Articles | Volume 4, issue 3
https://doi.org/10.5194/wcd-4-617-2023
https://doi.org/10.5194/wcd-4-617-2023
Research article
 | 
18 Jul 2023
Research article |  | 18 Jul 2023

The role of boundary layer processes in summer-time Arctic cyclones

Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté

Related authors

A global climatology of sting-jet extratropical cyclones
Suzanne L. Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
Weather Clim. Dynam., 5, 1523–1544, https://doi.org/10.5194/wcd-5-1523-2024,https://doi.org/10.5194/wcd-5-1523-2024, 2024
Short summary
The impact of preceding convection on the development of Medicane Ianos and the sensitivity to sea surface temperature
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024,https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5/NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
EGUsphere, https://doi.org/10.5194/egusphere-2024-913,https://doi.org/10.5194/egusphere-2024-913, 2024
Short summary
Examining the dynamics of a Borneo vortex using a balance approximation tool
Sam Hardy, John Methven, Juliane Schwendike, Ben Harvey, and Mike Cullen
Weather Clim. Dynam., 4, 1019–1043, https://doi.org/10.5194/wcd-4-1019-2023,https://doi.org/10.5194/wcd-4-1019-2023, 2023
Short summary
Benefits and challenges of dynamic sea ice for weather forecasts
Jonathan J. Day, Sarah Keeley, Gabriele Arduini, Linus Magnusson, Kristian Mogensen, Mark Rodwell, Irina Sandu, and Steffen Tietsche
Weather Clim. Dynam., 3, 713–731, https://doi.org/10.5194/wcd-3-713-2022,https://doi.org/10.5194/wcd-3-713-2022, 2022
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Concurrent Bering Sea and Labrador Sea ice melt extremes in March 2023: a confluence of meteorological events aligned with stratosphere–troposphere interactions
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024,https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024,https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024,https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Circulation responses to surface heating and implications for polar amplification
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024,https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024,https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary

Cited articles

Adamson, D., Belcher, S. E., Hoskins, B. J., and Plant, R. S.: Boundary-layer friction in midlatitude cyclones, Q. J. Roy. Meteorol. Soc., 132, 101–124, 2006. a, b, c, d, e, f, g, h, i
Aizawa, T. and Tanaka, H.: Axisymmetric structure of the long lasting summer Arctic cyclones, Polar Sci., 10, 192–198, 2016. a
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res., 117, C06025, 2012. a
Boutle, I., Beare, R., Belcher, S., and Plant, R.: A note on boundary-layer friction in baroclinic cyclones, Q. J. Roy. Meteorol. Soc., 133, 2137–2141, 2007. a, b, c, d, e
Boutle, I. A., Belcher, S. E., and Plant, R. S.: Friction in mid-latitude cyclones: an Ekman-PV mechanism, Atmos. Sci. Lett., 16, 103–109, 2015. a, b
Download
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.