Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-805-2024
https://doi.org/10.5194/wcd-5-805-2024
Research article
 | 
06 Jun 2024
Research article |  | 06 Jun 2024

A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions

Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen

Related authors

Impact of horizontal resolution and model time step on European precipitation extremes in the OpenIFS 43r3 atmosphere model
Yingxue Liu, Joakim Kjellsson, Abhishek Savita, and Wonsun Park
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-66,https://doi.org/10.5194/gmd-2024-66, 2024
Preprint under review for GMD
Short summary
Assessment of climate biases in OpenIFS version 43r3 across model horizontal resolutions and time steps
Abhishek Savita, Joakim Kjellsson, Robin Pilch Kedzierski, Mojib Latif, Tabea Rahm, Sebastian Wahl, and Wonsun Park
Geosci. Model Dev., 17, 1813–1829, https://doi.org/10.5194/gmd-17-1813-2024,https://doi.org/10.5194/gmd-17-1813-2024, 2024
Short summary
Controls on Early Cretaceous South Atlantic Ocean circulation and carbon burial – a climate model-proxy synthesis
Sebastian Steinig, Wolf Dummann, Peter Hofmann, Martin Frank, Wonsun Park, Thomas Wagner, and Sascha Flögel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2732,https://doi.org/10.5194/egusphere-2023-2732, 2023
Short summary
AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022,https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
The atmospheric bridge communicated the δ13C decline during the last deglaciation to the global upper ocean
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021,https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
European summer weather linked to North Atlantic freshwater anomalies in preceding years
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024,https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
The impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
EGUsphere, https://doi.org/10.5194/egusphere-2023-2797,https://doi.org/10.5194/egusphere-2023-2797, 2024
Short summary
On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023,https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
The role of boundary layer processes in summer-time Arctic cyclones
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023,https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023,https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary

Cited articles

Ayres, H., Park, W. and Kjellsson, J.: Data from polynya models for paper `The atmospheric response to the Weddell Sea Polynya and its resolution dependence in three Atmospheric General Circulation Models', University of Reading [data set], https://doi.org/10.17864/1947.000487, 2023. 
Ayres, H. C. and Screen, J. A.: Multimodel Analysis of the Atmospheric Response to Antarctic Sea Ice Loss at Quadrupled CO2, Geophys. Res. Lett., 46, 9861–9869, https://doi.org/10.1029/2019GL083653, 2019. 
Ayres, H. C., Screen, J. A., Blockley, E. W., and Bracegirdle, T. J.: The Coupled Atmosphere–Ocean Response to Antarctic Sea Ice Loss, J. Climate, 35, 4665–4685, https://doi.org/10.1175/JCLI-D-21-0918.1, 2022. 
Barnes, E. A., Hartmann, D. L., Frierson, D. M. W., and Kidston, J.: Effect of latitude on the persistence of eddy-driven jets, Geophys. Res. Lett., 37, L11804, https://doi.org/10.1029/2010GL043199, 2010. 
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B, 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995.  
Download
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.