Articles | Volume 5, issue 1
https://doi.org/10.5194/wcd-5-109-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-109-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
European summer weather linked to North Atlantic freshwater anomalies in preceding years
Marilena Oltmanns
CORRESPONDING AUTHOR
National Oceanography Centre, Southampton, UK
N. Penny Holliday
National Oceanography Centre, Southampton, UK
James Screen
Department of Mathematics and Statistics, University of Exeter, Exeter, UK
Ben I. Moat
National Oceanography Centre, Southampton, UK
Simon A. Josey
National Oceanography Centre, Southampton, UK
D. Gwyn Evans
National Oceanography Centre, Southampton, UK
Sheldon Bacon
National Oceanography Centre, Southampton, UK
Related authors
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Marilena Oltmanns, N. Penny Holliday, James Screen, D. Gwyn Evans, Simon A. Josey, Sheldon Bacon, and Ben I. Moat
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-79, https://doi.org/10.5194/wcd-2021-79, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is currently warming twice as fast as the global average. This results in enhanced melting and thus freshwater releases into the North Atlantic. Using a combination of observations and models, we show that atmosphere-ocean feedbacks initiated by freshwater releases into the North Atlantic lead to warmer and drier weather over Europe in subsequent summers. The existence of this dynamical link suggests that European summer weather can potentially be predicted months to years in advance.
Marilena Oltmanns, Fiammetta Straneo, and Marco Tedesco
The Cryosphere, 13, 815–825, https://doi.org/10.5194/tc-13-815-2019, https://doi.org/10.5194/tc-13-815-2019, 2019
Short summary
Short summary
By combining reanalysis, weather station and satellite data, we show that increases in surface melt over Greenland are initiated by large-scale precipitation events year-round. Estimates from a regional climate model suggest that the initiated melting more than doubled between 1988 and 2012, amounting to ~28 % of the overall melt and revealing that, despite the involved mass gain, precipitation events are contributing to the ice sheet's decline.
Jürgen Fischer, Johannes Karstensen, Marilena Oltmanns, and Sunke Schmidtko
Ocean Sci., 14, 1167–1183, https://doi.org/10.5194/os-14-1167-2018, https://doi.org/10.5194/os-14-1167-2018, 2018
Short summary
Short summary
Based on nearly 17 years of profiling (Argo) float data, high-resolution (~ 25 km grid) maps of mean flow and eddy kinetic energy (EKE) were constructed for the intermediate to deep subpolar North Atlantic. Robust boundary currents along topographic slopes, mid-basin advective pathways, and stagnation regimes were identified. The ratio of mean flow vs. the square root of EKE indicates regions dominated by advection, and large regions in which eddy diffusion prevails.
Andreas Schiller, Simon A. Josey, John Siddorn, and Ibrahim Hoteit
State Planet Discuss., https://doi.org/10.5194/sp-2024-13, https://doi.org/10.5194/sp-2024-13, 2024
Preprint under review for SP
Short summary
Short summary
The study illustrates the way atmospheric fields are used in ocean models as boundary conditions for the provisioning of the exchanges of heat, freshwater and momentum fluxes. Such fluxes can be based on remote-sensing instruments or provided directly by Numerical Weather Prediction systems. Air-sea flux datasets are defined by their spatial and temporal resolutions and are limited by associated biases. Air-sea flux data sets for ocean models should be chosen with the applications in mind.
Phoebe A. Hudson, Adrien C. H. Martin, Simon A. Josey, Alice Marzocchi, and Athanasios Angeloudis
Ocean Sci., 20, 341–367, https://doi.org/10.5194/os-20-341-2024, https://doi.org/10.5194/os-20-341-2024, 2024
Short summary
Short summary
Satellite salinity data are used for the first time to study variability in Arctic freshwater transport from the Lena River and are shown to be a valuable tool for studying this region. These data confirm east/westerly wind is the main control on fresh water and sea ice transport rather than the volume of river runoff. The strong role of the wind suggests understanding how wind patterns will change is key to predicting future Arctic circulation and sea ice concentration.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Preprint under review for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Dafydd Gwyn Evans, N. Penny Holliday, Sheldon Bacon, and Isabela Le Bras
Ocean Sci., 19, 745–768, https://doi.org/10.5194/os-19-745-2023, https://doi.org/10.5194/os-19-745-2023, 2023
Short summary
Short summary
This study investigates the processes that form dense water in the high latitudes of the North Atlantic to determine how they affect the overturning circulation in the Atlantic. We show for the first time that turbulent mixing is an important driver in the formation of dense water, along with the loss of heat from the ocean to the atmosphere. We point out that the simulation of turbulent mixing in ocean–climate models must improve to better predict the ocean's response to climate change.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Rachael N. C. Sanders, Daniel C. Jones, Simon A. Josey, Bablu Sinha, and Gael Forget
Ocean Sci., 18, 953–978, https://doi.org/10.5194/os-18-953-2022, https://doi.org/10.5194/os-18-953-2022, 2022
Short summary
Short summary
In 2015, record low temperatures were observed in the North Atlantic. Using an ocean model, we show that surface heat loss in December 2013 caused 75 % of the initial cooling before this "cold blob" was trapped below the surface. The following summer, the cold blob re-emerged due to a strong temperature difference between the surface ocean and below, driving vertical diffusion of heat. Lower than average surface warming then led to the coldest temperature anomalies in August 2015.
Marilena Oltmanns, N. Penny Holliday, James Screen, D. Gwyn Evans, Simon A. Josey, Sheldon Bacon, and Ben I. Moat
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-79, https://doi.org/10.5194/wcd-2021-79, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is currently warming twice as fast as the global average. This results in enhanced melting and thus freshwater releases into the North Atlantic. Using a combination of observations and models, we show that atmosphere-ocean feedbacks initiated by freshwater releases into the North Atlantic lead to warmer and drier weather over Europe in subsequent summers. The existence of this dynamical link suggests that European summer weather can potentially be predicted months to years in advance.
Tillys Petit, M. Susan Lozier, Simon A. Josey, and Stuart A. Cunningham
Ocean Sci., 17, 1353–1365, https://doi.org/10.5194/os-17-1353-2021, https://doi.org/10.5194/os-17-1353-2021, 2021
Short summary
Short summary
Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. From our analysis, we find that air–sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation in the Iceland Basin. However, the spatial distribution of the subpolar mode water (SPMW) transformation is most sensitive to surface density changes as opposed to the direct influence of the air–sea fluxes.
Alejandra Sanchez-Franks, Eleanor Frajka-Williams, Ben I. Moat, and David A. Smeed
Ocean Sci., 17, 1321–1340, https://doi.org/10.5194/os-17-1321-2021, https://doi.org/10.5194/os-17-1321-2021, 2021
Short summary
Short summary
In the North Atlantic, ocean currents carry warm surface waters northward and return cooler deep waters southward. This type of ocean circulation, known as overturning, is important for the Earth’s climate. This overturning has been measured using a mooring array at 26° N in the North Atlantic since 2004. Here we use these mooring data and global satellite data to produce a new method for monitoring the overturning over longer timescales, which could potentially be applied to different latitudes.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy
Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021, https://doi.org/10.5194/os-17-285-2021, 2021
Short summary
Short summary
The RAPID array has observed the Atlantic meridional overturning circulation (AMOC) since 2004, but the AMOC was directly calculated only five times from 1957–2004. Here we create a statistical regression model from RAPID data, relating AMOC changes to density changes within the different water masses at 26° N, and apply it to historical hydrographic data. The resulting 1981–2016 record shows that the AMOC from 2008–2012 was its weakest since the mid-1980s, but it shows no overall decline.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Ben I. Moat, David A. Smeed, Eleanor Frajka-Williams, Damien G. Desbruyères, Claudie Beaulieu, William E. Johns, Darren Rayner, Alejandra Sanchez-Franks, Molly O. Baringer, Denis Volkov, Laura C. Jackson, and Harry L. Bryden
Ocean Sci., 16, 863–874, https://doi.org/10.5194/os-16-863-2020, https://doi.org/10.5194/os-16-863-2020, 2020
Short summary
Short summary
The RAPID 26° N array has been measuring the Atlantic meridional overturning circulation (AMOC) since 2004. Since 2009 the AMOC has, compared with previous years, been in a low state. In 2013–2015, in the northern North Atlantic, strong cooling was observed in the ocean and anticipated to intensify the strength of the AMOC some years later. Here, we analyse the latest results from 26° N and conclude that while the AMOC has increased since 2009, this increase is not statistically significant.
Yang Liu, Jisk Attema, Ben Moat, and Wilco Hazeleger
Earth Syst. Dynam., 11, 77–96, https://doi.org/10.5194/esd-11-77-2020, https://doi.org/10.5194/esd-11-77-2020, 2020
Short summary
Short summary
Poleward meridional energy transport (MET) has significant impact on the climate in the Arctic. In this study, we quantify and intercompare MET at subpolar latitudes from six reanalysis data sets. The results indicate that the spatial distribution and temporal variations of MET differ substantially among the reanalysis data sets. Our study suggests that the MET estimated from reanalyses is useful for the evaluation of energy transports but should be used with great care.
Alexander Forryan, Sheldon Bacon, Takamasa Tsubouchi, Sinhué Torres-Valdés, and Alberto C. Naveira Garabato
The Cryosphere, 13, 2111–2131, https://doi.org/10.5194/tc-13-2111-2019, https://doi.org/10.5194/tc-13-2111-2019, 2019
Short summary
Short summary
We compare control volume and geochemical tracer-based methods of estimating the Arctic Ocean freshwater budget and find both methods in good agreement. Inconsistencies arise from the distinction between
Atlanticand
Pacificwaters in the geochemical calculations. The definition of Pacific waters is particularly problematic due to the non-conservative nature of the nutrients underpinning the definition and the low salinity characterizing waters entering the Arctic through Bering Strait.
Doug M. Smith, James A. Screen, Clara Deser, Judah Cohen, John C. Fyfe, Javier García-Serrano, Thomas Jung, Vladimir Kattsov, Daniela Matei, Rym Msadek, Yannick Peings, Michael Sigmond, Jinro Ukita, Jin-Ho Yoon, and Xiangdong Zhang
Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, https://doi.org/10.5194/gmd-12-1139-2019, 2019
Short summary
Short summary
The Polar Amplification Model Intercomparison Project (PAMIP) is an endorsed contribution to the sixth Coupled Model Intercomparison Project (CMIP6). It will investigate the causes and global consequences of polar amplification through coordinated multi-model numerical experiments. This paper documents the experimental protocol.
Marilena Oltmanns, Fiammetta Straneo, and Marco Tedesco
The Cryosphere, 13, 815–825, https://doi.org/10.5194/tc-13-815-2019, https://doi.org/10.5194/tc-13-815-2019, 2019
Short summary
Short summary
By combining reanalysis, weather station and satellite data, we show that increases in surface melt over Greenland are initiated by large-scale precipitation events year-round. Estimates from a regional climate model suggest that the initiated melting more than doubled between 1988 and 2012, amounting to ~28 % of the overall melt and revealing that, despite the involved mass gain, precipitation events are contributing to the ice sheet's decline.
Jürgen Fischer, Johannes Karstensen, Marilena Oltmanns, and Sunke Schmidtko
Ocean Sci., 14, 1167–1183, https://doi.org/10.5194/os-14-1167-2018, https://doi.org/10.5194/os-14-1167-2018, 2018
Short summary
Short summary
Based on nearly 17 years of profiling (Argo) float data, high-resolution (~ 25 km grid) maps of mean flow and eddy kinetic energy (EKE) were constructed for the intermediate to deep subpolar North Atlantic. Robust boundary currents along topographic slopes, mid-basin advective pathways, and stagnation regimes were identified. The ratio of mean flow vs. the square root of EKE indicates regions dominated by advection, and large regions in which eddy diffusion prevails.
Thomas W. K. Armitage, Sheldon Bacon, Andy L. Ridout, Alek A. Petty, Steven Wolbach, and Michel Tsamados
The Cryosphere, 11, 1767–1780, https://doi.org/10.5194/tc-11-1767-2017, https://doi.org/10.5194/tc-11-1767-2017, 2017
Short summary
Short summary
We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean and characterise their seasonal to decadal variability. We also present seasonal climatologies of eddy kinetic energy, and examine the changing location of the Beaufort Gyre. Geostrophic current variability highlights the complex interplay between seasonally varying forcing and sea ice conditions, changing ice–ocean coupling and increasing ocean surface stress in the 2000s.
Robert Marsh, Ivan D. Haigh, Stuart A. Cunningham, Mark E. Inall, Marie Porter, and Ben I. Moat
Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, https://doi.org/10.5194/os-13-315-2017, 2017
Short summary
Short summary
To the west of Britain and Ireland, a strong ocean current follows the steep slope that separates the deep Atlantic and the continental shelf. This “Slope Current” exerts an Atlantic influence on the North Sea and its ecosystems. Using a combination of computer modelling and archived data, we find that the Slope Current weakened over 1988–2007, reducing Atlantic influence on the North Sea, due to a combination of warming of the subpolar North Atlantic and weakening winds to the west of Scotland.
Simona Aracri, Katrin Schroeder, Jacopo Chiggiato, Harry Bryden, Elaine McDonagh, Simon Josey, Yann Hello, and Mireno Borghini
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-65, https://doi.org/10.5194/os-2016-65, 2016
Preprint withdrawn
Short summary
Short summary
The abyssal velocity of the Northern Current, in the north-western Mediterranean has been estimated using for the first time MERMAIDs, i.e. submarine drifting instruments that record seismic waves. In this study the Northern Current shows an intense activity even in deep layers of the water column. Through pseudo-eulerian statistics different components of the observed variability are analysed and described, revealing the turbulent nature of the Liguro-Provençal basin abyssal circulation.
E. Frajka-Williams, C. S. Meinen, W. E. Johns, D. A. Smeed, A. Duchez, A. J. Lawrence, D. A. Cuthbertson, G. D. McCarthy, H. L. Bryden, M. O. Baringer, B. I. Moat, and D. Rayner
Ocean Sci., 12, 481–493, https://doi.org/10.5194/os-12-481-2016, https://doi.org/10.5194/os-12-481-2016, 2016
Short summary
Short summary
The ocean meridional overturning circulation (MOC) is predicted by climate models to slow down in this century, resulting in reduced transport of heat northward to mid-latitudes. At 26° N, the Atlantic MOC has been measured continuously for the past decade (2004–2014). In this paper, we discuss the 10-year record of variability, identify the origins of the continued weakening of the circulation, and discuss high-frequency (subannual) compensation between transport components.
P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström
Atmos. Meas. Tech., 8, 4993–5007, https://doi.org/10.5194/amt-8-4993-2015, https://doi.org/10.5194/amt-8-4993-2015, 2015
Short summary
Short summary
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014. Ship-motion effects were compensated by combining a commercial Doppler lidar with a custom-made motion-stabilisation platform. This enables the retrieval of wind profiles in the Arctic boundary layer with uncertainties comparable to land-based lidar measurements and standard radiosondes. The presented set-up has the potential to facilitate continuous ship-based wind profile measurements over the oceans.
J. Prytherch, M. J. Yelland, I. M. Brooks, D. J. Tupman, R. W. Pascal, B. I. Moat, and S. J. Norris
Atmos. Chem. Phys., 15, 10619–10629, https://doi.org/10.5194/acp-15-10619-2015, https://doi.org/10.5194/acp-15-10619-2015, 2015
Short summary
Short summary
Signals at scales associated with wave and platform motion are often apparent in ship-based turbulent flux measurements, but it has been uncertain whether this is due to measurement error or to wind-wave interactions. We show that the signal has a dependence on horizontal ship velocity and that removing the signal reduces the dependence of the momentum flux on the orientation of the ship to the wind. We conclude that the signal is a bias due to time-varying motion-dependent flow distortion.
A. J. G. Nurser and S. Bacon
Ocean Sci., 10, 967–975, https://doi.org/10.5194/os-10-967-2014, https://doi.org/10.5194/os-10-967-2014, 2014
Short summary
Short summary
Knowledge of the size of the Rossby radius is important, because it is the horizontal scale of boundary currents, eddies and fronts in fluids on a rotating planet. We find that, in the deep basins of the Arctic Ocean, the Rossby radius is around 10km, but in the shallow shelf seas, it can be less than 1km. This presents a challenge to measurements and models alike.
D. A. Smeed, G. D. McCarthy, S. A. Cunningham, E. Frajka-Williams, D. Rayner, W. E. Johns, C. S. Meinen, M. O. Baringer, B. I. Moat, A. Duchez, and H. L. Bryden
Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, https://doi.org/10.5194/os-10-29-2014, 2014
S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks
Ocean Sci., 9, 133–145, https://doi.org/10.5194/os-9-133-2013, https://doi.org/10.5194/os-9-133-2013, 2013
Related subject area
Dynamical processes in polar regions, incl. polar–midlatitude interactions
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Circulation responses to surface heating and implications for polar amplification
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions
Simultaneous Bering Sea and Labrador Sea ice melt extremes in March 2023: A confluence of meteorological events aligned with stratosphere-troposphere interactions
On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe
The role of boundary layer processes in summer-time Arctic cyclones
Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling
The role of Rossby waves in polar weather and climate
Reanalysis representation of low-level winds in the Antarctic near-coastal region
The composite development and structure of intense synoptic-scale Arctic cyclones
Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation
Jet stream variability in a polar warming scenario – a laboratory perspective
Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter
Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat
A global climatology of polar lows investigated for local differences and wind-shear environments
Characteristics of long-track tropopause polar vortices
Identification, characteristics and dynamics of Arctic extreme seasons
Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic
Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic
The role of tropopause polar vortices in the intensification of summer Arctic cyclones
Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5
Dynamical drivers of Greenland blocking in climate models
Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events
A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017
Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
The role of wave–wave interactions in sudden stratospheric warming formation
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024, https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are channel-shaped features within the atmosphere that carry moisture from the mid-latitudes to the poles, bringing warm temperatures and moisture that can cause melt in the Arctic. We used variable-resolution grids to model ARs around the Greenland ice sheet and compared this output to uniform-resolution grids and reanalysis products. We found that the variable-resolution grids produced ARs and precipitation that were more similar to observation-based products.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024, https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary
Short summary
One of the intriguing problems associated with recent climate trends is the rapid temperature increase in the Arctic. In this paper, we address the Arctic warming problem using a laboratory atmospheric general circulation model. We show that variations in polar cooling lead to significant changes in polar-cell structure, resulting in a substantial increase in temperature. Our modeling results provide a plausible explanation for Arctic warming amplification.
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
EGUsphere, https://doi.org/10.5194/egusphere-2024-925, https://doi.org/10.5194/egusphere-2024-925, 2024
Short summary
Short summary
The month of March marks the Arctic sea ice maximum when the ice cover extent reaches its peak within the annual cycle. This study chronicles the meteorological conditions that led to the anomalous, tandem March 2023 ice melt event in the Labrador and Bering seas. A sudden stratospheric warming event initiated the development of anticyclonic circulation patterns over these areas which aided northward transport of anomalously warm, moist air and drove their unusual sea ice melt.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023, https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Kristian Strommen, Stephan Juricke, and Fenwick Cooper
Weather Clim. Dynam., 3, 951–975, https://doi.org/10.5194/wcd-3-951-2022, https://doi.org/10.5194/wcd-3-951-2022, 2022
Short summary
Short summary
Observational data suggest that the extent of Arctic sea ice influences mid-latitude winter weather. However, climate models generally fail to reproduce this link, making it unclear if models are missing something or if the observed link is just a coincidence. We show that if one explicitly represents the effect of unresolved sea ice variability in a climate model, then it is able to reproduce this link. This implies that the link may be real but that many models simply fail to simulate it.
Costanza Rodda, Uwe Harlander, and Miklos Vincze
Weather Clim. Dynam., 3, 937–950, https://doi.org/10.5194/wcd-3-937-2022, https://doi.org/10.5194/wcd-3-937-2022, 2022
Short summary
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Matthew T. Bray and Steven M. Cavallo
Weather Clim. Dynam., 3, 251–278, https://doi.org/10.5194/wcd-3-251-2022, https://doi.org/10.5194/wcd-3-251-2022, 2022
Short summary
Short summary
Tropopause polar vortices (TPVs) are a high-latitude atmospheric phenomenon that impact weather inside and outside of polar regions. Using a set of long-lived TPVs to gain insight into the conditions that are most supportive of TPV survival, we describe patterns of vortex formation and movement. In addition, we analyze the characteristics of these TPVs and how they vary by season. These results help us to better understand TPVs which, in turn, may improve forecasts of related weather events.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022, https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary
Short summary
Water vapor profoundly impacts the Arctic, for example by contributing to sea ice melt. A substantial portion of water vapor in the Arctic originates at mid-latitudes and is transported poleward in a few episodic and intense events. This transport is accomplished by low- and high-pressure systems occurring in specific regions or following particular tracks. Here, we explore how the type of weather system impacts where the water vapor is coming from and how it is transported poleward.
Suzanne L. Gray, Kevin I. Hodges, Jonathan L. Vautrey, and John Methven
Weather Clim. Dynam., 2, 1303–1324, https://doi.org/10.5194/wcd-2-1303-2021, https://doi.org/10.5194/wcd-2-1303-2021, 2021
Short summary
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
Corwin J. Wright, Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour
Weather Clim. Dynam., 2, 1283–1301, https://doi.org/10.5194/wcd-2-1283-2021, https://doi.org/10.5194/wcd-2-1283-2021, 2021
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the atmosphere and are believed to help cause extreme winter weather events such as the 2018 Beast from the East in Europe and North America. Here, we use unique data from the European Space Agency's new Aeolus satellite to make the first-ever measurements at a global scale of wind changes due to an SSW in the lower part of the atmosphere to help us understand how SSWs affect the atmosphere and surface weather.
Clio Michel, Erica Madonna, Clemens Spensberger, Camille Li, and Stephen Outten
Weather Clim. Dynam., 2, 1131–1148, https://doi.org/10.5194/wcd-2-1131-2021, https://doi.org/10.5194/wcd-2-1131-2021, 2021
Short summary
Short summary
Climate models still struggle to correctly represent blocking frequency over the North Atlantic–European domain. This study makes use of five large ensembles of climate simulations and the ERA-Interim reanalyses to investigate the Greenland blocking frequency and one of its drivers, namely cyclonic Rossby wave breaking. We particularly try to understand the discrepancies between two specific models, out of the five, that behave differently.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
Short summary
Arctic sea ice loss has been linked to changes in mid-latitude weather and climate. However, the literature offers differing views on the strength, robustness, and even existence of these linkages. We use a statistical tool (Causal Effect Networks) to show that one proposed pathway linking Barents–Kara ice and mid-latitude circulation is intermittent in observations and likely only active under certain conditions. This result may help explain apparent inconsistencies across previous studies.
Erik A. Lindgren and Aditi Sheshadri
Weather Clim. Dynam., 1, 93–109, https://doi.org/10.5194/wcd-1-93-2020, https://doi.org/10.5194/wcd-1-93-2020, 2020
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are extreme events that influence surface weather up to 2 months after onset. We remove wave–wave interactions (WWIs) in vertical sections of a general circulation model to investigate the role of WWIs in SSW formation. We show that the effects of WWIs depend strongly on the pressure levels where they occur and the zonal structure of the wave forcing in the troposphere. Our results highlight the importance of upper-level processes in stratospheric dynamics.
Cited articles
Amos, D. E. and Koopmans, L. H.: Tables of the distribution of the coefficient of coherence for stationary bivariate Gaussian processes, vol. 483, Sandia Corporation, https://doi.org/10.2172/4727236, 1963. a
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A., Xavier, P., McLean, P., Colman, A., and Cusack, S.: The GloSea4 ensemble prediction system for seasonal forecasting, Mon. Weather Rev., 139, 1891–1910, 2011. a
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.: Recent large increases in freshwater fluxes from Greenland into the North Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012. a
Barnes, E. A.: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes, Geophys. Res. Lett., 40, 4734–4739, 2013. a
Blackport, R. and Screen, J. A.: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves, Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880, 2020. a
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber, J. L.: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean, Nat. Geosci., 9, 523–527, 2016. a
Booth, J. F., Naud, C. M., and Willison, J.: Evaluation of extratropical cyclone precipitation in the North Atlantic basin: An analysis of ERA-Interim, WRF, and two CMIP5 models, J. Climate, 31, 2345–2360, 2018. a
Briner, J. P., Cuzzone, J. K., Badgeley, J. A., Young, N. E., Steig, E. J., Morlighem, M., Schlegel, N.-J., Hakim, G. J., Schaefer, J. M., Johnson, J. V., Lesnek, A. J., Thomas, E. K., Allan, E., Bennike, O., Cluett, A. A., Csatho, B., de Vernal, A., Downs, J., Larour, E., and Nowicki, S.: Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century, Nature, 586, 70–74, 2020. a
Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W., Bacon, S., Bluhm, B. A., Lique, C., Melling, H., Polyakov, I. V., Straneo, F., Timmermans, M.-L., and Williams, W. J.: Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans, J. Geophys. Res.-Biogeo., 121, 675–717, 2016. a
Chen, W. Y. and van den Dool, H.: Sensitivity of Teleconnection Patterns to the Sign of Their Primary Action Center, Mon. Weather Rev., 131, 2885–2899, 2003. a
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627–637, 2014. a
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T., Bhatt, U., Chen, H., Coumou, D., Feldstein, S., Gu, H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H. W., Maslowski, W., Peings, Y., Pfeiffer, K., Rigor, I., Semmler, T., Stroeve, J., Taylor, P. C., Vavrus, S., Vihma, T., Wang, S., Wendisch, M., Wu, Y., and Yoon, J.: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather, Nat. Climate Change, 10, 20–29, 2019. a
Copernicus Marine Environment Monitoring Service: Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00148, 2023. a, b
Czaja, A. and Frankignoul, C.: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation, J. Climate, 15, 606–623, 2002. a
Dierer, S. and Schluenzen, K. H.: Influence parameters for a polar mesocyclone development, Meterol. Z., 14, p. 781, https://doi.org/10.1127/0941-2948/2005/0077, 2005. a
Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate, Environ. Res. Lett., 8, 034037, https://doi.org/10.1088/1748-9326/8/3/034037, 2013. a
Duchez, A., Frajka-Williams, E., Josey, S. A., Evans, D. G., Grist, J. P., Marsh, R., McCarthy, G. D., Sinha, B., Berry, D. I., and Hirschi, J. J.: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave, Environ. Res. Lett., 11, 074004, https://doi.org/10.1088/1748-9326/11/7/074004, 2016. a, b
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Fereday, D., O'Reilly, C., Stirling, A., Eade, R., Gordon, M., MacLachlan, C., Woollings, T., Sheen, K., and Belcher, S.: Skilful seasonal predictions of summer European rainfall, Geophys. Res. Lett., 45, 3246–3254, 2018. a
Ferrari, R. and Wunsch, C.: Ocean circulation kinetic energy: Reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253–282, 2009. a
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017. a
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012. a
Fratantoni, P. S. and McCartney, M. S.: Freshwater export from the Labrador Current to the North Atlantic Current at the Tail of the Grand Banks of Newfoundland, Deep-Sea Res. Pt. I, 57, 258–283, 2010. a
Gervais, M., Shaman, J., and Kushnir, Y.: Impact of the North Atlantic Warming Hole on Sensible Weather, J. Climate, 33, 4255–4271, 2020. a
Gill, A. E.: Atmosphere-ocean dynamics, Vol. 30, Academic press, ISBN 978-0122835223, 1982. a
Griffies, S. M. and Greatbatch, R. J.: Physical processes that impact the evolution of global mean sea level in ocean climate models, Ocean Model., 51, 37–72, 2012. a
Häkkinen, S. and Rhines, P. B.: Shifting surface currents in the northern North Atlantic Ocean, J. Geophys. Res.-Oceans, 114, C04005, https://doi.org/10.1029/2008JC004883, 2009. a, b
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Warm and saline events embedded in the meridional circulation of the northern North Atlantic, J. Geophys. Res.-Oceans, 116, C03006, https://doi.org/10.1029/2010JC006275, 2011a. a, b, c, d
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Atmospheric blocking and Atlantic multidecadal ocean variability, Science, 334, 655–659, 2011b. a
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and Valdimarsson, H.: Influence of the Atlantic subpolar gyre on the thermohaline circulation, Science, 309, 1841–1844, 2005. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Heuzé, C.: North Atlantic deep water formation and AMOC in CMIP5 models, Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017, 2017. a
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic, Nat. Commun., 11, 1–15, 2020. a, b
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Climate, 21, 5145–5153, 2008. a
Intergovernmental Oceanographic Commission; Scientific Committee on Oceanic Research; International Association for the Physical Sciences of the Oceans: The International thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties, Paris, France, UNESCO, 196 pp., Intergovernmental Oceanographic Commission Manuals and Guides, 56, https://doi.org/10.25607/OBP-1338, 2015. a
Khan, S. A., Aschwanden, A., Bjørk, A. A., Wahr, J., Kjeldsen, K. K., and Kjaer, K. H.: Greenland ice sheet mass balance: a review, Rep. Progr. Phys., 78, 046801, https://doi.org/10.1088/0034-4885/78/4/046801, 2015. a
Kodama, C., Stevens, B., Mauritsen, T., Seiki, T., and Satoh, M.: A new perspective for future precipitation change from intense extratropical cyclones, Geophys. Res. Lett., 46, 12435–12444, 2019. a
Kostov, Y., Johnson, H. L., Marshall, D. P., Heimbach, P., Forget, G., Holliday, N. P., Lozier, M. S., Li, F., Pillar, H. R., and Smith, T.: Distinct sources of interannual subtropical and subpolar Atlantic overturning variability, Nat. Geosci., 14, 491–495, 2021. a
Koul, V., Tesdal, J.-E., Bersch, M., Hátún, H., Brune, S., Borchert, L., Haak, H., Schrum, C., and Baehr, J.: Unraveling the choice of the north Atlantic subpolar gyre index, Sci. Rep., 10, 1–12, 2020. a
Kumar, A., Yadav, J., and Mohan, R.: Global warming leading to alarming recession of the Arctic sea-ice cover: Insights from remote sensing observations and model reanalysis, Heliyon, 6, e04355, https://doi.org/10.1016/j.heliyon.2020.e04355, 2020. a
Lashof, D. A. and Ahuja, D. R.: Relative contributions of greenhouse gas emissions to global warming, Nature, 344, 529–531, 1990. a
Leith, C.: The standard error of time-average estimates of climatic means, J. Appl. Meteorol., 12, 1066–1069, 1973. a
Le Traon, P., Nadal, F., and Ducet, N.: An improved mapping method of multisatellite altimeter data, J. Atmos. Ocean Tech., 15, 522–534, 1998. a
Lindzen, R. and Farrell, B.: A simple approximate result for the maximum growth rate of baroclinic instabilities, J. Atmos. Sci., 37, 1648–1654, 1980. a
Liu, W., Xie, S.-P., Liu, Z., and Zhu, J.: Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate, Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666, 2017. a
Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Cunningham, S. A., Blaker, A. T., and Coward, A. C.: The North Atlantic subpolar circulation in an eddy-resolving global ocean model, J. Mar. Syst., 142, 126–143, 2015. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011. a
Mecking, J., Drijfhout, S., Jackson, L., and Andrews, M.: The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability, Tellus A, 69, 1299910, https://doi.org/10.1080/16000870.2017.1299910, 2017. a, b
Mecking, J., Drijfhout, S., Hirschi, J. J., and Blaker, A.: Ocean and atmosphere influence on the 2015 European heatwave, Environ. Res. Lett., 14, 114035, https://doi.org/10.1088/1748-9326/ab4d33, 2019. a, b
Müller, V., Kieke, D., Myers, P. G., Pennelly, C., Steinfeldt, R., and Stendardo, I.: Heat and freshwater transport by mesoscale eddies in the southern subpolar North Atlantic, J. Geophys. Res.-Oceans, 124, 5565–5585, 2019. a
Notz, D. and Stroeve, J.: The trajectory towards a seasonally ice-free Arctic ocean, Curr. Clim. Change Rep., 4, 407–416, 2018. a
Oltmanns, M., Karstensen, J., Moore, G., and Josey, S. A.: Rapid cooling and increased storminess triggered by freshwater in the North Atlantic, Geophys. Res. Lett., 47, e2020GL087207, https://doi.org/10.1029/2020GL087207, 2020. a, b, c, d
Overland, J., Francis, J. A., Hall, R., Hanna, E., Kim, S.-J., and Vihma, T.: The melting Arctic and midlatitude weather patterns: Are they connected?, J. Climate, 28, 7917–7932, 2015. a
Pfahl, S.: Characterising the relationship between weather extremes in Europe and synoptic circulation features, Nat. Hazards Earth Syst. Sci., 14, 1461–1475, https://doi.org/10.5194/nhess-14-1461-2014, 2014. a, b
Priestley, M.: Spectral analysis and time series, number v. 1–2 in Probability and mathematical statistics, Academic Press, ISBN 978-0125649506, 1982. a
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V., Rowell, D., Kent, E., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003. a, b
Reuter, M., Buchwitz, M., Schneising, O., Noël, S., Bovensmann, H., Burrows, J. P., Boesch, H., Di Noia, A., Anand, J., Parker, R. J., Somkuti, P., Wu, L., Hasekamp, O. P., Aben, I., Kuze, A., Suto, H., Shiomi, K., Yoshida, Y., Morino, I., Crisp, D., O'Dell, C. W., Notholt, J., Petri, C., Warneke, T., Velazco, V. A., Deutscher, N. M., Griffith, D. W. T., Kivi, R., Pollard, D. F., Hase, F., Sussmann, R., Té, Y. V., Strong, K., Roche, S., Sha, M. K., De Mazière, M., Feist, D. G., Iraci, L. T., Roehl, C. M., Retscher, C., and Schepers, D.: Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications, Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, 2020. a
Schmidt, S. and Send, U.: Origin and composition of seasonal Labrador Sea freshwater, J. Phys. Oceanogr., 37, 1445–1454, 2007. a
Screen, J. A. and Simmonds, I.: Exploring links between Arctic amplification and mid-latitude weather, Geophys. Res. Lett., 40, 959–964, 2013. a
Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y., and Bennabi, A.: Abrupt cooling over the North Atlantic in modern climate models, Nat. Commun., 8, 14375, https://doi.org/10.1038/ncomms14375, 2017. a
Shea, D., Hurrell, J., and Phillips, A.: Merged Hadley-OI sea surface temperature and sea ice concentration data set, Version 6.0, UCAR/NCAR – GDEX [data set], https://doi.org/10.5065/r33v-sv91, 2022. a
Simmons, A. J.: Trends in the tropospheric general circulation from 1979 to 2022, Weather Clim. Dynam., 3, 777–809, https://doi.org/10.5194/wcd-3-777-2022, 2022. a
Spall, M. A. and Pickart, R. S.: Wind-driven recirculations and exchange in the Labrador and Irminger Seas, J. Phys. Oceanogr., 33, 1829–1845, 2003. a
Talley, L. D.: Descriptive physical oceanography: an introduction, Academic Press, ISBN 978-0750645522, 2011. a
Tang, Q., Zhang, X., and Francis, J. A.: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere, Nat. Clim. Change, 4, 45–50, 2014. a
Tesdal, J.-E., Abernathey, R. P., Goes, J. I., Gordon, A. L., and Haine, T. W.: Salinity trends within the upper layers of the subpolar North Atlantic, J. Climate, 31, 2675–2698, 2018. a
van den Dool, H. M., Saha, S., and Johansson, Å.: Empirical Orthogonal Teleconnections, J. Climate, 13, 1421–1435, 2000. a
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North Atlantic eddy-driven jet stream, Q. J. Roy. Meteorol. Soc., 136, 856–868, 2010. a
Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314, 2004. a
Xie, J., Raj, R. P., Bertino, L., Samuelsen, A., and Wakamatsu, T.: Evaluation of Arctic Ocean surface salinities from the Soil Moisture and Ocean Salinity (SMOS) mission against a regional reanalysis and in situ data, Ocean Sci., 15, 1191–1206, https://doi.org/10.5194/os-15-1191-2019, 2019. a, b
Yu, H., Screen, J. A., Hay, S., Catto, J. L., and Xu, M.: Winter Precipitation Responses to Projected Arctic Sea-Ice Loss and Global Ocean Warming and Their Opposing Influences over Northeast Atlantic region, J. Climate, 36, 4951–4966, https://doi.org/10.1175/JCLI-D-22-0774.1, 2023. a
Zhao, J. and Johns, W.: Wind-forced interannual variability of the Atlantic Meridional Overturning Circulation at 26.5∘ N, J. Geophys. Res.-Oceans, 119, 2403–2419, 2014. a
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on...