Articles | Volume 4, issue 2
https://doi.org/10.5194/wcd-4-331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-4-331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Juliane Schwendike
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Andrew Ross
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Chris J. Short
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Related authors
William Stanley Torgerson, Juliane Schwendike, Andrew Ross, and Chris Short
EGUsphere, https://doi.org/10.5194/egusphere-2023-1272, https://doi.org/10.5194/egusphere-2023-1272, 2023
Preprint archived
Short summary
Short summary
Two types of fluctuations were studied in Hurricane Irma (2017) using model simulations. The first type of fluctuation, the eyewall replacement cycle, has a Hurricane’s eyewall replaced by a second outer eyewall that develops further out. The other type of fluctuation has no replacement of the eyewall but a disruption to its structure instead.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Anya Schlich-Davies, Ann Rowan, Andrew Ross, Duncan Quincey, and Vivi Pedersen
EGUsphere, https://doi.org/10.31223/X5SH7C, https://doi.org/10.31223/X5SH7C, 2025
Short summary
Short summary
Glaciers in the Himalaya are rapidly losing ice in response to climate change. We use a representation of mesoscale meteorological variables to force a climate-glacier model that represents important surface processes such as sublimation, avalanching, and the evolution of supraglacial debris. We find that warming air temperatures increase annual precipitation sufficiently to offset half of glacier volume loss by the end of the century compared with simulations forced only by temperature change.
Sam Hardy, John Methven, Juliane Schwendike, Ben Harvey, and Mike Cullen
Weather Clim. Dynam., 4, 1019–1043, https://doi.org/10.5194/wcd-4-1019-2023, https://doi.org/10.5194/wcd-4-1019-2023, 2023
Short summary
Short summary
We examine a Borneo vortex case using computer simulations and satellite observations. The vortex is identified with high humidity through the atmosphere and has heaviest rainfall on its northern flank. Simulations represent circulation and rainfall accumulation well. The low-level Borneo vortex is coupled with a higher-level wave, which moves westwards along a layer with a sharp vertical gradient in moisture. Vortex growth occurs through mechanisms usually considered outside the tropics.
William Stanley Torgerson, Juliane Schwendike, Andrew Ross, and Chris Short
EGUsphere, https://doi.org/10.5194/egusphere-2023-1272, https://doi.org/10.5194/egusphere-2023-1272, 2023
Preprint archived
Short summary
Short summary
Two types of fluctuations were studied in Hurricane Irma (2017) using model simulations. The first type of fluctuation, the eyewall replacement cycle, has a Hurricane’s eyewall replaced by a second outer eyewall that develops further out. The other type of fluctuation has no replacement of the eyewall but a disruption to its structure instead.
Jennifer Saxby, Julia Crook, Simon Peatman, Cathryn Birch, Juliane Schwendike, Maria Valdivieso da Costa, Juan Manuel Castillo Sanchez, Chris Holloway, Nicholas P. Klingaman, Ashis Mitra, and Huw Lewis
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-46, https://doi.org/10.5194/wcd-2021-46, 2021
Preprint withdrawn
Short summary
Short summary
This study assesses the ability of the new Met Office IND1 numerical model to simulate tropical cyclones and their associated hazards, such as high winds and heavy rainfall. The new system consists of both atmospheric and oceanic models coupled together, allowing us to explore the sensitivity of cyclones to important air–sea feedbacks. We find that the model can accurately simulate tropical cyclone position, structure, and intensity, which are crucial for predicting and mitigating hazards.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Craig Poku, Andrew N. Ross, Adrian A. Hill, Alan M. Blyth, and Ben Shipway
Atmos. Chem. Phys., 21, 7271–7292, https://doi.org/10.5194/acp-21-7271-2021, https://doi.org/10.5194/acp-21-7271-2021, 2021
Short summary
Short summary
We present a new aerosol activation scheme suitable for modelling both fog and convective clouds. Most current activation schemes are designed for convective clouds, and we demonstrate that using them to model fog can negatively impact its life cycle. Our scheme has been used to model an observed fog case in the UK, where we demonstrate that a more physically based representation of aerosol activation is required to capture the transition to a deeper layer – more in line with observations.
Jenny V. Turton, Amélie Kirchgaessner, Andrew N. Ross, John C. King, and Peter Kuipers Munneke
The Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-2020, https://doi.org/10.5194/tc-14-4165-2020, 2020
Short summary
Short summary
Föhn winds are warm and dry downslope winds in the lee of a mountain range, such as the Antarctic Peninsula. Föhn winds heat the ice of the Larsen C Ice Shelf at the base of the mountains and promote more melting than during non-föhn periods in spring, summer and autumn in both model output and observations. Especially in spring, when they are most frequent, föhn winds can extend the melt season by over a month and cause a similar magnitude of melting to that observed in summer.
Cited articles
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: General Circulation Models of the Atmosphere, vol. 17 of Methods in Computational Physics: Advances in Research and Applications, edited by: Chang, J., Elsevier, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Bell, M. M. and Lee, W.-C.: Objective Tropical Cyclone Center Tracking Using
Single-Doppler Radar, J. Appl. Meteorol. Clim., 51, 878–896, https://doi.org/10.1175/JAMC-D-11-0167.1, 2012. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2, 2001. a
Black, P. G., D'Asaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P.,
Sanford, T. B., Terrill, E. J., Walsh, E. J., and Zhang, J. A.: Air Sea
Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary
Layer Air Sea Transfer Experiment, B. Am. Meteorol. Soc., 88, 357–374, https://doi.org/10.1175/BAMS-88-3-357, 2007. a
Bowler, N. E., Arribas, A., Mylne, K. R., Robertson, K. B., and Beare, S. E.:
The MOGREPS short-range ensemble prediction system, Q. J. Roy. Meteorol. Soc., 134, 703–722, https://doi.org/10.1002/qj.234, 2008. a, b
Bowler, N. E., Arribas, A., Beare, S. E., Mylne, K. R., and Shutts, G. J.: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble
prediction system, Q. J. Roy. Meteorol. Soc., 135, 767–776, https://doi.org/10.1002/qj.394, 2009. a
Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A.,
Franklin, C., Hanley, K., Lean, H., Lock, A., Manners, J., Mittermaier, M.,
Morcrette, C., North, R., Petch, J., Short, C., Vosper, S., Walters, D.,
Webster, S., Weeks, M., Wilkinson, J., Wood, N., and Zerroukat, M.: The first
Met Office Unified Model–JULES Regional Atmosphere and Land configuration,
RAL1, Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, 2020.
a
Cangialosi, J. P., Latto, A. S., and Berg, R.: National Hurricane Center tropical cyclone report Hurricane Irma (AL112017) 20 August, NOAA, https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (last access: 5 April 2023), 2018. a
Chagnon, J. M., Gray, S. L., and Methven, J.: Diabatic processes modifying
potential vorticity in a North Atlantic cyclone, Q. J. Roy. Meteorol. Soc., 139, 1270–1282, https://doi.org/10.1002/qj.2037, 2013. a
Charney, J. G. and Phillips, N. A.: Numerical Integration Of The Quasi-Geostrophic Equations For Barotropic And Simple Baroclinic Flows, J. Atmos. Sci., 10, 71–99, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2, 1953. a
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and
vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011. a
Cullen, M. J. P.: The unified forecast/climate model, Meteorol. Mag., 122, 81–94, 1993. a
DeMaria, M., Franklin, J. L., Onderlinde, M. J., and Kaplan, J.: Operational
Forecasting of Tropical Cyclone Rapid Intensification at the National Hurricane Center, Atmosphere, 12, 683, https://doi.org/10.3390/atmos12060683, 2021. a
Dunion, J., Thorncroft, C., and Velden, C.: The Tropical Cyclone Diurnal Cycle of Mature Hurricanes, Mon. Weather Rev., 142, 3900–3919,
https://doi.org/10.1175/MWR-D-13-00191.1, 2014. a
Eliassen, A.: Slow thermally or frictionally controlled meridional circulation in a circular vortex, Astrophisica Norvegica, 5, 19–60, 1951. a
Guimond, S. R., Heymsfield, G. M., and Turk, F. J.: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification, J. Atmos. Sci., 67, 633–654, https://doi.org/10.1175/2009JAS3119.1, 2010. a, b, c
Haynes, P. H. and McIntyre, M. E.: On the Evolution of Vorticity and Potential Vorticity in the Presence of Diabatic Heating and Frictional or Other Forces, J. Atmos. Sci., 44, 828–841,
https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2, 1987. a
Heming, J. T.: Met Office Unified Model tropical cyclone performance following major changes to the initialization scheme and a model Upgrade, Weather Forecast., 31, 1433–1449, https://doi.org/10.1175/waf-d-16-0040.1, 2016. a
Hurricane Research Division, National Oceanic, and Atmospheric Administration: Hurricane Irma 2017,
https://www.aoml.noaa.gov/hrd/Storm_pages/irma2017/, last access: 5 April 2023. a
IRMA: Morphed Integrated Microwave Imagery at CIMSS, http://tropic.ssec.wisc.edu/real-time/mimtc/2017_11L/web/mainpage.html, last access: 5 April 2023. a
Kaplan, J. and DeMaria, M.: Large-scale characteristics of rapidly
intensifying tropical cyclones in the North Atlantic Basin, Weather Forecast., 18, 1093–1108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2, 2003. a
Kaplan, J., Demaria, M., and Knaff, J. A.: A revised tropical cyclone rapid
intensification index for the Atlantic and Eastern North Pacific basins,
Weather Forecast., 25, 220–241, https://doi.org/10.1175/2009waf2222280.1, 2010. a
Kilroy, G. and Smith, R. K.: A numerical study of deep convection in tropical
cyclones, Q. J. Roy. Meteorol. Soc., 142, 3138–3151, https://doi.org/10.1002/qj.2895, 2016. a
Kossin, J. P. and Eastin, M. D.: Two distinct regimes in the kinematic and
thermodynamic structure of the hurricane eye and eyewall, J. Atmos. Sci., 58, 1079–1090, https://doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2, 2001. a, b, c
Kossin, J. P. and Schubert, W. H.: Mesovortices, Polygonal Flow Patterns, and
Rapid Pressure Falls in Hurricane-Like Vortices, J. Atmos. Sci., 58, 2196–2209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2, 2001. a
Kuo, H.-C., Williams, R. T., and Chen, J.-H.: A possible mechanism for the eye rotation of Typhoon Herb, J. Atmos. Sci., 56, 1659–1673, https://doi.org/10.1175/1520-0469(1999)056<1659:APMFTE>2.0.CO;2, 1999. a
Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database uncertainty
and presentation of a new database format, Mon. Weather Rev., 141, 3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013. a
Lee, J.-D., Wu, C.-C., and Ito, K.: Diurnal variation of the convective area
and eye size associated with the rapid intensification of tropical cyclones,
Mon. Weather Rev., 148, 4061–4082, https://doi.org/10.1175/MWR-D-19-0345.1, 2020. a
Miyamoto, Y., Satoh, M., Tomita, H., Oouchi, K., Yamada, Y., Kodama, C., and
Kinter, J.: Gradient Wind Balance in Tropical Cyclones in High-Resolution
Global Experiments, Mon. Weather Rev., 142, 1908–1926,
https://doi.org/10.1175/MWR-D-13-00115.1, 2014. a
Montgomery, M. T. and Kallenbach, R. J.: A theory for vortex Rossby-waves
and its application to spiral bands and intensity changes in hurricanes, Q. J. Roy. Meteorol. Soc., 123, 435–465, https://doi.org/10.1002/qj.49712353810, 1997. a, b
Montgomery, M. T. and Smith, R. K.: Comments on revisiting the balanced and
unbalanced aspects of tropical cyclone intensification, J. Atmos. Sci., 75, 2491–2496, https://doi.org/10.1175/JAS-D-17-0323.1, 2018. a, b, c
Montgomery, M. T., Zhang, J. A., and Smith, R. K.: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010), Q. J. Roy. Meteorol. Soc., 140, 2132–2146, https://doi.org/10.1002/qj.2283, 2014. a
Persing, J., Montgomery, M. T., McWilliams, J. C., and Smith, R. K.: Asymmetric and axisymmetric dynamics of tropical cyclones, Atmos. Chem. Phys., 13, 12299–12341, https://doi.org/10.5194/acp-13-12299-2013, 2013. a, b
Powell, M. D., Vickery, P. J., and Reinhold, T. A.: Reduced drag coefficient
for high wind speeds in tropical cyclones, Nature, 422, 279–283,
https://doi.org/10.1038/nature01481, 2003. a
Prieto, R., Kossin, J. P., and Schubert, W. H.: Symmetrization of lopsided
vorticity monopoles and offset hurricane eyes, Q. J. Roy. Meteorol. Soc., 127, 2307–2327, https://doi.org/10.1002/qj.49712757706, 2001. a
Reasor, P. D., Rogers, R., and Lorsolo, S.: Environmental flow impacts on
tropical cyclone structure diagnosed from airborne doppler radar composites,
Mon. Weather Rev., 141, 2949–2969, https://doi.org/10.1175/mwr-d-12-00334.1, 2013. a
Riemer, M., Montgomery, M. T., and Nicholls, M. E.: A new paradigm for
intensity modification of tropical cyclones: Thermodynamic impact of vertical
wind shear on the inflow layer, Atmos. Chem. Phys., 10, 3163–3188, https://doi.org/10.5194/acp-10-3163-2010, 2010. a
Ryglicki, D. R. and Hart, R. E.: An investigation of center-finding techniques for Tropical Cyclones in mesoscale models, J. Appl. Meteorol. Clim., 54, 825–846, https://doi.org/10.1175/jamc-d-14-0106.1, 2015. a
Saffin, L., Methven, J., and Gray, S. L.: The non-conservation of potential
vorticity by a dynamical core compared with the effects of parametrized
physical processes, Q. J. Roy. Meteorol. Soc., 142, 1265–1275, https://doi.org/10.1002/qj.2729, 2016. a
Schmidt, C. W. and Smith, R. K.: Tropical cyclone evolution in a minimal
axisymmetric model revisited, Q. J. Roy. Meteorol. Soc., 142, 1505–1516, https://doi.org/10.1002/qj.2753, 2016. a
Schubert, W., Montgomery, M., Taft, R., Guinn, T., Fulton, S., Kossin, J., and Edwards, J.: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes, J. Atmos. Sci., 56, 1197–1223,
https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2, 1999a. a
Schubert, W. H., Montgomery, M. T., Taft, R. K., Guinn, T. A., Fulton, S. R.,
Kossin, J. P., and Edwards, J. P.: Polygonal Eyewalls, Asymmetric Eye
Contraction, and Potential Vorticity Mixing in Hurricanes, J. Atmos. Sci., 56, 1197–1223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2, 1999b. a
Short, C. J. and Petch, J.: How well can the Met Office Unified Model forecast tropical cyclones in the western North Pacific?, Weather Forecast.,
33, 185–201, https://doi.org/10.1175/waf-d-17-0069.1, 2018. a
Smith, R. K. and Montgomery, M. T.: The efficiency of diabatic heating and
tropical cyclone intensification, Q. J. Roy. Meteorol. Soc., 39, 2081–2086, https://doi.org/10.1002/qj.2804, 2016.
a
Smith, R. K. and Montgomery, M. T.: The generalized Ekman model for the
tropical cyclone boundary layer revisited: Addendum, Q. J. Roy. Meteorol. Soc., 147, 1471–1476, https://doi.org/10.1002/qj.4012, 2021. a
Smith, R. K. and Vogl, S.: A simple model of the hurricane boundary layer revisited, Q. J. Roy. Meteorol. Soc., 134, 337–351, https://doi.org/10.1002/qj.216, 2008. a
Smith, R. K., Montgomery, M. T., and Van Sang, N.: Tropical cyclone spin-up
revisited, Q. J. Roy. Meteorol. Soc., 135, 1321–1335, https://doi.org/10.1002/qj.428, 2009. a
Smith, R., Kilroy, G., and Montgomery, M. T.: Why Do Model Tropical Cyclones Intensify More Rapidly at Low Latitudes, J. Atmos. Sci., 72, 1783–1804,
https://doi.org/10.1175/JAS-D-14-0044.1, 2015. a
Smith, R. K., Kilroy, G., and Montgomery, M. T.: Tropical cyclone life cycle in a three-dimensional numerical simulation, Q. J. Roy. Meteorol. Soc., 147, 3373–3393, https://doi.org/10.1002/qj.4133, 2021. a, b, c
Stern, D. P. and Zhang, F.: How does the eye warm? Part II: Sensitivity to
vertical wind shear and a trajectory analysis, J. Atmos. Sci., 70, 1849–1873, https://doi.org/10.1175/JAS-D-12-0258.1, 2013. a
Van Sang, N., Smith, R. K., and Montgomery, M. T.: Tropical-cyclone
intensification and predictability in three dimensions, Q. J. Roy. Meteorol. Soc., 134, 563–582, https://doi.org/10.1002/qj.235, 2008. a, b
Velden, C. S. and Herndon, D.: A consensus approach for estimating tropical
cyclone intensity from meteorological satellites: SATCON, Weather Forecast., 35, 1645–1662, https://doi.org/10.1175/WAF-D-20-0015.1, 2020. a
Vigh, J. L. and Schubert, W. H.: Rapid development of the tropical cyclone
warm core, J. Atmos. Sci., 66, 3335–3350, https://doi.org/10.1175/2009jas3092.1, 2009. a
Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S.,
Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D.,
Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J.,
Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier,
M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P.,
Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J.,
Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model
Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017. a
Williams, G.: The generation and maintenance of hollow PV towers in a forced
primitive equation model, Proceedings, 1, 156, https://doi.org/10.3390/ecas2017-04149,
2017. a
Willoughby, H. E., Clos, J. A., and Shoreibah, M. G.: Concentric Eye Walls,
Secondary Wind Maxima, and The Evolution of the Hurricane vortex, J. Atmos. Sci., 39, 395–411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2, 1982. a
Wimmers, A. J. and Velden, C. S.: MIMIC: A new approach to visualizing
satellite microwave imagery of tropical cyclones, B. Am. Meteorol. Soc., 88, 1187–1196, https://doi.org/10.1175/BAMS-88-8-1187, 2007.
a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteorol. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a
Yeung, H.: Convective hot tower signatures and rapid intensification of severe Typhoon Vicente (1208), Trop. Cyclon. Res. Rev., 2, 96–108,
https://doi.org/10.6057/2013TCRR02.03, 2013.
a
Zhang, F., Tao, D., Sun, Y. Q., and Kepert, J. D.: Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones, J. Adv. Model. Earth Syst., 9, 89–112, https://doi.org/10.1002/2016MS000729, 2017. a
Short summary
We investigated intensity fluctuations that occurred during the rapid intensification of Hurricane Irma (2017) to understand their effects on the storm structure. Using high-resolution model simulations, we found that the fluctuations were caused by local regions of strong ascent just outside the eyewall that disrupted the storm, leading to a larger and more symmetrical storm eye. This alters the location and intensity of the strongest winds in the storm and hence the storm's impact.
We investigated intensity fluctuations that occurred during the rapid intensification of...