Articles | Volume 5, issue 4
https://doi.org/10.5194/wcd-5-1223-2024
https://doi.org/10.5194/wcd-5-1223-2024
Research article
 | 
09 Oct 2024
Research article |  | 09 Oct 2024

Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes

Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi

Related authors

Constraints on simulated past Arctic amplification and lapse rate feedback from observations
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023,https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Concurrent Bering Sea and Labrador Sea ice melt extremes in March 2023: a confluence of meteorological events aligned with stratosphere–troposphere interactions
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024,https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024,https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Circulation responses to surface heating and implications for polar amplification
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024,https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024,https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary
A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024,https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D. G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv [preprint], arXiv:1603.04467, https://doi.org/10.48550/arXiv.1603.04467, 2016. a
Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, Ø., Kirkevåg, A., Struthers, H., Iversen, T., Hansson, H.-C., and Ekman, A. M.: Amplification of Arctic warming by past air pollution reductions in Europe, Nat. Geosci., 9, 277–281, https://doi.org/10.1038/ngeo2673, 2016. a, b, c
Agarap, A. F.: Deep learning using rectified linear units (relu), arXiv [preprint], arXiv:1803.08375, https://doi.org/10.48550/arXiv.1803.08375, 2018. a
Alexeev, V., Langen, P., and Bates, J.: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks, Clim. Dynam., 24, 655–666, https://doi.org/10.1007/s00382-005-0018-3, 2005. a
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Academic Press, 295–312, ISBN 0120585758, 1987. a
Download
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.