrarin, C., Nicholls, R. J., Orlić, M., Raicich, F., Reale, M., Umgiesser, G., Vousdoukas, M., and Zanchettin, D.: Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article), Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, 2021.
Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.: Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project, Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, 2013.
Lorenzo-Lacruz, J., Amengual, A., Garcia, C., Morán-Tejeda, E., Homar, V., Maimó-Far, A., Hermoso, A., Ramis, C., and Romero, R.: Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain), Nat. Hazards Earth Syst. Sci., 19, 2597–2617, https://doi.org/10.5194/nhess-19-2597-2019, 2019.
Maheras, P., Flocas, H., Patrikas, I., and Anagnostopoulou, C.: A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution, Int. J. Climatol., 21, 109–130, 2001.
Marcos, M., Jordà, G., Gomis, D., and Pérez, B.: Changes in storm
surges in southern Europe from a regional model under climate change
scenarios, Global Planet. Change, 77, 116–128,
https://doi.org/10.1016/j.gloplacha.2011.04.002, 2011.
Martius, O. and Wernli, H.:. A Trajectory-Based Investigation of Physical and
Dynamical Processes That Govern the Temporal Evolution of the Subtropical
Jet Streams over Africa, J. Atmos. Sci., 69, 1602–1616,
https://doi.org/10.1175/JAS-D-11-0190.1, 2012.
Massacand, A. C., Wernli, H., and Davies, H. C.: Influence of Upstream
Diabatic Heating upon an Alpine Event of Heavy Precipitation, Mon. Weather Rev., 129, 2822–2828, 2001.
Mazoyer, M., Ricard D., Rivière, G., Delanoë, J., Arbogast, P.,
Vié, B., Lac, C., Cazenave, Q., and Pelon, J.: Microphysics impacts on
the warm conveyor belt and ridge building of the NAWDEX IOP6 cyclone, Mon. Weather Rev., 149, 3961–3980, 2021.
Mazza, E., Ulbrich, U., and Klein, R.: The Tropical Transition of the
October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion
Event, Mon. Weather Rev., 145, 2575–2595,
https://doi.org/10.1175/MWR-D-16-0474.1, 2017.
McTaggart-Cowan, R., Galarneau, T. J., Bosart, L. F., and Milbrandt, J. A.:
Development and tropical transition of an Alpine lee cyclone. Part II:
orographic influence on the development pathway. Mon. Weather Rev., 138,
2308–2326, 2010.
McTaggart-Cowan, R., Davies, E. L., Fairman Jr., J. G., Galarneau
Jr., T. J., and Schultz, D. M.: Revisiting the 26.5 ∘C Sea Surface
Temperature Threshold for Tropical Cyclone Development, B. Am. Meteorol.
Soc., 96, 1929–1943, 2015.
Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe, Earth Syst. Dynam., 6, 541–553, https://doi.org/10.5194/esd-6-541-2015, 2015.
Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes, Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, 2017.
Michaelides, S., Karacostas, T., Sánchez, J. L., Retalis, A.,
Pytharoulis, I., Homar, V., Romero, R., Zanis, P., Giannakopoulos, C.,
Bühl, J., Ansmann, A., Merino, A., Melcón, P., Lagouvardos, K.,
Kotroni, V., Bruggeman, A., López-Moreno, J. I., Berthet, C., Katragkou,
E., Tymvios, F., Hadjimitsis, D. G., Mamouri, R.-E., and Nisantzi, A.:
Reviews and perspectives of high impact atmospheric processes in the
Mediterranean, Atmos. Res., 208, 4–44,
https://doi.org/10.1016/j.atmosres.2017.11.022, 2018.
Miglietta, M. M.: Mediterranean tropical-like cyclones (Medicanes),
Atmosphere, 10, 206, https://doi.org/10.3390/atmos10040206, 2019.
Miglietta, M. M. and Rotunno, R.: Development mechanisms for Mediterranean
tropical-like cyclones (Medicanes), Q. J. Roy. Meteorol. Soc., 145,
1444–1460, https://doi.org/10.1002/qj.3503, 2019.
Miglietta, M. M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G.,
and Rotunno, R.: Numerical analysis of a Mediterranean “hurricane” over
south-eastern Italy: Sensitivity experiments to sea surface temperature,
Atmos. Res., 101, 412–426, 2011.
Miglietta, M. M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V., and
Price, C.: Analysis of tropical-like cyclones over the Mediterranean Sea
through a combined modelling and satellite approach, Geophys. Res. Lett.,
40, 2400–2405, https://doi.org/10.1002/grl.50432, 2013.
Miglietta, M. M., Mastrangelo, D., and Conte, D.: Influence of physics
parameterization schemes on the simulation of a tropical-like cyclone in the
Mediterranean Sea, Atmos. Res., 153, 360–375,
https://doi.org/10.1016/j.atmosres.2014.09.008, 2015.
Miglietta, M. M., Cerrai, D., Laviola, S., Cattani, E., and Levizzani, V.:
Potential vorticity patterns in Mediterranean “hurricanes”, Geophys. Res.
Lett., 44, 2537–2545, https://doi.org/10.1002/2017GL072670, 2017.
Miglietta, M. M., Carnevale, D., Levizzani, V., and Rotunno, R.: Role of
moist and dry air advection in the development of Mediterranean
Tropical-Like Cyclones (Medicanes), Q. J. Roy. Meteor. Soc., 147, 876–899, https://doi.org/10.1002/qj.3951, 2021.
Moscatello, A., Miglietta, M. M., and Rotunno, R.: Numerical analysis of a
Mediterranean “hurricane” over southeastern Italy, Mon. Weather Rev., 136,
4373–4397, https://doi.org/10.1175/2008MWR2512.1, 2008.
Munich Re: Natural disasters of 2019 in figures, available at:
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/natural-disasters-of-2019-in-figures-tropical-cyclones-cause-highest-losses.html,
last access: 31 January 2022.
Mylonas, M. P., Douvis, K. C., Polychroni, I. D., Politi, N., and Nastos, P.
T.: Analysis of a Mediterranean Tropical-Like Cyclone, Sensitivity to WRF
Parameterizations and Horizontal Resolution, Atmosphere, 10, 425, https://doi.org/10.3390/atmos10080425, 2019.
Nasr-Esfahany, M. A., Ahmadi-Givi, F., and Mohebalhojeh, A. R.: An energetic
view of the relation between the Mediterranean storm track and the North
Atlantic Oscillation, Q. J. Roy. Meteorol. Soc., 137, 749–756,
https://doi.org/10.1002/qj.794, 2011.
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R.,
Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger,
J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F.,
Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I.
I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M.,
Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F.,
Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community
Effort to Intercompare Extratropical Cyclone Detection and Tracking
Algorithms, B. Am. Meteorol. Soc., 94, 529–547,
https://doi.org/10.1175/BAMS-D-11-00154.1, 2013.
Nicolaides, K. A., Michalelides, S. C., and Karacostas, T.: Synoptic and dynamic characteristics of selected deep depressions over Cyprus, Adv. Geosci., 7, 175–180, https://doi.org/10.5194/adgeo-7-175-2006, 2006.
Nigam, S. and Baxter, S.: General Circulation of the Atmosphere,
Teleconnections, edited by: North, G. R., Pyle, J., and Zhang, F., Encyclopedia of Atmospheric Sciences, 2nd edn., Academic Press, 90–109, https://doi.org/10.1016/B978-0-12-382225-3.00400-X, 2015.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., Renggli, D., Ulbrich, S., and Ulbrich, U.: Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns, Nat. Hazards Earth Syst. Sci., 10, 1379–1391, https://doi.org/10.5194/nhess-10-1379-2010, 2010.
Nissen, K. M., Ulbrich, U., and Leckebusch, G. C.: Vb cyclones and
associated rainfall extremes over Central Europe under present day and
climate change conditions, Meteorol. Z., 22, 649–660,
https://doi.org/10.1127/0941-2948/2013/0514, 2013.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.:
Mediterranean cyclones and windstorms in a changing climate, Reg. Environ.
Change, 14, 1873–1890, https://doi.org/10.1007/s10113-012-0400-8, 2014.
Nuissier, O., Marsigli, C., Vincendon, B., Hally, A., Bouttier, F.,Montani,
A., and Paccagnella, T.: Evaluation of two convection-permitting ensemble
systems in the HyMeX Special Observation Period (SOP1) framework, Q. J. Roy.
Meteor. Soc., 142, 404–418, https://doi.org/10.1002/qj.2859, 2016.
Palmén, E.: On the formation and structure of tropical hurricanes,
Geophysica, 3, 26–38, 1948.
Pantillon, F., Chaboureau, J.-P., Lac, C., and Mascart, P.: On therole of a
Rossby wave train during the extratropical transition
of hurricane Helene (2006), Q. J. Roy. Meteorol. Soc., 139, 370–386,
https://doi.org/10.1002/qj.1974, 2013.
Papagiannaki, K., Lagouvardos, K., and Kotroni, V.: A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736, https://doi.org/10.5194/nhess-13-727-2013, 2013.
Patlakas, P., Stathopoulos, C., Tsalis, C., and Kallos, G.: Wind and wave
extremes associated with tropical-like cyclones in the Mediterranean basin,
Int. J. Climatol., 41, 1–22, https://doi.org/10.1002/joc.6795, 2020.
Pedgley, D.: Desert depression over northeast Africa, Meteorol. Mag., 101,
228–244, 1972.
Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V.,
Grimalt, M., Llasat, Montserrat Llasat-Botija, M. C., Rosselló, J.,
Pasqua, A. A., and Vinet, F.: MEFF: the database of Mediterranean Flood
fatalities (1980 to 2015), J. Flood Risk Manag., 12, e12461, https://doi.org/10.1111/jfr3.12461, 2019.
Petterssen, S.: Weather analysis and forecasting, vol 1., McGraw-Hill, New
York, USA, 1956.
Petterssen, S. and Smebye, S. J.: On the development of extratropical
cyclones, Q. J. Roy. Meteorol. Soc., 97, 457–482, 1971.
Pfahl, S. and Wernli, H.: Quantifying the Relevance of Cyclones for
Precipitation Extremes, J. Climate, 25, 6770–6780,
https://doi.org/10.1175/JCLI-D-11-00705.1, 2012.
Pfahl, S., Madonna, E., Boettcher, M., Joos, H., and Wernli, H.: Warm
conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture
origin and relevance for precipitation, J. Climate, 27, 27–40, 2014.
Picornell, M. A., Jansà, A., Genovés, A., and Campins, J.: Automated
database of mesocyclones from the HIRLAM(INM)-0.5∘ analyses in the
western Mediterranean, Int. J. Climatol., 21, 335–354,
https://doi.org/10.1002/joc.621, 2001.
Picornell, M. A., Jansà, A., and Genovés, A.: A tool for assessing the quality of the Mediterranean cyclone forecast: a numerical index, Nat. Hazards Earth Syst. Sci., 11, 1787–1794, https://doi.org/10.5194/nhess-11-1787-2011, 2011.
Picornell, M. A., Campins, J., and Jansà, A.: Detection and thermal description of medicanes from numerical simulation, Nat. Hazards Earth Syst. Sci., 14, 1059–1070, https://doi.org/10.5194/nhess-14-1059-2014, 2014.
Pinto, J. G., Zacharias, S., Fink, A. H., Leckebusch, G. C., and Ulbrich,
U.: Factors contributing to the development of extreme North Atlantic
cyclones and their relationship with the NAO, Clim. Dynam., 32, 711–737,
https://doi.org/10.1007/s00382-008-0396-4, 2009.
Pisarski, A.: The Mediterranean cyclones and their impact on the weather in
Bulgaria (in Bulgarian) Hydrology and Meteorology, issue of the Bulgarian
Institute of Meteorology and Hydrology, vol II, no. 6, 1955.
Polemio, M. and Petrucci, O.: Occurrence of landslide events and the role of
climate in the twentieth century in Calabria, southern Italy, Q. J. Eng.
Geol. Hydroge., 43, 403–415, https://doi.org/10.1144/1470-9236/09-006, 2010.
Ponce de León, S. and Bettencourt, J. H.: Composite analysis of North
Atlantic extra-tropical cyclone waves from satellite altimetry observations,
Adv. Space Res., 68, 762–772, https://doi.org/10.1016/j.asr.2019.07.021, 2019.
Porcù, F., Carrassi, A., Medaglia, C. M., Prodi, F., and Mugnai, A.: A
study on cut-off low vertical structure and precipitation in the
Mediterranean region, Meteorol. Atmos. Phys., 96, 121–140,
https://doi.org/10.1007/s00703-006-0224-5, 2007.
Portmann, R., González-Alemán, J. J., Sprenger, M., and Wernli, H.: How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas), Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, 2020.
Portmann, R., Sprenger, M., and Wernli, H.: The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018), Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, 2021.
Pravia-Sarabia, E., Gómez-Navarro, J. J., Jiménez-Guerrero, P., and Montávez, J. P.: Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones, Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, 2021.
Prezerakos, N. G. and Flocas, H. A.: The formation of a dynamically unstable
ridge at 500 hPa as a precursor of surface cyclogenesis in the central
Mediterranean, Meteorol. Appl., 3, 101–111, https://doi.org/10.1002/met.5060030201,
1996.
Prezerakos, N. G., Flocas, H. A., and Brikas, D.: The role of the
interaction between polar and subtropical jet in a case of depression
rejuvenation over the Eastern Mediterranean, Meteorol. Atmos. Phys., 92, 139–151, https://doi.org/10.1007/s00703-005-0142-y, 2006.
Pytharoulis, I.: Analysis of a Mediterranean tropical-like cyclone and its
sensitivity to the sea surface temperatures, Atmos. Res., 208, 167–179,
2018.
Pytharoulis, I., Kartsios, S., Tegoulias, I., Feidas, H., Miglietta, M.,
Matsangouras, I., and Karacostas, T.: Sensitivity of a Mediterranean
Tropical-Like Cyclone to Physical Parameterizations, Atmosphere, 9, 436,
https://doi.org/10.3390/atmos9110436, 2018.
Radinović, D.: Cyclonic activity in Yugoslavia and surrounding areas, Arch.
Meteor. Geophys. Bioklim., A14, 391–408, 1965.
Ragone, F., Mariotti, M., Parodi, A., Von Hardenberg, J., and Pasquero, C.:
A climatological study of western mediterranean medicanes in numerical
simulations with explicit and parameterized convection, Atmosphere, 9, 397,
https://doi.org/10.3390/atmos9100397, 2018.
Raible, C. C.: On the relation between extremes of midlatitude cyclones and
the atmospheric circulation using ERA40, Geophys. Res. Lett., 34, L07703,
https://doi.org/10.1029/2006GL029084, 2007.
Raible, C. C., Ziv, B., Saaroni, H., and Wild, M.: Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5, Clim. Dynam., 35, 473–488,
https://doi.org/10.1007/s00382-009-0678-5, 2010.
Rasmussen, E. and Zick, C.: A subsynoptic vortex over the Mediterranean with
some resemblance to polar lows, Tellus A, 39A, 408–425,
https://doi.org/10.1111/j.1600-0870.1987.tb00318.x, 1987.
Raveh-Rubin, S. and Flaounas, E.: A dynamical link between deep Atlantic
extratropical cyclones and intense Mediterranean cyclones, Atmos. Sci.
Lett., 18, 215–221, https://doi.org/10.1002/asl.745, 2017.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: A climatological analysis for 1979–2012, Q. J. Roy.
Meteorol. Soc., 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: dynamical aspects of five selected cyclone events, Q.
J. Roy. Meteorol. Soc., 142, 3097–3114,
https://doi.org/10.1002/qj.2891, 2016.
Reale, M. and Lionello, P.: Synoptic climatology of winter intense precipitation events along the Mediterranean coasts, Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, 2013.
Reale, M., Liberato, M. L. R., Lionello, P., Pinto, J. G., Salon, S., and
Ulbrich, S.: A Global Climatology of Explosive Cyclones using a
Multi-Tracking Approach, Tellus A, 71, 1611340, https://doi.org/10.1080/16000870.2019.1611340, 2019.
Reale, M., Cabos, W., Cavicchia, L., Conte, D., Coppola, E., Flaounas, E.,
Giorgi, F., Gualdi, S., Hochman, A., Li, L., Lionello, P., Podrascanin, Z.,
Salon, S., Sanchez, E., Scoccimarro, E., Sein, D., and Somot, S.: Future
projections of Mediterranean cyclone characteristics using the Med-CORDEX
ensemble of coupled regional climate system models, Clim. Dynam., https://doi.org/10.1007/s00382-021-06018-x, 2021.
Rezaeian, M., Mohebalhojeh, A. R., Ahmadi-Givi, F., and Nasr-Esfahany, M.: A
wave-activity view of the relation between the Mediterranean storm track and
the North Atlantic Oscillation in winter, Q. J. Roy. Meteorol. Soc., 142,
1662–1671, https://doi.org/10.1002/qj.2760, 2016.
Ricard, D., Ducrocq, V., and Auger, L.: A Climatology of the Mesoscale
Environment Associated with Heavily Precipitating Events over a Northwestern
Mediterranean Area, J. Appl. Meteorol. Climatol., 51, 468–488, 2012.
Ricchi, A.,Miglietta, M. M., Barbariol, F., Benetazzo, A., Bergamasco, A.,
Bonaldo, D., Cassardo, C., Falcieri, F. M., Modugno, G., Russo, A., Sclavo,
M., and Carniel, S.: Sensitivity of a Mediterranean tropical-like cyclone to
different model configurations and coupling strategies, Atmosphere, 8,
1–32, https://doi.org/10.3390/atmos8050092, 2017.
Rizza, U., Barnaba, F., Miglietta, M. M., Mangia, C., Di Liberto, L., Dionisi, D., Costabile, F., Grasso, F., and Gobbi, G. P.: WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations, Atmos. Chem. Phys., 17, 93–115, https://doi.org/10.5194/acp-17-93-2017, 2017.
Rizza, U., Miglietta, M. M., Mangia, C., Ielpo, P., Morichetti, M., Iachini,
C., Virgili, S., and Passerini, G.: Sensitivity of WRF-Chem model to land
surface schemes: Assessment in a severe dust outbreak episode in the Central
Mediterranean (Apulia Region), Atmos. Res., 201, 168–180, 2018a.
Rizza, U., Canepa, E., Ricchi, A., Bonaldo, D., Carniel, S., Morichetti, M.,
Passerini, G., Santiloni, L., Scremin Puhales, F., and Miglietta, M. M.:
Influence of Wave State and Sea Spray on the Roughness Length: Feedback on
Medicanes, Atmosphere, 9, 301, https://doi.org/10.3390/atmos9080301, 2018b.
Rizza, U., Canepa, E., Miglietta, M. M., Passerini, G., Morichetti, M.,
Mancinelli, E., Virgili, S., Besio, G., De Leo, F., and Mazzino, A.:
Evaluation of drag coefficients under medicane conditions: Coupling waves,
sea spray and surface friction, Atmos. Res., 247, 105207, https://doi.org/10.1016/j.atmosres.2020.105207, 2021.
Rodwell, M. J., Magnusson, L., Bauer, P., Bechtold, P., Bonavita, M.,
Cardinali, C., Diamantakis, M., Earnshaw, P., Garcia-Mendez, A., Isaksen,
L., Källén, E., Klocke, D., Lopez, P., McNally, T., Persson, A.,
Prates, F., and Wedi, N.: Characteristics of Occasional Poor Medium-Range
Weather Forecasts for Europe, B. Am. Meteorol. Soc., 94, 1393–1405,
2013.
Romaniello, V., Oddo, P., Tonani, M., Torrisi, L., Grandi, A., and Pinardi,
N.: Impact of sea surface temperature on COSMO forecasts of a Medicane over
the western Mediterranean Sea, J. Earth Sci. Engineering, 5, 338–348, 2015.
Romera, R., Gaertner, M. Á., Sánchez, E., Domínguez, M.,
González-Alemán, J. J., and Miglietta, M. M.: Climate change
projections of medicanes with a large multi-model ensemble of regional
climate models, Global Planet. Change, 151, 134–143, 2017.
Romero, R. and Emanuel, K.: Medicane risk in a changing climate, J.
Geophys. Res.-Atmos., 118, 5992–6001, 2013.
Romero, R. and Emanuel, K.: Climate change and Hurricane-like extratropical
cyclones: Projections for North Atlantic polar lows and medicanes based on
CMIP5 models, J. Climate, 30, 279–299, 2017.
Rotunno, R. and Emanuel, K.: An Air-Sea Interaction Theory forTropical
Cyclones. Part II: Evolutionary Study Using a Nonhy-drostatic Axisymmetric
Numerical Model, J. Atmos. Sci., 44, 542–561, 1987.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O.,
Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G.,
Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage,
K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and
Vervatis, V.: Med-CORDEX Initiative for Mediterranean Climate Studies, B. Am. Meteorol. Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Ryder, C. L., Highwood, E. J., Rosenberg, P. D., Trembath, J., Brooke, J. K., Bart, M., Dean, A., Crosier, J., Dorsey, J., Brindley, H., Banks, J., Marsham, J. H., McQuaid, J. B., Sodemann, H., and Washington, R.: Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign, Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, 2013.
Saaroni, H., Ziv, B., Bitan, A., and Alpert, P.: Easterly Wind Storms over
Israel, Theor. Appl. Climatol., 59, 61–77,
https://doi.org/10.1007/s007040050013, 1998.
Saaroni, H., Halfon, N., Ziv, B., Alpert, P., and Kutiel, H.: Links between the rainfall regime in Israel and location and intensity of Cyprus lows, Int. J. Climatol., 30, 1014–1025, 2010.
Saaroni, H., Harpaz, T., and Ziv, B.: A new classification algorithm for
daughter cyclone formation with respect to the parent's frontal system –
application for the Mediterranean Basin, Int. J. Climatol., 37, 1050–1065, https://doi.org/10.1002/joc.4759, 2017.
Schäfler, A., Craig, G., Wernli, H., Arbogast, P., Doyle, J. D.,
McTaggart-Cowan, R., Methven, J., Rivière, G., Ament, F., Boettcher, M.,
Bramberger, M., Cazenave, Q., Cotton, R., Crewell, S., Delanoë, J.,
Dörnbrack, A., Ehrlich, A., Ewald, F., Fix, A., Grams, C. M., Gray, S.
L., Grob, H., Groß, S., Hagen, M., Harvey, B., Hirsch, L., Jacob, M.,
Kölling, T., Konow, H., Lemmerz, C., Lux, O., Magnusson, L., Mayer, B.,
Mech, M., Moore, R., Pelon, J., Quinting, J., Rahm, S., Rapp, M.,
Rautenhaus, M., Reitebuch, O., Reynolds, C. A., Sodemann, H., Spengler, T.,
Vaughan, G., Wendisch, M., Wirth, M., Witschas, B., Wolf, K., and Zinner,
T.: The North Atlantic Waveguide and Downstream Impact Experiment, B. Am. Meteorol. Soc., 99, 1607–1637, https://doi.org/10.1175/BAMS-D-17-0003.1, 2018.
Schär, C., Frei, C., Lüthi, D., and Davies, H. C.: Surrogate
climate-change scenarios for regional climate models, Geophys. Res. Lett.,
23, 669–672, 1996.
Schepanski, K. and Knippertz, P.: Soudano-Saharan depressions and their
importance for precipitation and dust: a new perspective on a classical
synoptic concept: Soudano-Saharan Depressions: A New Perspective, Q. J. Roy.
Meteorol. Soc., 137, 1431–1445, https://doi.org/10.1002/qj.850, 2011.
Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Bönisch, G.,
Laurent, B., and Macke, A.: Meteorological processes forcing Saharan dust
emission inferred from MSG-SEVIRI observations of subdaily dust source
activation and numerical models, J. Geophys. Res., 114, D10201,
https://doi.org/10.1029/2008JD010325, 2009.
Smart, D.: Medicane “Ianos” over the central Mediterranean 14–20 September
2020, Weather, 75, 352–353, https://doi.org/10.1002/wea.3871, 2020.
Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N.
L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegerl, G. C., Heimann, M.,
Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U.,
Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V.,
Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, P., Wood, R. A., and Wratt, D.: Technical Summary, in: Climate Change2007: The Physical
Science Basis, Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, UK, 2007.
Sotillo, M., Ramis, C., Romero, R., Alonso, S., and Homar, V.: Role of
orography in the spatial distribution of precipitation over the Spanish
Mediterranean zone, Clim. Res., 23, 247–261,
https://doi.org/10.3354/cr023247, 2003.
Stathopoulos, C., Patlakas, P., Tsalis, C., and Kallos, G.: The Role of Sea
Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones,
Remote Sens., 12, 825, https://doi.org/10.3390/rs12050825, 2020.
Strauss, C., Ricard, D., Lac, C., and Verrelle, A.: Evaluation of turbulence
parametrizations in convective clouds and their environment based on a
large-eddy simulation, Q. J. Roy. Meteorol. Soc., 145, 3195–3217,
https://doi.org/10.1002/qj.3614, 2019.
Tadesse, M., Wahl, T., and Cid, A.: Data-driven modeling of global storm
surges, Frontiers in Marine Science, 7, 260,
https://doi.org/10.3389/fmars.2020.00260, 2020.
Taylor, A. L., Kox, T., and Johnston, D.: Communicating high impact weather:
Improving warnings and decision making processes, Int. J. Disast. Risk Re., 30, 1–4, https://doi.org/10.1016/j.ijdrr.2018.04.002, 2018.
Thorncroft, C. D. and Flocas, H. A.: A case study of Saharan cyclogenesis,
Mon. Weather Rev., 125, 1147–1165, 1997.
Thorncroft, C. D., Hoskins, B. J., and McIntyre, M. E.: Two paradigms of
baroclinic-wave life-cycle behaviour, Q. J. Roy. Meteorol. Soc., 119,
17–55, 1993.
Tochimoto, E., Miglietta, M. M., Bagaglini, L., Ingrosso, R., and Niino, H.:
Characteristics of Extratropical Cyclones That Cause Tornadoes in Italy: A
Preliminary Study, Atmosphere, 12, 180,
https://doi.org/10.3390/atmos12020180, 2021.
Tous, M., Romero, R., and Ramis, C.: Surface heat fluxes influence on
medicane trajectories and intensification, Atmos. Res., 123, 400–411,
https://doi.org/10.1016/j.atmosres.2012.05.022, 2013.
Tous, M., Zappa, G., Romero, R., Shaffrey, L., and Vidale, P. L.: Projected
changes in medicanes in the HadGEM3 N512 high-resolution global climate
model, Clim. Dynam., 47, 1913–1924, 2016.
Trigo, I. F.: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses, Clim. Dynam., 26, 127–143, https://doi.org/10.1007/s00382-005-0065-9, 2006.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Objective climatology of
cyclones in the Mediterranean region, J. Climate, 12, 1685–1696, 1999.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Decline in Mediterranean
rainfall caused by weakening of Mediterranean cyclones, Geophys. Res. Lett.,
27, 2913–2916, https://doi.org/10.1029/2000GL011526, 2000.
Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of cyclogenesis
mechanisms in the Mediterranean, Mon. Weather Rev., 130, 549–569, 2002.
Trigo, R. M., Zezere, J. L., Rodrigues, M. L., and Trigo, I. F.: The
influence of the North Atlantic Oscillation on rainfall triggering of
landslides near Lisbon, Nat. Hazards, 36, 331–354, 2005.
Trigo, R. M., Valente, M. A., Trigo, I. F., Miranda, P. M. A., Ramos, A. M.,
Paredes, D., and García-Herrera, R.: The Impact of North Atlantic Wind
and Cyclone Trends on European Precipitation and Significant Wave Height in
the Atlantic, Ann. N.Y. Acad. Sci., 1146, 212–234,
https://doi.org/10.1196/annals.1446.014, 2008.
Tsidulko, M. and Alpert, P.: Synergism of upper level potential vorticity
and mountains in Genoa lee cyclogenesis – a numerical study, Meteorol.
Atmos. Phys., 78, 261–285, 2001.
Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P.,
Kuglitsch, F. G., Leckebusch, G. C., Luterbacher, J., Maugeri, M., Maheras,
P., Nissen, K. M., Pavan, V., Pinto, J. G., Saaroni, H., Seubert, S.,
Toreti, A., Xoplaki, E., and Ziv, B.: Climate of the Mediterranean, in: The
Climate of the Mediterranean Region, Elsevier, 301–346,
https://doi.org/10.1016/B978-0-12-416042-2.00005-7, 2012.
Van Bebber, W.: Die Zugstrassen der barometrischen Minima nach den
Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890,
Meteorol. Z., 8, 361–366, 1891.
van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G., and Iversen, M.
H.: The ballasting effect of Saharan dust deposition on aggregate dynamics
and carbon export: Aggregation, settling, and scavenging potential of marine
snow: Saharan dust ballasting of marine snow, Limnol. Oceanogr., 63,
1386–1394, https://doi.org/10.1002/lno.10779, 2018.
Varga, G.: Changing nature of Saharan dust deposition in the Carpathian
Basin (Central Europe): 40 years of identified North African dust events
(1979–2018), Environ. Int., 139, 105712,
https://doi.org/10.1016/j.envint.2020.105712, 2020.
Varga, G., Újvári, G., and Kovács, J.: Spatiotemporal patterns
of Saharan dust outbreaks in the Mediterranean Basin, Aeolian Res., 15,
151–160, https://doi.org/10.1016/j.aeolia.2014.06.005, 2014.
Varlas, G., Vervatis, V., Spyrou, C., Papadopoulou, E., Papadopoulos, A.,
and Katsafados, P.: Investigating the impact of atmosphere–wave–ocean
interactions on a Mediterranean tropical-like cyclone, Ocean Model., 153,
101675, https://doi.org/10.1016/j.ocemod.2020.101675, 2020.
Varlas, G., Marinou, E., Gialitaki, A., Siomos, N., Tsarpalis, K.,
Kalivitis, N., Solomos, S., Tsekeri, A., Spyrou, C., Tsichla, M., Kampouri,
A., Vervatis, V., Giannakaki, E., Amiridis, V., Mihalopoulos, N.,
Papadopoulos, A., and Katsafados, P.: Assessing Sea-State Effects on
Sea-Salt Aerosol Modeling in the Lower Atmosphere Using Lidar and In-Situ
Measurements, Remote Sens. 13, 614, https://doi.org/10.3390/rs13040614,
2021.
Verrelle, A., Ricard, D., and Lac, C.: Evaluation and Improvement of
Turbulence Parameterization inside Deep Convective Clouds at Kilometer-Scale
Resolution, Mon. Weather Rev., 145, 3947–3967, 2017.
Vich, M., Romero, R., and Homar, V.: Ensemble prediction of Mediterranean
high-impact events using potential vorticity perturbations. Part II:
Adjoint-derived sensitivity zones, Atmos. Res., 102, 311–319,
https://doi.org/10.1016/j.atmosres.2011.07.016, 2011a.
Vich, M., Romero, R., and Brooks, H. E.: Ensemble prediction of
Mediterranean high-impact events using potential vorticity perturbations.
Part I: Comparison against the multiphysics approach, Atmos. Res.,
102, 227–241, https://doi.org/10.1016/j.atmosres.2011.07.017, 2011b.
Vinet, F., Bigot, V., Petrucci, O., Papagiannaki, K., Llasat, M. C., Kotroni, V., Boissier, L., Aceto, L., Grimalt, M., Llasat-Botija, M., Pasqua, A. A., Rossello, J., Kılıç, O., Kahraman, A., and Tramblay, Y.: Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB, Water, 11, 2196, https://doi.org/10.3390/w11102196, 2019.
Walsh, K., Giorgi, F., and Coppola, E.: Mediterranean warm-core cyclones in
a warmer world, Clim. Dynam., 42, 1053–1066, 2014.
Winschall, A., Sodemann, H., Pfahl, S., and Wernli, H.: How important is
intensified evaporation for Mediterranean precipitation extremes?, J.
Geophys. Res.-Atmos., 119, 5240–5256, https://doi.org/10.1002/2013JD021175, 2014.
Winstanley, D.: Sharav, Weather, 27, 146–160,
https://doi.org/10.1002/j.1477-8696.1972.tb04279.x, 1972.
Winters, A. C., Keyser, D., Bosart, L. F., and Martin, J. E.: Composite
Synoptic-Scale Environments Conducive to North American Polar–Subtropical
Jet Superposition Events, Mon. Weather Rev., 148, 1987–2008,
https://doi.org/10.1175/MWR-D-19-0353.1, 2020.
WMO: WMO Guidelines on Multi-hazard Impact-based Forecast and Warning
Services, Geneva, Switzerland, available at: https://library.wmo.int/doc_num.php?explnum_id=7901 (last access: 31 January 2022), 2015.
Woollings, T. and Blackburn, M.: The North Atlantic Jet Stream under Climate
Change and Its Relation to the NAO and EA Patterns, J. Climate, 25,
886–902, https://doi.org/10.1175/JCLI-D-11-00087.1, 2012.
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., and
Stephenson, D. B.: A Multimodel Assessment of Future Projections of North
Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models, J. Climate, 26, 5846–5862, https://doi.org/10.1175/JCLI-D-12-00573.1, 2013.
Zappa, G., Hawcroft, M. K., Shaffrey, L., Black, E., and Brayshaw, D. J.: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models, Clim. Dynam., 45, 1727–1738, https://doi.org/10.1007/s00382-014-2426-8, 2015.
Zhang, Z. and Li, X.-M.: Global ship accidents and ocean swell-related sea states, Nat. Hazards Earth Syst. Sci., 17, 2041–2051, https://doi.org/10.5194/nhess-17-2041-2017, 2017.
Zhang, Q., Li, L., Ebert, B., Golding, B., Johnston, D., Mills, B., Panchuk,
S., Potter, S., Riemer, M., Sun, J., Taylor, A., Jones, S., Ruti, P., and
Keller, J.: Increasing the value of weather-related warnings, Sci.
Bull., 64, 647–649, https://doi.org/10.1016/j.scib.2019.04.003, 2019.
Zhang, W., Villarini, G., Scoccimarro, E., and Napolitano, F.: Examining the
precipitation associated with medicanes in the high-resolution ERA-5
reanalysis data, Int. J. Climatol., 41, 1–7, https://doi.org/10.1002/joc.6669,
2020.
Ziv, B., Saaroni, H., Romem, M., Heifetz, E., Harnik, N., and Baharad, A.:
Analysis of conveyor belts in winter Mediterranean cyclones, Theor.
Appl. Climatol., 99, 441–455, https://doi.org/10.1007/s00704-009-0150-9, 2010.
Ziv, B., Harpaz, T., Saaroni, H., and Blender, R.:A new methodology for
identifying daughter cyclogenesis: application for the Mediterranean Basin,
Int. J. Climatol., 35, 3847–3861, https://doi.org/10.1002/joc.4250, 2015.
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics,...