Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-671-2024
https://doi.org/10.5194/wcd-5-671-2024
Research article
 | 
30 Apr 2024
Research article |  | 30 Apr 2024

Development of Indian summer monsoon precipitation biases in two seasonal forecasting systems and their response to large-scale drivers

Richard J. Keane, Ankur Srivastava, and Gill M. Martin

Related authors

The multi-year negative Indian Ocean Dipole of 2021–2022
Ankur Srivastava, Gill M. Martin, Maheswar Pradhan, Suryachandra A. Rao, and Sarah Ineson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2303,https://doi.org/10.5194/egusphere-2025-2303, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Using regional relaxation experiments to understand the development of errors in the Asian summer monsoon
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024,https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Understanding the development of systematic errors in the Asian summer monsoon
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021,https://doi.org/10.5194/gmd-14-1007-2021, 2021
Short summary
Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons
Axel Lauer, Colin Jones, Veronika Eyring, Martin Evaldsson, Stefan Hagemann, Jarmo Mäkelä, Gill Martin, Romain Roehrig, and Shiyu Wang
Earth Syst. Dynam., 9, 33–67, https://doi.org/10.5194/esd-9-33-2018,https://doi.org/10.5194/esd-9-33-2018, 2018
The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017,https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
Saharan warm-air intrusions in the western Mediterranean: identification, impacts on temperature extremes, and large-scale mechanisms
Pep Cos, Matias Olmo, Diego Campos, Raül Marcos-Matamoros, Lluís Palma, Ángel G. Muñoz, and Francisco J. Doblas-Reyes
Weather Clim. Dynam., 6, 609–626, https://doi.org/10.5194/wcd-6-609-2025,https://doi.org/10.5194/wcd-6-609-2025, 2025
Short summary
Weather systems associated with synoptic variability in the moist margin
Corey Robinson, Sugata Narsey, Christian Jakob, and Hanh Nguyen
Weather Clim. Dynam., 6, 369–385, https://doi.org/10.5194/wcd-6-369-2025,https://doi.org/10.5194/wcd-6-369-2025, 2025
Short summary
Atmospheric mixed Rossby–gravity waves over the tropical Pacific during the austral summer
Hugo A. Braga and Victor Magaña
Weather Clim. Dynam., 6, 265–277, https://doi.org/10.5194/wcd-6-265-2025,https://doi.org/10.5194/wcd-6-265-2025, 2025
Short summary
Sensitivity of tropical orographic precipitation to wind speed with implications for future projections
Quentin Nicolas and William R. Boos
Weather Clim. Dynam., 6, 231–244, https://doi.org/10.5194/wcd-6-231-2025,https://doi.org/10.5194/wcd-6-231-2025, 2025
Short summary
Pacific Decadal Oscillation-driven interdecadal variability of snowfall over the Karakoram and the Western Himalayas
Priya Bharati, Pranab Deb, and Kieran Mark Rainwater Hunt
Weather Clim. Dynam., 6, 197–210, https://doi.org/10.5194/wcd-6-197-2025,https://doi.org/10.5194/wcd-6-197-2025, 2025
Short summary

Cited articles

Abhilash, S., Sahai, A. K., Borah, N., Chattopadhyay, R., Joseph, S., Sharmila, S., De, S., Goswami, B. N., and Kumar, A.: Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2, Clim. Dynam., 42, 2801–2815, https://doi.org/10.1007/s00382-013-2045-9, 2014. 
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A. A., Xavier, P., McLean, P., Colman, A., and Cusack, S.: The GloSea4 Ensemble Prediction System for Seasonal Forecasting, Mon. Weather Rev., 139, 1891–1910, https://doi.org/10.1175/2010MWR3615.1, 2011. 
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001. 
Bollasina, M. and Ming, Y.: The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon, Clim. Dynam., 40, 3–4, https://doi.org/10.1007/s00382-012-1347-7, 2012. 
Bollasina, M. and Nigam, S.: Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations, Clim. Dynam., 33, 1017–1032, https://doi.org/10.1007/s00382-008-0477-4, 2009. 
Download
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Share