Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-671-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-671-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of Indian summer monsoon precipitation biases in two seasonal forecasting systems and their response to large-scale drivers
Richard J. Keane
CORRESPONDING AUTHOR
Met Office, Exeter, UK
School of Earth and Environment, University of Leeds, Leeds, UK
Ankur Srivastava
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Gill M. Martin
Met Office, Exeter, UK
Related authors
No articles found.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021, https://doi.org/10.5194/gmd-14-1007-2021, 2021
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian summer monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterisations and/or model resolution.
Axel Lauer, Colin Jones, Veronika Eyring, Martin Evaldsson, Stefan Hagemann, Jarmo Mäkelä, Gill Martin, Romain Roehrig, and Shiyu Wang
Earth Syst. Dynam., 9, 33–67, https://doi.org/10.5194/esd-9-33-2018, https://doi.org/10.5194/esd-9-33-2018, 2018
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Gill M. Martin, Nicholas P. Klingaman, and Aurel F. Moise
Geosci. Model Dev., 10, 105–126, https://doi.org/10.5194/gmd-10-105-2017, https://doi.org/10.5194/gmd-10-105-2017, 2017
Short summary
Short summary
We analyse and evaluate tropical rainfall variability in the MetUM-GA6 configuration at four different horizontal resolutions, plus one in which the convection parameterization has been switched off. Tropical deep convective rainfall in this model tends to be intermittent in space and time. This behaviour is largely independent of model resolution. Switching off the deep convection parameterization (at ~10 km resolution) results in isolated, but persistent, rainfall on the gridscale.
Nicholas P. Klingaman, Gill M. Martin, and Aurel Moise
Geosci. Model Dev., 10, 57–83, https://doi.org/10.5194/gmd-10-57-2017, https://doi.org/10.5194/gmd-10-57-2017, 2017
Short summary
Short summary
Weather and climate models show large errors in the frequency, intensity and persistence of daily rainfall, particularly in the tropics. We introduce a set of diagnostics to reveal the spatial and temporal scales of precipitation in models and compare them to satellite observations to inform development efforts. Although models show similar errors in 3 h precipitation, at the time step and gridpoint level some produce coherent precipitation and others exhibit worrying quasi-random behavior.
Veronika Eyring, Mattia Righi, Axel Lauer, Martin Evaldsson, Sabrina Wenzel, Colin Jones, Alessandro Anav, Oliver Andrews, Irene Cionni, Edouard L. Davin, Clara Deser, Carsten Ehbrecht, Pierre Friedlingstein, Peter Gleckler, Klaus-Dirk Gottschaldt, Stefan Hagemann, Martin Juckes, Stephan Kindermann, John Krasting, Dominik Kunert, Richard Levine, Alexander Loew, Jarmo Mäkelä, Gill Martin, Erik Mason, Adam S. Phillips, Simon Read, Catherine Rio, Romain Roehrig, Daniel Senftleben, Andreas Sterl, Lambertus H. van Ulft, Jeremy Walton, Shiyu Wang, and Keith D. Williams
Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, https://doi.org/10.5194/gmd-9-1747-2016, 2016
Short summary
Short summary
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) in CMIP has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations.
M.-H. Cho, K.-O. Boo, G. M. Martin, J. Lee, and G.-H. Lim
Earth Syst. Dynam., 6, 147–160, https://doi.org/10.5194/esd-6-147-2015, https://doi.org/10.5194/esd-6-147-2015, 2015
D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards, P. R. Field, A. P. Lock, C. J. Morcrette, R. A. Stratton, J. M. Wilkinson, M. R. Willett, N. Bellouin, A. Bodas-Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman, C. M. Harris, R. C. Levine, C. MacLachlan, J. C. Manners, G. M. Martin, S. F. Milton, M. D. Palmer, M. J. Roberts, J. M. Rodríguez, W. J. Tennant, and P. L. Vidale
Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, https://doi.org/10.5194/gmd-7-361-2014, 2014
Related subject area
Dynamical processes in the tropics, incl. tropical–extratropical interactions
Tropical cyclone asymmetric eyewall evolution and intensification in a two-layer model
Changes in the tropical upper-tropospheric zonal momentum balance due to global warming
Using regional relaxation experiments to understand the development of errors in the Asian summer monsoon
WCD Ideas: Teleconnections through weather rather than stationary waves
Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
Multi-decadal pacemaker simulations with an intermediate-complexity climate model
Replicating the Hadley cell edge and subtropical jet latitude disconnect in idealized atmospheric models
A simple dynamical model linking radiative-convective instability, convective aggregation and large-scale dynamics
Spatial and temporal variability of free tropospheric freezing level in Patagonia
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Understanding the dependence of mean precipitation on convective treatment and horizontal resolution in tropical aquachannel experiments
Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific
Examining the dynamics of a Borneo vortex using a balance approximation tool
Strengthening gradients in the tropical west Pacific connect to European summer temperatures on sub-seasonal timescales
Classification of large-scale environments that drive the formation of mesoscale convective systems over southern West Africa
Validation of boreal summer tropical–extratropical causal links in seasonal forecasts
Large uncertainty in observed estimates of tropical width from the meridional stream function
The impact of the Agulhas Current system on precipitation in southern Africa in regional climate simulations covering the recent past and future
Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification
Investigation of links between dynamical scenarios and particularly high impact of Aeolus on numerical weather prediction (NWP) forecasts
Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk?
Non-linear intensification of monsoon low-pressure systems by the BSISO
Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya
Metrics of the Hadley circulation strength and associated circulation trends
Characterising the interaction of tropical and extratropical air masses controlling East Asian summer monsoon progression using a novel frontal detection approach
Extreme Atlantic hurricane seasons made twice as likely by ocean warming
Synoptic processes of winter precipitation in the Upper Indus Basin
Acceleration of tropical cyclones as a proxy for extratropical interactions: synoptic-scale patterns and long-term trends
Subtle influence of the Atlantic Meridional Overturning Circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic
Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections
Zonal scale and temporal variability of the Asian monsoon anticyclone in an idealised numerical model
African easterly waves in an idealized general circulation model: instability and wave packet diagnostics
How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region
The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon
Dominant patterns of interaction between the tropics and mid-latitudes in boreal summer: causal relationships and the role of timescales
Abrupt transitions in an atmospheric single-column model with weak temperature gradient approximation
The American monsoon system in HadGEM3 and UKESM1
Ting-Yu Cha and Michael M. Bell
Weather Clim. Dynam., 5, 1013–1029, https://doi.org/10.5194/wcd-5-1013-2024, https://doi.org/10.5194/wcd-5-1013-2024, 2024
Short summary
Short summary
Our study investigates the dynamics of polygonal eyewall structures observed in intensifying hurricanes like Michael (2018) by using a simplified modeling approach. We develop a two-layer model to simulate the interactions between the free atmosphere and boundary layer to demonstrate the importance of different physical mechanisms in the intensification process. This simplified model offers insights into the interactions between dynamics and convection during hurricane intensification.
Abu Bakar Siddiqui Thakur and Jai Sukhatme
Weather Clim. Dynam., 5, 839–862, https://doi.org/10.5194/wcd-5-839-2024, https://doi.org/10.5194/wcd-5-839-2024, 2024
Short summary
Short summary
We analyze the present and future states of the tropical upper troposphere. Observations and climate model simulations suggest that interactions between disparate families of waves and the mean flow maintain present-day upper-level winds, and each component undergoes complex changes due to global warming. While the net east–west flow of the atmosphere may remain unaltered, this study indicates robust changes to local circulations that may influence tropical precipitation and regional climate.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Clemens Spensberger
Weather Clim. Dynam., 5, 659–669, https://doi.org/10.5194/wcd-5-659-2024, https://doi.org/10.5194/wcd-5-659-2024, 2024
Short summary
Short summary
It is well-established that variations in convection in the tropical Indo-Pacific can influence weather in far-away regions. In this idea, I argue that the main theory used to explain this influence over large distances is incomplete. I propose hypotheses that could lead the way towards a more fundamental explanation and outline a novel approach that could be used to test the hypotheses I raise. The suggested approach might be useful to address also other long-standing questions.
Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham
Weather Clim. Dynam., 5, 511–536, https://doi.org/10.5194/wcd-5-511-2024, https://doi.org/10.5194/wcd-5-511-2024, 2024
Short summary
Short summary
Our research enhances the understanding of the complex dynamics within the West African monsoon system by analyzing the impact of specific model parameters on its characteristics. Employing surrogate models, we identified critical factors such as the entrainment rate and the fall velocity of ice. Precise definition of these parameters in weather models could improve forecast accuracy, thus enabling better strategies to manage and reduce the impact of weather events.
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024, https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Short summary
This study investigates changes in weather systems that bring winter precipitation to south Asia. We find that these systems, known as western disturbances, are occurring more frequently and lasting longer into the summer months. This shift is leading to devastating floods, as happened recently in north India. By analysing 70 years of weather data, we trace this change to shifts in major air currents known as the subtropical jet. Due to climate change, such events are becoming more frequent.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Franco Molteni, Fred Kucharski, and Riccardo Farneti
Weather Clim. Dynam., 5, 293–322, https://doi.org/10.5194/wcd-5-293-2024, https://doi.org/10.5194/wcd-5-293-2024, 2024
Short summary
Short summary
We describe some new features of an intermediate-complexity coupled model, including a three-layer thermodynamic ocean model suitable to explore the extratropical response to tropical ocean variability. We present results on the model climatology and show that important features of interdecadal and interannual variability are realistically simulated in a
pacemakercoupled ensemble of 70-year runs, where portions of the tropical Indo-Pacific are constrained to follow the observed variability.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Matthew Davison and Peter Haynes
EGUsphere, https://doi.org/10.5194/egusphere-2024-206, https://doi.org/10.5194/egusphere-2024-206, 2024
Short summary
Short summary
A simple model is used to investigate the relation between small scale convective behaviour and large scale variability in the tropics arising from the coupling between moisture and dynamics. The moisture preferentially lies at either moist or dry states, and these clump together to form large scale aggregated regions. With tropical dynamics, these aggregated regions are localised at the equator and propagate. This forms an intermediate model between previous simpler models and numerical GCMs.
Nicolás García-Lee, Claudio Bravo, Álvaro Gonzáles-Reyes, and Piero Mardones
EGUsphere, https://doi.org/10.5194/egusphere-2024-145, https://doi.org/10.5194/egusphere-2024-145, 2024
Short summary
Short summary
This study analyzes the 0 °C isotherm within the free troposphere in Patagonia from 1950 to 2021, using observational and model data. The model aligns well with observations, highlighting significant altitude variations between the western and eastern sides of Andes, a correlation between isotherm fluctuations and AAO index, and an upward trend in the study area (specially in northwest Patagonia).
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024, https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Short summary
Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones have an important effect on the evolution of downstream weather and predictability. In this study, we show that the occurrence of these airstreams over the North Pacific is modulated by tropical convection. Depending on the modulation, known atmospheric circulation patterns evolve quite differently, which may affect extended-range predictions in the Atlantic–European region.
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023, https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary
Short summary
A narrow rainfall belt in the tropics is an important feature for large-scale circulations and the global water cycle. The accurate simulation of this rainfall feature has been a long-standing problem, with the reasons behind that unclear. We present a novel diagnostic tool that allows us to disentangle processes important for rainfall, which changes due to modifications in model. Using our diagnostic tool, one can potentially identify sources of uncertainty in weather and climate models.
Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside
Weather Clim. Dynam., 4, 1087–1109, https://doi.org/10.5194/wcd-4-1087-2023, https://doi.org/10.5194/wcd-4-1087-2023, 2023
Short summary
Short summary
This study examines quasi-periodic variability in the tropical Pacific on interannual timescales and related physics using a recently developed time series analysis tool. We find that wind stress in the west Pacific and recharge–discharge of ocean heat content are likely related to each other on ~1.5–4.5-year timescales (but not on others) and dominate variability in sea surface temperatures on those timescales. This may have further implications for climate models and long-term prediction.
Sam Hardy, John Methven, Juliane Schwendike, Ben Harvey, and Mike Cullen
Weather Clim. Dynam., 4, 1019–1043, https://doi.org/10.5194/wcd-4-1019-2023, https://doi.org/10.5194/wcd-4-1019-2023, 2023
Short summary
Short summary
We examine a Borneo vortex case using computer simulations and satellite observations. The vortex is identified with high humidity through the atmosphere and has heaviest rainfall on its northern flank. Simulations represent circulation and rainfall accumulation well. The low-level Borneo vortex is coupled with a higher-level wave, which moves westwards along a layer with a sharp vertical gradient in moisture. Vortex growth occurs through mechanisms usually considered outside the tropics.
Chiem van Straaten, Dim Coumou, Kirien Whan, Bart van den Hurk, and Maurice Schmeits
Weather Clim. Dynam., 4, 887–903, https://doi.org/10.5194/wcd-4-887-2023, https://doi.org/10.5194/wcd-4-887-2023, 2023
Short summary
Short summary
Variability in the tropics can influence weather over Europe. This study evaluates a summertime connection between the two. It shows that strongly opposing west Pacific sea surface temperature anomalies have occurred more frequently since 1980, likely due to a combination of long-term warming in the west Pacific and the El Niño Southern Oscillation. Three to six weeks later, the distribution of hot and cold airmasses over Europe is affected.
Francis Nkrumah, Cornelia Klein, Kwesi Akumenyi Quagraine, Rebecca Berkoh-Oforiwaa, Nana Ama Browne Klutse, Patrick Essien, Gandomè Mayeul Leger Davy Quenum, and Hubert Azoda Koffi
Weather Clim. Dynam., 4, 773–788, https://doi.org/10.5194/wcd-4-773-2023, https://doi.org/10.5194/wcd-4-773-2023, 2023
Short summary
Short summary
It is not yet clear which variations in broader atmospheric conditions of the West African monsoon may lead to mesoscale convective system (MCS) occurrences in southern West Africa (SWA). In this study, we identified nine different weather patterns and categorized them as dry-, transition-, or monsoon-season types using a method called self-organizing maps (SOMs). It was revealed that a warmer Sahel region can create favourable conditions for MCS formation in SWA.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
William Torgerson, Juliane Schwendike, Andrew Ross, and Chris J. Short
Weather Clim. Dynam., 4, 331–359, https://doi.org/10.5194/wcd-4-331-2023, https://doi.org/10.5194/wcd-4-331-2023, 2023
Short summary
Short summary
We investigated intensity fluctuations that occurred during the rapid intensification of Hurricane Irma (2017) to understand their effects on the storm structure. Using high-resolution model simulations, we found that the fluctuations were caused by local regions of strong ascent just outside the eyewall that disrupted the storm, leading to a larger and more symmetrical storm eye. This alters the location and intensity of the strongest winds in the storm and hence the storm's impact.
Anne Martin, Martin Weissmann, and Alexander Cress
Weather Clim. Dynam., 4, 249–264, https://doi.org/10.5194/wcd-4-249-2023, https://doi.org/10.5194/wcd-4-249-2023, 2023
Short summary
Short summary
Global wind profiles from the Aeolus satellite mission are an important recent substitute for the Global Observing System, showing an overall positive impact on numerical weather prediction forecasts. This study highlights atmospheric dynamic phenomena constituting pathways for significant improvement of Aeolus for future studies, including large-scale tropical circulation systems and the interaction of tropical cyclones undergoing an extratropical transition with the midlatitude waveguide.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022, https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the
boreal summer intraseasonal oscillation– the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Ambrogio Volonté, Andrew G. Turner, Reinhard Schiemann, Pier Luigi Vidale, and Nicholas P. Klingaman
Weather Clim. Dynam., 3, 575–599, https://doi.org/10.5194/wcd-3-575-2022, https://doi.org/10.5194/wcd-3-575-2022, 2022
Short summary
Short summary
In this study we analyse the complex seasonal evolution of the East Asian summer monsoon. Using reanalysis data, we show the importance of the interaction between tropical and extratropical air masses converging at the monsoon front, particularly during its northward progression. The upper-level flow pattern (e.g. the westerly jet) controls the balance between the airstreams and thus the associated rainfall. This framework provides a basis for studies of extreme events and climate variability.
Peter Pfleiderer, Shruti Nath, and Carl-Friedrich Schleussner
Weather Clim. Dynam., 3, 471–482, https://doi.org/10.5194/wcd-3-471-2022, https://doi.org/10.5194/wcd-3-471-2022, 2022
Short summary
Short summary
Tropical cyclones are amongst the most dangerous weather events. Here we develop an empirical model that allows us to estimate the number and strengths of tropical cyclones for given atmospheric conditions and sea surface temperatures. An application of the model shows that atmospheric circulation is the dominant factor for seasonal tropical cyclone activity. However, warming sea surface temperatures have doubled the likelihood of extremely active hurricane seasons in the past decades.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Weather Clim. Dynam., 2, 1187–1207, https://doi.org/10.5194/wcd-2-1187-2021, https://doi.org/10.5194/wcd-2-1187-2021, 2021
Short summary
Short summary
Western disturbances are mid-latitude, high-altitude, low-pressure areas that bring orographic precipitation into the Upper Indus Basin. Using statistical tools, we show that the interaction between western disturbances and relief explains the near-surface, cross-barrier wind activity. We also reveal the existence of a moisture pathway from the nearby seas. Overall, we offer a conceptual framework for western-disturbance activity, particularly in terms of precipitation.
Anantha Aiyyer and Terrell Wade
Weather Clim. Dynam., 2, 1051–1072, https://doi.org/10.5194/wcd-2-1051-2021, https://doi.org/10.5194/wcd-2-1051-2021, 2021
Short summary
Short summary
We diagnose the mean circulations in the extratropics that are associated with rapid changes in the tropical storm storm speeds in the Atlantic. We show that rapid acceleration and deceleration are associated with distinct phasing between the tropical cyclone and weather waves of the extratropics. Over the past 5 decades, rapid acceleration and deceleration of tropical cyclones have reduced in magnitude. This might be related to the poleward shift and weakening of these extratropical waves.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Andrea M. Jenney, David A. Randall, and Elizabeth A. Barnes
Weather Clim. Dynam., 2, 653–673, https://doi.org/10.5194/wcd-2-653-2021, https://doi.org/10.5194/wcd-2-653-2021, 2021
Short summary
Short summary
Storm activity in the tropics is one of the key phenomena that provide weather predictability on an extended timescale of about 10–40 d. The influence of tropical storminess on places like North America is sensitive to the overall average state of the climate system. In this study, we try to unpack the reasons why climate models do not agree on how the influence of these storms on weather over the North Pacific and North America will change in the future.
Philip Rupp and Peter Haynes
Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, https://doi.org/10.5194/wcd-2-413-2021, 2021
Short summary
Short summary
We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
Joshua White and Anantha Aiyyer
Weather Clim. Dynam., 2, 311–329, https://doi.org/10.5194/wcd-2-311-2021, https://doi.org/10.5194/wcd-2-311-2021, 2021
Short summary
Short summary
Using a simple general circulation model, we examine the structure of waves in the mid-tropospheric jet over North Africa. We show that waves occur in near-stationary groups or wave packets. As they are not swept out of the jet, this may provide the opportunity for the packets to amplify via feedback from other energy sources like rain-producing cloud complexes and mineral dust that are known to operate here. Our results address the criticism that the easterly jet is too short to sustain waves.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, https://doi.org/10.5194/wcd-2-281-2021, 2021
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 d.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Benjamin A. Stephens and Charles S. Jackson
Weather Clim. Dynam., 1, 389–404, https://doi.org/10.5194/wcd-1-389-2020, https://doi.org/10.5194/wcd-1-389-2020, 2020
Short summary
Short summary
We analyze abrupt transitions between tropical rainfall regimes in a single-column model (SCM) of the tropical atmosphere. Multiple equilibria have been observed before in SCMs, but here we analyze actual bifurcations. We attribute the transitions to a sudden loss of evaporative cooling in the lower column due to nonlinearities in microphysics. This study may have implications for atmospheric dynamics more broadly but also for understanding abrupt transitions in paleoclimate.
Jorge L. García-Franco, Lesley J. Gray, and Scott Osprey
Weather Clim. Dynam., 1, 349–371, https://doi.org/10.5194/wcd-1-349-2020, https://doi.org/10.5194/wcd-1-349-2020, 2020
Short summary
Short summary
The American monsoon system is the main source of rainfall for the subtropical Americas and an important element of Latin American agriculture. Here we use state-of-the-art climate models from the UK Met Office in different configurations to analyse the performance of these models in the American monsoon. Resolution is found to be a key factor to improve monsoon representation, whereas integrated chemistry does not improve the simulated monsoon rainfall.
Cited articles
Abhilash, S., Sahai, A. K., Borah, N., Chattopadhyay, R., Joseph, S., Sharmila, S., De, S., Goswami, B. N., and Kumar, A.: Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2, Clim. Dynam., 42, 2801–2815, https://doi.org/10.1007/s00382-013-2045-9, 2014.
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A. A., Xavier, P., McLean, P., Colman, A., and Cusack, S.: The GloSea4 Ensemble Prediction System for Seasonal Forecasting, Mon. Weather Rev., 139, 1891–1910, https://doi.org/10.1175/2010MWR3615.1, 2011.
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001.
Bollasina, M. and Ming, Y.: The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon, Clim. Dynam., 40, 3–4, https://doi.org/10.1007/s00382-012-1347-7, 2012.
Bollasina, M. and Nigam, S.: Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations, Clim. Dynam., 33, 1017–1032, https://doi.org/10.1007/s00382-008-0477-4, 2009.
Bowler, N. E., Arribas, A., Beare, S. E., Mylne, K. R. and Shutts, G. J.: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system, Q. J. Roy. Meteorol. Soc., 135, 767–776, https://doi.org/10.1002/qj.394, 2009.
Bush, S. J., Turner, A. G., Woolnough, S. J., Martin, G. M., and Klingaman, N. P.: The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model, Q. J. Roy. Meteorol. Soc., 141, 311–326, https://doi.org/10.1002/qj.2371, 2015.
CFS: CFS – Climate Forecast System, https://www.tropmet.res.in/monsoon/monsoon2/MM_Model_CFS_Output.php (last access: 29 April 2024), 2024.
Chattopadhyay, R., Phani, R., Sabeerali, C. T., Dhakate, A. R., Salunke, K. D., Mahapatra, S., Rao, A. S., and Goswami, B. N. Influence of extratropical sea-surface temperature on the Indian summer monsoon: an unexplored source of seasonal predictability, Q. J. Roy. Meteorol. Soc., 141, 2760–2775, https://doi.org/10.1002/qj.2562, 2015.
Chattopadhyay, R., Rao, S. A., Sabeerali, C. T., George, G., Rao, D. N., Dhakate, A. and Salunke, K.: Large-scale teleconnection patterns of Indian summer monsoon as revealed by CFSv2 retrospective seasonal forecast runs, Int. J. Climatol., 36, 3297–3313, https://doi.org/10.1002/joc.4556, 2016.
Chevuturi, A., Turner, A. G., Woolnough, S. J., Martin, G. M., and MacLachlan, C.: Indian summer monsoon onset forecast skill in the UK Met Office initialized coupled seasonal forecasting system (GloSea5-GC2), Clim. Dynam., 52, 6599–6617, https://doi.org/10.1007/s00382-018-4536-1, 2019.
Choudhury, B. A., Rajesh, P. V., Zahan, Y., and Goswami, B. N.: Evolution of the Indian summer monsoon rainfall simulations from CMIP3 to CMIP6 models, Clim. Dynam., 58, 2637–2662, https://doi.org/10.1007/s00382-021-06023-0, 2022.
CICE-Consortium: CICE, GitHub [code], https://github.com/CICE-Consortium/CICE/wiki (last access: 29 April 2024), 2024.
Copernicus Climate Change Service (C3S): Sea surface temperature daily data from 1981 to present derived from satellite observations, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.cf608234, 2019.
Fang, Y., Li, B., and Liu, X.: Predictability and Prediction Skill of the Boreal Summer Intra-Seasonal Oscillation in BCC_CSM Model, J. Meteorol. Soc. Jpn. Ser. II, 97, 295–311, https://doi.org/10.2151/jmsj.2019-019, 2019.
Gautam, P., Chattopadhyay, R., Joseph, S., Martin, G. M., and Sahai, A. K.: Coupled model biases and extended-range prediction skill during the onset phase of the Indian summer monsoon with different initializations related to land surface and number of observations, Q. J. Roy. Meteorol. Soc., 149, 1650–1673, https://doi.org/10.1002/qj.4475, 2023.
George, G., Rao, D. N., Sabeerali, C. T., Srivastava, A., and Rao, S. A.: Indian summer monsoon prediction and simulation in CFSv2 coupled model, Atmos. Sci. Lett., 17, 57–64, https://doi.org/10.1002/asl.599, 2016.
Gera, A., Gupta, A., Mitra, A. K., Rao D., N., Momin, I. M., Rajeeavan, M. N., Milton, S. F., Martin, G. M., Martin, M. J., Waters, J., and Lea, D.: Skill of the extended range prediction (NERP) for Indian summer monsoon rainfall with NCMRWF global coupled modelling system, Q. J. Roy. Meteorol. Soc., 148, 480–498, https://doi.org/10.1002/qj.4216, 2021.
GES DISC: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06 (GPM_3IMERGHH), GES DISC [data set], https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary (last access: 29 April 2024), 2024.
Hari Prasad, K. B. R. R., Ramu, D. A., Rao, S. A., Hameed, S. N., Samanta, D., and Srivastava, A.: Reducing systematic biases over the Indian region in CFS V2 by dynamical downscaling, Earth Space Sci., 8, e2020EA001507. https://doi.org/10.1029/2020EA001507, 2021.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019.
Hrudya, P. H., Varikoden, H., and Vishnu, R.: A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD, Meteorol. Atmos. Phys., 133, 1–14, https://doi.org/10.1007/s00703-020-00734-5, 2021.
IPRC: Historical BSISO text data, IPRC [data set], https://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-90bpfil_pc.extension.txt (last access: 19 March 2022), 2022.
Jain, S., Scaife, A. A., and Mitra, A. K.: Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems, Clim. Dynam., 52, 5291–5301, https://doi.org/10.1007/s00382-018-4449-z, 2019.
Jie, W., Vitart, F., Wu, T., and Liu, X.: Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) database, Q. J. Roy. Meteorol. Soc., 143, 2282–2295, https://doi.org/10.1002/qj.3085, 2017.
Johnson, S. J., Turner, A., Woolnough, S., Martin, G., and MacLachlan, C.: An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system, Clim. Dynam., 48, 1447–1465, https://doi.org/10.1007/s00382-016-3151-2, 2017.
Joseph, S., Sahai, A. K., Chattopadhyay, R., and Goswami, B. N.: Can El Niño–Southern Oscillation (ENSO) events modulate intraseasonal oscillations of Indian summer monsoon?, J. Geophys. Res., 116, D20123, https://doi.org/10.1029/2010JD015510, 2011.
Joseph, S., Chattopadhyay, R., Sahai, A. K., Martin, G. M., Dey, A., Mandal, R., and Phani, R.: Evaluation and comparison of the subseasonal prediction skill of Indian summer monsoon in IITM CFSv2 and UKMO GloSea5, Clim. Dynam., 61, 1683–1696, https://doi.org/10.1007/s00382-022-06650-1, 2023.
JULES – Joint UK Land Environment Simulator: Welcome to the JULES land surface model, https://jules.jchmr.org/ (last accee: 29 April 2024), 2024.
Kar, S. C., Joshi, S., Shrivastava, S., and Tiwari, S.: Dynamical characteristics of forecast errors in the NCMRWF unified model (NCUM), Clim. Dynam., 52, 4995–5012, https://doi.org/10.1007/s00382-018-4428-4, 2019.
Katzenberger, A., Schewe, J., Pongratz, J., and Levermann, A.: Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models, Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, 2021.
Keane, R. J., Williams, K. D., Stirling, A. J., Martin, G. M., Birch, C. E., and Parker, D. J.: Fast Biases in Monsoon Rainfall over Southern and Central India in the Met Office Unified Model, J. Climate, 32, 6385–6402, https://doi.org/10.1175/JCLI-D-18-0650.1, 2019.
Keane, R. J., Parker, D. J., and Fletcher, J. K.: Biases in Indian summer monsoon precipitation forecasts in the Unified Model and their relationship with BSISO index, Geophys. Res. Lett., 48, e2020GL090529, https://doi.org/10.1029/2020GL090529, 2021.
Kikuchi, K.: Extension of the bimodal intraseasonal oscillation index using JRA-55 reanalysis, Clim. Dynam., 54, 919–933, https://doi.org/10.1007/s00382-019-05037-z, 2020.
Kikuchi, K.: The Boreal Summer Intraseasonal Oscillation (BSISO): A Review, J. Meteorol. Soc. Jpn. Ser. II, 99, 933–972, https://doi.org/10.2151/jmsj.2021-045, 2021.
Kikuchi, K., Wang, B., and Kajikawa, Y.: Bimodal representation of the tropical intraseasonal oscillation, Clim. Dynam., 38, 1989–2000, https://doi.org/10.1007/s00382-011-1159-1, 2012.
Kolusu, S. R., Mittermaier, M., Robbins, J., Ashrit, R., and Mitra, A. K.: Novel evaluation of sub-seasonal precipitation ensemble forecasts for identifying high-impact weather events associated with the Indian monsoon, Meteorol. Appl., 30, e2139, https://doi.org/10.1002/met.2139, 2023.
Krishnamurthy, V. and Goswami, B. N.: Indian Monsoon–ENSO Relationship on Interdecadal Timescale, J. Climate, 13, 579–595, https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2, 2000.
Lee, J.-Y., Wang, B., Wheeler, M.C., Fu, X., Waliser, D. E., and Kang, I.-S.: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region, Clim. Dynam. 40, 493–509, https://doi.org/10.1007/s00382-012-1544-4, 2013.
Lee, S.-S., Wang, B., Waliser, D. E., Mani, N. J., and Lee, J.-Y.: Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment, Clim. Dynam., 45, 2123–2135, https://doi.org/10.1007/s00382-014-2461-5, 2015.
Levine, R. C. and Turner, A. G.: Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases, Clim. Dynam., 38, 2167–2190, https://doi.org/10.1007/s00382-011-1096-z, 2012.
Li, J. and Mao, J.: Factors controlling the interannual variation of 30–60-day boreal summer intraseasonal oscillation over the Asian summer monsoon region, Clim. Dynam., 52, 1651–1672, https://doi.org/10.1007/s00382-018-4216-1, 2019.
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., Xavier, P., and Madec, G.: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteorol. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396, 2015.
Martin, G. M. and Levine, R. C.: The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family, Earth Syst. Dynam., 3, 245–261, https://doi.org/10.5194/esd-3-245-2012, 2012.
Martin, G. M. and Rodriguez, J. M.: Using regional relaxation experiments to understand the development of errors in the Asian Summer Monsoon, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-22, 2024.
Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S., Reichler, T., and Kim, J.: Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate, J. Climate, 23, 5933–5957, https://doi.org/10.1175/2010JCLI3541.1, 2010.
Martin, G. M., Levine, R. C., Rodriguez, J. M., and Vellinga, M.: Understanding the development of systematic errors in the Asian summer monsoon, Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021, 2021.
Menon, A., Turner, A. G., Martin, G. M., and MacLachlan, C.: Modelling the moistening of the free troposphere during the northwestward progression of Indian monsoon onset, Q. J. Roy. Meteorol. Soc., 144, 1152– 1168, https://doi.org/10.1002/qj.3281, 2018.
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Sci. Data, 6, 223, https://doi.org/10.1038/s41597-019-0236-x, 2019.
Met Office: Unified Model Partnership, https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership (last access: 29 April 2024), 2024.
Mitra, A.: A Comparative Study on the Skill of CMIP6 Models to Preserve Daily Spatial Patterns of Monsoon Rainfall Over India, Front. Clim., 3, 654763, https://doi.org/10.3389/fclim.2021.654763, 2021.
Narapusetty, B., Murtugudde, R., Wang, H., and Kumar, A.: Ocean–atmosphere processes driving Indian summer monsoon biases in CFSv2 hindcasts, Clim. Dynam., 47, 1417–1433, https://doi.org/10.1007/s00382-015-2910-9, 2016.
NEMO: Build the framework, https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/install.html, (last access: 29 April 2024), 2024.
NEMO System Team: NEMO ocean engine, Scientific Notes of Climate Modelling Center, 27, Institut Pierre-Simon Laplace (IPSL), Zenodo [code], https://doi.org/10.5281/zenodo.1464816, 2020.
Pothapakula, P. K., Primo, C., Sørland, S., and Ahrens, B.: The synergistic impact of ENSO and IOD on Indian summer monsoon rainfall in observations and climate simulations – an information theory perspective, Earth Syst. Dynam., 11, 903–923, https://doi.org/10.5194/esd-11-903-2020, 2020.
Pradhan, M., Rao, A. S., Srivastava, A., Dakate, A., Salunke, K., and Shameera, K. S.: Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance, Sci. Rep., 7, 1–14, https://doi.org/10.1038/s41598-017-12594-y, 2017.
Ramu, D. A., Sabeerali, C. T., Chattopadhyay, R., Rao, D. N., George, G., Dhakate, A. R., Salunke, K., Srivastava, A., and Rao, S. A.: Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution, J. Geophys. Res.-Atmos., 121, 2205–2221, https://doi.org/10.1002/2015JD024629, 2016.
Rao, S. A., Goswami, B. N., Sahai, A. K., Rajagopal, E. N., Mukhopadhyay, P., Rajeevan, M., Nayak, S., Rathore, L. S., Shenoi, S. S. C., Ramesh, K. J., Nanjundiah, R. S., Ravichandran, M., Mitra, A. K., Pai, D. S., Bhowmik, S. K. R., Hazra, A., Mahapatra, S., Saha, S. K., Chaudhari, H. S., Joseph, S., Sreenivas, P., Pokhrel, S., Pillai, P. A., Chattopadhyay, R., Deshpande, M., Krishna, R. P. M., Das, R. S., Prasad, V.S., Abhilash, S., Panickal, S., Krishnan, R., Kumar, S., Ramu, D. A., Reddy, S. S., Arora, A., Goswami, T., Rai, A., Srivastava, A., Pradhan, M., Tirkey, S., Ganai, M., Mandal, R., Dey, A., Sarkar, S., Malviya, S., Dhakate, A., Salunke, K., and Maini, P.: Monsoon Mission: A Targeted Activity to Improve Monsoon Prediction across Scales, B. Am. Meteorol. Soc., 100, 2509–2532, https://doi.org/10.1175/BAMS-D-17-0330.1, 2019.
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018.
Rodríguez, J. M. and Milton, S. F.: East Asian Summer Atmospheric Moisture Transport and Its Response to Interannual Variability of the West Pacific Subtropical High: An Evaluation of the Met Office Unified Model, Atmosphere, 10, 457, https://doi.org/10.3390/atmos10080457, 2019.
Rodwell, M. J. and Palmer, T. N : Using numerical weather prediction to assess climate models, Q. J. Roy. Meteorol. Soc., 133, 129–146, https://doi.org/10.1002/qj.23, 2007.
Sabeerali, C. T., Dandi, A. R., Dhakate, A., Salunke, K., Mahapatra, S., and Rao, S. A.: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs, J. Geophys. Res.-Atmos., 118, 4401–4420, https://doi.org/10.1002/jgrd.50403 2013.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Sahana, A. S., Pathak, A., Roxy, M. K., and Ghosh, S.: Understanding the role of moisture transport on the dry bias in indian monsoon simulations by CFSv2, Clim. Dynam., 52, 637–651, https://doi.org/10.1007/s00382-018-4154-y, 2019.
Sanchez, C., Williams, K. D., and Collins, M.: Improved stochastic physics schemes for global weather and climate models, Q. J. Roy. Meteorol. Soc., 142, 147–159, https://doi.org/10.1002/qj.2640, 2016.
Shukla, R. P. and Huang, B.: Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2, Clim. Dynam., 46, 3845–3864, https://doi.org/10.1007/s00382-015-2808-6, 2016.
Srivastava, A., Rao, S. A., Nagarjuna Rao, D., George, G., and Pradhan, M.: Structure, characteristics, and simulation of monsoon low-pressure systems in CFSv2 coupled model, J. Geophys. Res.-Oceans, 122, 6394–6415, https://doi.org/10.1002/2016JC012322, 2017.
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018.
Swapna, P., Krishnan, R., Sandeep, N., Prajeesh, A. G., Ayantika, D. C., Manmeet, S., and Vellore, R.: Long-term climate simulations using the IITM earth system model (IITM-ESMv2) with focus on the South Asian monsoon, J. Adv. Model. Earth Syst., 10, 1127–1149, https://doi.org/10.1029/2017MS001262, 2018.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wang, B. and Xie, X.: A Model for the Boreal Summer Intraseasonal Oscillation, J. Atmos. Sci., 54, 72–86, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2, 1997.
Watterson, I. G., Keane, R. J., Dix, M., Ziehn, T., Andrews, T., and Tang, Y.: Analysis of CMIP6 atmospheric moisture fluxes and the implications for projections of future change in mean and heavy rainfall, Int. J. Climatol., 41, E1417–E1434, https://doi.org/10.1002/joc.6777, 2021.
Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled model 2.0 (GC2) configuration, Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, 2015.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations, J. Adv. Model. Earth Syst., 10, 357–380, https://doi.org/10.1002/2017MS001115, 2018.
Wu, R. and Cao, X.: Relationship of boreal summer 10–20-day and 30–60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST, Clim. Dynam., 48, 3529–3546, https://doi.org/10.1007/s00382-016-3282-5, 2017.
Xavier, P. K., Marzin, C., and Goswami, B. N.: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship, Q. J. Roy. Meteorol. Soc., 133, 749–764, https://doi.org/10.1002/qj.45, 2007.
Xiang, B., Wang, B., Chen, G., and Delworth, T. L.: Prediction of Diverse Boreal Summer Intraseasonal Oscillation in GFDL SPEAR Model, J. Climate, 37, 2217–2230, https://doi.org/10.1175/JCLI-D-23-0601.1, 2024.
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon,...