Articles | Volume 4, issue 3
https://doi.org/10.5194/wcd-4-823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-4-823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploiting the signal-to-noise ratio in multi-system predictions of boreal summer precipitation and temperature
Juan Camilo Acosta Navarro
CORRESPONDING AUTHOR
Joint Research Centre, European Commission, Ispra, Italy
Andrea Toreti
Joint Research Centre, European Commission, Ispra, Italy
Related authors
Juan C. Acosta Navarro, Alvise Aranyossy, Paolo De Luca, Markus G. Donat, Arthur Hrast Essenfelder, Rashed Mahmood, Andrea Toreti, and Danila Volpi
Earth Syst. Dynam., 16, 1723–1737, https://doi.org/10.5194/esd-16-1723-2025, https://doi.org/10.5194/esd-16-1723-2025, 2025
Short summary
Short summary
A computationally inexpensive climate model analog method yields skillful climate predictions across timescales, from seasons to multiple years, complementing existing climate prediction systems and potentially providing valuable information for sectors like agriculture and energy.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Juan C. Acosta Navarro, Alvise Aranyossy, Paolo De Luca, Markus G. Donat, Arthur Hrast Essenfelder, Rashed Mahmood, Andrea Toreti, and Danila Volpi
Earth Syst. Dynam., 16, 1723–1737, https://doi.org/10.5194/esd-16-1723-2025, https://doi.org/10.5194/esd-16-1723-2025, 2025
Short summary
Short summary
A computationally inexpensive climate model analog method yields skillful climate predictions across timescales, from seasons to multiple years, complementing existing climate prediction systems and potentially providing valuable information for sectors like agriculture and energy.
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
Hydrol. Earth Syst. Sci., 29, 1379–1393, https://doi.org/10.5194/hess-29-1379-2025, https://doi.org/10.5194/hess-29-1379-2025, 2025
Short summary
Short summary
Our global review of 130 000 peer-reviewed articles reveals that drought forecasting and plant genetics dominate drought research priorities. Using topic modelling, we traced evolving themes from 1901 to 2022, highlighting a shift from ecology to cutting-edge technologies. By applying unsupervised machine learning, we offer insights into how integrated approaches matter, guiding future priorities to strengthen drought resilience and to safeguard water resources.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Cited articles
Baehr, J., Fröhlich, K., Botzet, M., Domeisen, D. I., Kornblueh, L.,
Notz, D., Piontek, R., Pohlmann, H., Tietsche, S., and Müller, W. A.: The
prediction of surface temperature in the new seasonal prediction system
based on the MPI-ESM coupled climate model, Clim. Dynam., 44,
2723–2735, https://doi.org/10.1007/s00382-014-2399-7, 2015.
Batté, L., Dorel, L., Ardilouze, C., and Guérémy, J.-F.:
Documentation of the METEO-FRANCE seasonal forecasting system 8,
Météo-France, 36, 1–36,
https://www.umr-cnrm.fr/IMG/pdf/system8-technical.pdf (last access: 1 February 2023), 2021.
Below, R., Grover-Kopec, E., and Dilley, M.: Documenting drought-related
disasters, J. Environ. Dev., 16, 328–344, https://doi.org/10.1177/1070496507306222,
2007.
Bevacqua, E., Zappa, G., Lehner, F., and Zscheischler, J.: Precipitation
trends determine future occurrences of compound hot–dry events. Nat. Clim.
Change, 12, 350–355, https://doi.org/10.1038/s41558-022-01309-5, 2022.
Buontempo, C., Hanlon, H. M., Bruno Soares, M., Christel, I., Soubeyroux,
J.-M., Viel, C., Calmanti, S., Bosi, L., Falloon, P., Palin, E. J., Vanvyve,
E., Torralba, V., Gonzalez-Reviriego, N., Doblas-Reyes, F., Pope, E. C. D.,
Newton, P., and Liggins, F.: What have we learnt from Euporias Climate Service
prototypes?, Climate Services, 9, 21–32, https://doi.org/10.1016/j.cliser.2017.06.003,
2018.
Ceglar, A. and Toreti, A.: Seasonal climate forecast can inform the European
agricultural sector well in advance of harvesting, NPJ Clim.
Atmos. Sci., 4, 1–8, https://doi.org/10.1038/s41612-021-00198-3, 2021.
Copernicus Climate Change Service: Seasonal forecast monthly statistics on pressure levels, Copernicus Climate Change Service (C3S) Climate Data Store [data set], https://doi.org/10.24381/cds.0b79e7c5 (last access: 1 October 2022), 2018.
Doi, T., Nonaka, M., and Behera, S.: Can signal-to-noise ratio indicate
prediction skill? Based on skill assessment of 1-month lead prediction of
monthly temperature anomaly over Japan, Front. Clim., 4, 887782,
https://doi.org/10.3389/fclim.2022.887782, 2022.
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L.,
and Robinson, N.: Do seasonal-to-decadal climate predictions underestimate
the predictability of the real world?, Geophys. Res. Lett., 41, 5620–5628,
https://doi.org/10.1002/2014gl061146, 2014.
Enenkel, M., Brown, M. E., Vogt, J. V., McCarty, J. L., Reid Bell, A.,
Guha-Sapir, D., Dorigo, W., Vasilaky, K., Svoboda, M., Bonifacio, R.,
Anderson, M., Funk, C., Osgood, D., Hain, C., and Vinck, P.: Why predict
climate hazards if we need to understand impacts? Putting humans back into
the drought equation, Clim. Change, 162, 1161–1176,
https://doi.org/10.1007/s10584-020-02878-0, 2020.
Gualdi, S., Sanna, A., Borrelli, A., Cantelli, A., del Mar Chaves Montero, M., and
Tibaldi, S.: The new CMCC Operational Seasonal Prediction System SPS3.5,
Centro Euro-Mediterraneo sui Cambiamenti Climatici, CMCC Tech. Note RP0288,
https://doi.org/10.25424/CMCC/SPS3.5 2020.
Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T. N.: The rationale behind
the success of multi-model ensembles in seasonal forecasting – I. basic
concept, Tellus A, 57, 219–233, https://doi.org/10.3402/tellusa.v57i3.14657, 2005.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020.
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019.
Lenssen, N. J., Goddard, L., and Mason, S.: Seasonal forecast skill of Enso
teleconnection maps, Weather Forecast., 35, 2387–2406,
https://doi.org/10.1175/waf-d-19-0235.1, 2020.
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D.,
Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp,
J., Xavier, P., and Madec, G.: Global Seasonal Forecast System version 5
(GLOSEA5): A high-resolution seasonal forecast system, Q. J. Roy. Meteor. Soc.,
141, 1072–1084, https://doi.org/10.1002/qj.2396, 2015.
Meehl, G. A., Richter, J. H., Teng, H., Capotondi, A., Cobb, K.,
Doblas-Reyes, F., Donat, M. G., England, M. H., Fyfe, J. C., Han, W., Kim,
H., Kirtman, B. P., Kushnir, Y., Lovenduski, N. S., Mann, M. E., Merryfield,
W. J., Nieves, V., Pegion, K., Rosenbloom, N., Sanchez, S. C., Scaife, A.
A., Smith, D., Subramanian, A. C., Sun, L., Thompson, D., Ummenhofer, C. C.,
and Xie, S.-P.: Initialized earth system prediction from subseasonal to
Decadal Timescales, Nature Reviews Earth & Environment, 2, 340–357,
https://doi.org/10.1038/s43017-021-00155-x, 2021.
Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H.,
Coelho, C. A., Danabasoglu, G., Dirmeyer, P. A., Doblas-Reyes, F. J.,
Domeisen, D. I., Ferranti, L., Ilynia, T., Kumar, A., Müller, W. A.,
Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma, M., Vitart, F.,
White, C. J., Alvarez, M. S., Ardilouze, C., Attard, H., Baggett, C.,
Balmaseda, M. A., Beraki, A. F., Bhattacharjee, P. S., Bilbao, R., de
Andrade, F. M., DeFlorio, M. J., Díaz, L. B., Ehsan, M. A.,
Fragkoulidis, G., Grainger, S., Green, B. W., Hell, M. C., Infanti, J. M.,
Isensee, K., Kataoka, T., Kirtman, B. P., Klingaman, N. P., Lee, J.-Y.,
Mayer, K., McKay, R., Mecking, J. V., Miller, D. E., Neddermann, N., Justin
Ng, C. H., Ossó, A., Pankatz, K., Peatman, S., Pegion, K., Perlwitz, J.,
Recalde-Coronel, G. C., Reintges, A., Renkl, C., Solaraju-Murali, B.,
Spring, A., Stan, C., Sun, Y. Q., Tozer, C. R., Vigaud, N., Woolnough, S.,
and Yeager, S.: Current and emerging developments in subseasonal to decadal
prediction, B. Am. Meteorol. Soc., 101, E869–E896, https://doi.org/10.1175/bams-d-19-0037.1, 2020.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol.,
391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Mishra, N., Prodhomme, C., and Guemas, V.: Multi-model skill assessment of
seasonal temperature and precipitation forecasts over Europe, Clim. Dynam.,
52, 4207–4225, https://doi.org/10.1007/s00382-018-4404-z, 2018.
Murphy, A. H.: Skill scores based on the mean square error and their
relationships to the correlation coefficient, Mon. Weather Rev., 116,
2417–2424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2, 1988.
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science,
NPJ Clim. Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4,
2018.
Schnider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and
Ziese, M.: GPCC Full Data Reanalysis Version 2022 at 1.0: Monthly
Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic
Data, DWD [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_100, 2011.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A.,
Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F.,
Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J.,
Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V.,
Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K.,
Monerie, P.-A., Müller, W. A., Nicolí, D., Ortega, P., Pankatz, K.,
Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw,
D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic
climate far more predictable than models imply, Nature, 583, 796–800,
https://doi.org/10.1038/s41586-020-2525-0, 2020.
Yin, J., Gentine, P., Slater, L., Gu, L., Pokhrel, Y., Hanasaki, N., Guo,
S., Xiong, L., and Schlenker, W.: Future socio-ecosystem productivity
threatened by compound drought–heatwave events, Nature Sustainability,
6, 259–272, https://doi.org/10.1038/s41893-022-01024-1, 2023.
World Meteorological Organization (WMO): Forecast Verification for the African Severe Weather Forecasting Demonstration Projects, No. 1132, World Meteorological Organization, Geneva, Switzerland, https://www.wmo.int/pages/prog/www/Documents/1132_en.pdf (last access: 1 February 2023), 2014.
Short summary
Droughts and heatwaves have become some of the clearest manifestations of a changing climate. Near-term adaptation strategies can benefit from seasonal predictions, but these predictions still have limitations. We found that an intrinsic property of multi-system forecasts can serve to better anticipate extreme high-temperature and low-precipitation events during boreal summer in several regions of the Northern Hemisphere with different levels of predictability.
Droughts and heatwaves have become some of the clearest manifestations of a changing climate....