Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-779-2024
https://doi.org/10.5194/wcd-5-779-2024
Research article
 | 
31 May 2024
Research article |  | 31 May 2024

Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations

Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost

Related authors

Divergent convective outflow in large-eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023,https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023,https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Analysis of variability in divergence and turn-over induced by three idealized convective systems with a 3D cloud resolving model
Edward Groot and Holger Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1142,https://doi.org/10.5194/acp-2020-1142, 2020
Publication in ACP not foreseen
Short summary

Related subject area

Dynamical processes in midlatitudes
Impact of stochastic physics on the representation of atmospheric blocking in EC-Earth3
Michele Filippucci, Simona Bordoni, and Paolo Davini
Weather Clim. Dynam., 5, 1207–1222, https://doi.org/10.5194/wcd-5-1207-2024,https://doi.org/10.5194/wcd-5-1207-2024, 2024
Short summary
The crucial representation of deep convection for the cyclogenesis of Medicane Ianos
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024,https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
The connection between North Atlantic storm track regimes and eastern Mediterranean cyclonic activity
Dor Sandler, Hadas Saaroni, Baruch Ziv, Talia Tamarin-Brodsky, and Nili Harnik
Weather Clim. Dynam., 5, 1103–1116, https://doi.org/10.5194/wcd-5-1103-2024,https://doi.org/10.5194/wcd-5-1103-2024, 2024
Short summary
A storm-relative climatology of compound hazards in Mediterranean cyclones
Raphaël Rousseau-Rizzi, Shira Raveh-Rubin, Jennifer L. Catto, Alice Portal, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024,https://doi.org/10.5194/wcd-5-1079-2024, 2024
Short summary
A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis
Jacob Perez, Amanda C. Maycock, Stephen D. Griffiths, Steven C. Hardiman, and Christine M. McKenna
Weather Clim. Dynam., 5, 1061–1078, https://doi.org/10.5194/wcd-5-1061-2024,https://doi.org/10.5194/wcd-5-1061-2024, 2024
Short summary

Cited articles

Adams-Selin, R. D.: Impact of Convectively Generated Low-Frequency Gravity Waves on Evolution of Mesoscale Convective Systems, J. Atmos. Sci., 77, 3441–3460, https://doi.org/10.1175/JAS-D-19-0250.1, 2020a. a, b, c, d, e
Adams-Selin, R. D.: Sensitivity of MCS Low-Frequency Gravity Waves to Microphysical Variations, J. Atmos. Sci., 77, 3461–3477, https://doi.org/10.1175/JAS-D-19-0347.1, 2020b. a, b, c, d
Arakawa, A.: The Cumulus Parameterization Problem: Past, Present, and Future, J. Climate, 17, 2493–2525, 2004. a
Baumgart, M., Ghinassi, P., Wirth, V., Selz, T., Craig, G. C., and Riemer, M.: Quantitative View on the Processes Governing the Upscale Error Growth up to the Planetary Scale Using a Stochastic Convection Scheme, Mon. Weather Rev., 147, 1713–1731, https://doi.org/10.1175/mwr-d-18-0292.1, 2019. a, b, c, d
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J., Beljaars, A., and Bormann, N.: Representing equilibrium and nonequilibrium convection in large-scale models, J. Atmos. Sci., 71, 734–753, 2014. a, b, c
Download
Short summary
Deep convective clouds (thunderstorms), which may cause severe weather, tend to coherently organise into structured cloud systems. Accurate representation of these systems in models is difficult due to their complex dynamics and, in numerical simulations, the dependence of their dynamics on resolution. Here, the effect of convective organisation and geometry on their outflow winds (altitudes of 7–14 km) is investigated. Representation of their dynamics and outflows improves at higher resolution.