Articles | Volume 4, issue 2
https://doi.org/10.5194/wcd-4-489-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-4-489-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thunderstorm environments in Europe
Deborah Morgenstern
CORRESPONDING AUTHOR
Department of Atmospheric and Cryospheric Sciences (ACINN),
University of Innsbruck, Innsbruck, Austria
Department of Statistics, University of Innsbruck, Innsbruck,
Austria
Isabell Stucke
Department of Atmospheric and Cryospheric Sciences (ACINN),
University of Innsbruck, Innsbruck, Austria
Department of Statistics, University of Innsbruck, Innsbruck,
Austria
Department of Atmospheric and Cryospheric Sciences (ACINN),
University of Innsbruck, Innsbruck, Austria
Achim Zeileis
Department of Statistics, University of Innsbruck, Innsbruck,
Austria
Thorsten Simon
Department of Statistics, University of Innsbruck, Innsbruck,
Austria
Department of Mathematics, University of Innsbruck, Innsbruck,
Austria
Related authors
Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis
Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022, https://doi.org/10.5194/wcd-3-361-2022, 2022
Short summary
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.
Fiona Fix-Hewitt, Achim Zeileis, Isabell Stucke, Reto Stauffer, and Georg J. Mayr
EGUsphere, https://doi.org/10.5194/egusphere-2025-3552, https://doi.org/10.5194/egusphere-2025-3552, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Atmospheric deserts are air masses from the boundary layer of desert regions. This study tracked them from North Africa to Europe during a two-year period (May 2022–April 2024). They can occur up to 60 % of the time, and can span large parts of Europe. They typically last about a day, and can alter the atmosphere throughout the free troposphere. On its way from Africa the air either rises and may become even warmer and drier, or it stays at mid-altitudes and cools, or retains its properties.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024, https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
Short summary
Atmospheric deserts (ADs) are air masses that are transported away from hot, dry regions. Our study introduces this new concept. ADs can suppress or boost thunderstorms and potentially contribute to the formation of heat waves, which makes them relevant for forecasting extreme events. Using a novel detection method, we follow an AD directly from North Africa to Europe for a case in June 2022, allowing us to analyse the air mass at any time and investigate how it is modified along the way.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022, https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis
Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022, https://doi.org/10.5194/wcd-3-361-2022, 2022
Short summary
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.
Cited articles
Anderson, G. and Klugmann, D.: A European Lightning Density Analysis Using 5 Years of ATDnet Data, Nat. Hazards Earth Syst. Sci., 14, 815–829, https://doi.org/10.5194/nhess-14-815-2014, 2014. a
Becerra, M., Long, M., Schulz, W., and Thottappillil, R.: On the Estimation of the Lightning Incidence to Offshore Wind Farms, Elect. Power Syst. Res., 157, 211–226, https://doi.org/10.1016/j.epsr.2017.12.008, 2018. a
Bentley, M. L., Riley, C., and Mazur, E.: A Winter-Season Lightning
Climatology for the Contiguous United States, Meteorol. Atmos. Phys., 131, 1327–1340, https://doi.org/10.1007/s00703-018-0641-2, 2019. a
Bielec, Z.: Long-Term Variability of Thunderstorms and Thunderstorm
Precipitation Occurrence in Cracow, Poland, in the Period 1896–1995,
Atmos. Res., 56, 161–170, https://doi.org/10.1016/S0169-8095(00)00096-X, 2001. a
Brook, M., Nakano, M., Krehbiel, P., and Takeuti, T.: The Electrical Structure of the Hokuriku Winter Thunderstorms, J. Geophys. Res.-Oceans, 87, 1207–1215, https://doi.org/10.1029/JC087iC02p01207, 1982. a
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution Requirements for the Simulation of Deep Moist Convection, Mon. Weather Rev., 131,
2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003. a
CKB – Copernicus Knowledge Base: How to download ERA5,
https://confluence.ecmwf.int/display/CKB/How+to+download+ERA5 (last access: 7 May 2023), 2023.
a
Coquillat, S., Pont, V., Lambert, D., Houel, R., Pardé, M., Kreitz, M.,
Ricard, D., Gonneau, E., de Guibert, P., and Prieur, S.: Six Years of
Electrified Convection Over the Island of Corsica Monitored by SAETTA:
General Trends and Anomalously Electrified Thunderstorms During African Dust
South Flow Events, Atmos. Res., 275, 106227,
https://doi.org/10.1016/j.atmosres.2022.106227, 2022. a
Dowle, M. and Srinivasan, A.: data.table: Extension of `data.frame', R package version 1.13.2, CRAN [code], https://CRAN.R-project.org/package=data.table (last access: 7 May 2023), 2020. a
Engholm, C. D., Williams, E. R., and Dole, R. M.: Meteorological and Electrical Conditions Associated with Positive Cloud-to-Ground Lightning, Mon. Weather Rev., 118, 470–487,
https://doi.org/10.1175/1520-0493(1990)118<0470:MAECAW>2.0.CO;2, 1990. a
Enno, S.-E., Briede, A., and Valiukas, D.: Climatology of Thunderstorms in the Baltic Countries, 1951–2000, Theor. Appl. Climatol., 111, 309–325, https://doi.org/10.1007/s00704-012-0666-2, 2013. a, b, c, d
Fujii, F., Ishii, M., Saito, M., Matsui, M., and Natsuno, D.: Characteristics
of Winter Lightning Threatening Wind Turbines in Coastal Area of the Sea of
Japan, Elect. Eng. Jpn., 184, 44–50, https://doi.org/10.1002/eej.22357, 2013. a
Hayward, L., Whitworth, M., Pepin, N., and Dorling, S.: A Regional Lightning
Climatology of the UK and Ireland and Sensitivity to Alternative Detection
Networks, Int. J. Climatol., 42, 7839–7862, https://doi.org/10.1002/joc.7680, 2022. a, b, c, d
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.:
ERA5 Hourly Data on Single Levels from 1979 to Present, data set,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Holle, R. D., Cummins, K. L., and Brooks, W. A.: Seasonal, Monthly, and Weekly Distributions of NLDN and GLD360 Cloud-to-Ground Lightning, Mon. Weather Rev., 144, 2855–2870, https://doi.org/10.1175/MWR-D-16-0051.1, 2016. a
Holt, M. A., Hardaker, P. J., and McLelland, G. P.: A Lightning Climatology for Europe and the UK, 1990–99, Weather, 56, 290–296,
https://doi.org/10.1002/j.1477-8696.2001.tb06598.x, 2001. a
Hoyer, S. and Hamman, J.: xarray: N-D Labeled Arrays and Datasets in Python, J. Open Res. Softw., 5, 10, https://doi.org/10.5334/jors.148, 2017. a
Iwasaki, H.: Preliminary Study on Features of Lightning Discharge around Japan using World Wide Lightning Location Network Data, Scient. Online Lett. Atmos., 10, 98–102, https://doi.org/10.2151/sola.2014-020, 2014. a
Kolendowicz, L.: The Influence of Synoptic Situations on the Occurrence of Days with Thunderstorms During a Year in the Territory of Poland, Int. J. Climatol., 26, 1803–1820, https://doi.org/10.1002/joc.1348, 2006. a
Kotroni, V. and Lagouvardos, K.: Lightning in the Mediterranean and its
Relation with Sea-Surface Temperature, Environ. Res. Lett., 11, 034006, https://doi.org/10.1088/1748-9326/11/3/034006, 2016. a, b
MacQueen, J. B.: Some Methods for Classification and Analysis of Multivariate
Observations, in: Proc. of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1,edited by: Cam, L. M. L. and Neyman, J.,
University of California Press, 281–297,
https://www.bibsonomy.org/bibtex/25dcdb8cd9fba78e0e791af619d61d66d/enitsirhc
(last access: 19 February 2020), 1967. a
Mäkelä, A., Saltikoff, E., Julkunen, J., Juga, I., Gregow, E., and
Niemelä, S.: Cold-Season Thunderstorms in Finland and Their Effect on
Aviation Safety, B. Am. Meteorol. Soc., 94, 847–858, https://doi.org/10.1175/BAMS-D-12-00039.1, accessed 2022-11-08, 2013. a
Mäkelä, A., Enno, S.-E., and Haapalainen, J.: Nordic Lightning
Information System: Thunderstorm Climate of Northern Europe for the Period
2002–2011, Atmos. Res., 139, 46–61, https://doi.org/10.1016/j.atmosres.2014.01.008, 2014. a, b
Mallick, C., Hazra, A., Saha, S. K., Chaudhari, H. S., Pokhrel, S., Konwar, M., Dutta, U., Mohan, G. M., and Vani, K. G.: Seasonal Predictability of
Lightning Over the Global Hotspot Regions, Geophys. Res. Lett., 49,
e2021GL096489, https://doi.org/10.1029/2021GL096489, 2022. a
Manzato, A., Serafin, S., Miglietta, M. M., Kirshbaum, D., and Schulz, W.: A
Pan-Alpine Climatology of Lightning and Convective Initiation, Mon. Weather Rev., 150, 2213–2230, https://doi.org/10.1175/MWR-D-21-0149.1, 2022. a, b, c
March, V., Montanyà, J., Fabró, F., van der Velde Oscar, Romero, D.,
Solà, G., Freijó, M., and Pineda, N.: Winter Lightning Activity in
Specific Global Regions and Implications to Wind Turbines and Tall
Structures, in: IEEE 2016 33rd International Conference on Lightning Protection (ICLP), 25–30 September 2016, Estoril, Portugal,
https://doi.org/10.1109/ICLP.2016.7791447, 2016. a, b, c
Mardia, K. V., Kent, J. T., and Bibby, J. M.: Multivariate Analysis,
Probability and Mathematical Statistics, in: 10th Edn., Academic Press, London, ISBN 0-12-471250-9, ISBN 0-12-471252-5, 1995. a
Market, P. S., Halcomb, C. E., and Ebert, R. L.: A Climatology of Thundersnow
Events over the Contiguous United States, Weather Forecast., 17, 1290–1295, https://doi.org/10.1175/1520-0434(2002)017<1290:ACOTEO>2.0.CO;2, 2002. a
Matsui, M., Michishita, K., and Yokoyama, S.: Cloud-to-Ground Lightning Flash
Density and the Number of Lightning Flashes Hitting Wind Turbines in Japan,
Elect. Power Syst. Res., 181, 106066, https://doi.org/10.1016/j.epsr.2019.106066, 2020. a
Méndez, Y., Birkl, J., Madsen, S., Sørensen, T., Plumer, J., and
Montanyà, J.: The 2018 Revision of the Standard IEC 61400-24: Lightning
Protection of Wind Turbines, in: 2018 34th International Conference on
Lightning Protection (ICLP), 2–7 September 2018, Rzeszow, Poland,
https://doi.org/10.1109/ICLP.2018.8503411, 2018. a
Montanyà, J., Fabró, F., van der Velde, O., March, V., Williams, E. R., Pineda, N., Romero, D., Solà, G., and Freijo, M.: Global Distribution of Winter Lightning: A Threat to Wind Turbines and Aircraft, Nat. Hazards Earth Syst. Sci., 16, 1465–1472, https://doi.org/10.5194/nhess-16-1465-2016, 2016. a
Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector
Data, R Journal, 10, 439–446, https://doi.org/10.32614/RJ-2018-009, 2018. a
Pebesma, E.: stars: Spatiotemporal Arrays, Raster and Vector Data Cubes,
R package version 0.4-3, CRAN [code], https://CRAN.R-project.org/package=stars (last access: 7 May 2023), 2020. a
Pierce, D.: ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, R package version 1.17, CRAN [code], https://CRAN.R-project.org/package=ncdf4 (last access: 7 May 2023), 2019. a
Pineda, N., Montanyà, J., Romero, D., Bech, J., Casellas, E., and
González, S.: Meteorological Aspects of Winter Upward Lightning from an
Instrumented Tower in the Pyrenees, in: 2018 34th International Conference on
Lightning Protection (ICLP), 2–7 September 2018, Rzeszow, Poland, 1–7,
https://doi.org/10.1109/ICLP.2018.8503271, 2018. a
Piper, D. and Kunz, M.: Spatiotemporal Variability of Lightning Activity in
Europe and the Relation to the North Atlantic Oscillation Teleconnection
Pattern, Nat. Hazards Earth Syst. Sci., 17, 1319–1336,
https://doi.org/10.5194/nhess-17-1319-2017, 2017. a
Poelman, D. R.: A 10-Year Study on the Characteristics of Thunderstorms in
Belgium Based on Cloud-to-Ground Lightning Data, Mon. Weather Rev., 142,
4839–4849, https://doi.org/10.1175/MWR-D-14-00202.1, 2014. a
Poelman, D. R., Schulz, W., Diendorfer, G., and Bernardi, M.: The European
Lightning Location System EUCLID – Part 2: Observations, Nat. Hazards Earth Syst. Sci., 16, 607–616, https://doi.org/10.5194/nhess-16-607-2016, 2016. a, b, c, d
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 7 May 2023), 2021. a
Schulz, W., Cummins, K., Diendorfer, G., and Dorninger, M.: Cloud-to-Ground
Lightning in Austria: A 10-year Study using Data from a Lightning Location
System, J. Geophys. Res.-Atmos., 110, D09101, https://doi.org/10.1029/2004JD005332, 2005. a
Schulz, W., Diendorfer, G., Pedeboy, S., and Poelman, D. R.: The European
Lightning Location System EUCLID - Part 1: Performance Analysis and Validation, Nat. Hazards Earth Syst. Sci., 16, 595–605,
https://doi.org/10.5194/nhess-16-595-2016, 2016. a, b
Schulzweida, U.: CDO User Guide, Zenodo [code], https://doi.org/10.5281/zenodo.3539275, 2019. a
Sherburn, K. D. and Parker, M. D.: Climatology and Ingredients of Significant
Severe Convection in High-Shear, Low-CAPE Environments, Weather Forecast., 29, 854–877, https://doi.org/10.1175/WAF-D-13-00041.1, 2014. a, b
Simon, T. and Mayr, G. J.: Lightning Climatology for the Eastern Alpine Region on the Kilometer Scale with Daily Resolution, Elektrotech. Informationstech., 139, 352–360, https://doi.org/10.1007/s00502-022-01032-1, 2022. a, b
Simon, T., Umlauf, N., Zeileis, A., Mayr, G. J., Schulz, W., and Diendorfer,
G.: Spatio-Temporal Modelling of Lightning Climatologies for Complex Terrain,
Nat. Hazards Earth Syst. Sci., 17, 305–314, https://doi.org/10.5194/nhess-17-305-2017, 2017. a
South, A.: rnaturalearth: World Map Data from Natural Earth, R package
version 0.1.0, CRAN [code], https://CRAN.R-project.org/package=rnaturalearth (last access: 7 May 2023), 2017. a
Stauffer, R., Mayr, G. J., Dabernig, M., and Zeileis, A.: Somewhere over the
Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations, B. Am. Meteorol. Soc., 96, 203–216, https://doi.org/10.1175/BAMS-D-13-00155.1, 2009. a
Stucke, I., Morgenstern, D., Diendorfer, G., Mayr, G. J., Pichler, H., Schulz, W., Simon, T., and Zeileis, A.: Thunderstorm Types and Meteorological
Characteristics of Upward Lightning, in: 2022 36th International Conference
on Lightning Protection (ICLP), 2–7 October 2022, Cape Town, South Africa,
282–288, https://doi.org/10.1109/ICLP56858.2022.9942489, 2022. a, b, c, d
Takahashi, T., Sugimoto, S., Kawano, T., and Suzuki, K.: Microphysical
Structure and Lightning Initiation in Hokuriku Winter Clouds, J. Geophys. Res.-Atmos., 124, 13156–13181, https://doi.org/10.1029/2018JD030227, 2019. a
Takeuti, T., Nakano, M., Brook, M., Raymond, D. J., and Krehbiel, P.: The
Anomalous Winter Thunderstorms of the Hokuriku Coast, J. Geophys. Res.-Oceans, 83, 2385–2394, https://doi.org/10.1029/JC083iC05p02385, 1978. a
Taszarek, M., Czernecki, B., and Kozioł, A.: A Cloud-to-Ground Lightning
Climatology for Poland, Mon. Weather Rev., 143, 4285–4304,
https://doi.org/10.1175/MWR-D-15-0206.1, 2015. a
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B., Kolendowicz, L., Lagouvardos, K., Kotroni, V., and Schulz, W.: A Climatology
of Thunderstorms across Europe from a Synthesis of Multiple Data Sources,
J. Climate, 32, 1813–1837, https://doi.org/10.1175/JCLI-D-18-0372.1, 2019.
a, b, c
Taszarek, M., Allen, J. T., Groenemeijer, P., Edwards, R., Brooks, H. E.,
Chmielewski, V., and Enno, S.-E.: Severe Convective Storms across Europe and
the United States. Part I: Climatology of Lightning, Large Hail, Severe
Wind, and Tornadoes, J. Climate, 33, 10239–10261, https://doi.org/10.1175/JCLI-D-20-0345.1, 2020a. a, b
Taszarek, M., Allen, J. T., Púčik, T., Hoogewind, K. A., and Brooks, H. E.: Severe Convective Storms across Europe and the United States. Part II: ERA5 Environments Associated with Lightning, Large Hail, Severe Wind, and Tornadoes, J. Climate, 33, 10263–10286, https://doi.org/10.1175/JCLI-D-20-0346.1, 2020b. a
Ukkonen, P. and Mäkelä, A.: Evaluation of Machine Learning Classifiers for Predicting Deep Convection, J. Adv. Model.Earth Syst., 11, 1784–1802, https://doi.org/10.1029/2018MS001561, 2019. a
Unidata: Network Common Data Form (netCDF), UCAR/Unidata, Boulder, CO [code], https://doi.org/10.5065/D6H70CW6, 2020. a
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, Python
Documentation Manual Part 2, CreateSpace Independent Publishing Platform,
Scotts Valley, CA, 242 pp., ISBN 978-1-4414-1269-0, 2009. a
Virts, K., Wallace, J., Hutchins, M., and Holzworth, R.: Highlights of a New
Ground-Based, Hourly Global Lightning Climatology, B. Am. Meteorol. Soc., 94, 1381–1391, 2013. a
Vogel, S., Holbøll, J., López, J., Garolera, A. C., and Madsen, S. F.:
European Cold Season Lightning Map for Wind Turbines Based on Radio
Soundings, in: 2016 33rd International Conference on Lightning Protection (ICLP), 25–30 September 2016, Estoril, Portugal, 1–7, https://doi.org/10.1109/ICLP.2016.7791373, 2016. a, b, c
Wang, D., Zheng, D., Wu, T., and Takagi, N.: Winter Positive Cloud-to-Ground
Lightning Flashes Observed by LMA in Japan, IEEJ T. Elect. Electron. Eng., 16, 402–411, https://doi.org/10.1002/tee.23310, 2021. a
Wapler, K.: High-Resolution Climatology of Lightning Characteristics within
Central Europe, Meteorol. Atmos. Phys., 122, 175–184, https://doi.org/10.1007/s00703-013-0285-1, 2013. a, b
Wapler, K. and James, P.: Thunderstorm Occurrence and Characteristics in
Central Europe Under Different Synoptic Conditions, Atmos. Res., 158–159, 231–244, https://doi.org/10.1016/j.atmosres.2014.07.011, 2015. a, b
Williams, E.: Lightning Activity in Winter Storms: A Meteorological and Cloud
Microphysical Perspective, IEEJ T. Power Energ., 138, 364–373, https://doi.org/10.1541/ieejpes.138.364, 2018. a
Zhang, W., Zhang, Y., Zheng, D., Xu, L., and Lyu, W.: Lightning Climatology
Over the Northwest Pacific Region: An 11-Year Study Using Data From The World
Wide Lightning Location Network, Atmos. Res., 210, 41–57,
https://doi.org/10.1016/j.atmosres.2018.04.013, 2018. a
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur...