Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-839-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-839-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in the tropical upper-tropospheric zonal momentum balance due to global warming
Abu Bakar Siddiqui Thakur
CORRESPONDING AUTHOR
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560012, India
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore 560012, India
Jai Sukhatme
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560012, India
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore 560012, India
Related authors
No articles found.
Sambrita Ghatak and Jai Sukhatme
EGUsphere, https://doi.org/10.5194/egusphere-2024-2391, https://doi.org/10.5194/egusphere-2024-2391, 2024
Short summary
Short summary
A south-westward propagating moist wavetrain with quasi-biweekly (14–18 days) period is shown to exist in the South-West Indian Ocean during winter. Differential planetary rotation is responsible for its propagation, and moist convection (via stretching) reduces its speed, while background wind also helps in propagation. We have shown how moisture and circulation interacts to determine its propagation characteristics.
Sambrita Ghatak and Jai Sukhatme
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-66, https://doi.org/10.5194/wcd-2021-66, 2021
Revised manuscript not accepted
Short summary
Short summary
A south-westward propagating moist wavetrain with quasi-biweekly period is shown to exist in the South-West Indian Ocean during winter. This oscillation is interpreted in terms of an equatorial Rossby wave. Differential planetary rotation is responsible for its propagation, and moist convection (via stretching) reduces its speed. Its circulation provides favourable conditions for cyclogenesis, with potential implications for the forecast of cyclones that affect Madagascar and southeast Africa.
Related subject area
Dynamical processes in the tropics, incl. tropical–extratropical interactions
A simple model linking radiative–convective instability, convective aggregation and large-scale dynamics
Spatial and temporal variability of the freezing level in Patagonia's atmosphere
Tropical cyclone asymmetric eyewall evolution and intensification in a two-layer model
Role of the Quasi-Biennial Oscillation on Alleviating Biases in the Semi-Annual Oscillation
Using regional relaxation experiments to understand the development of errors in the Asian summer monsoon
WCD Ideas: Teleconnections through weather rather than stationary waves
Development of Indian summer monsoon precipitation biases in two seasonal forecasting systems and their response to large-scale drivers
Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
Multi-decadal pacemaker simulations with an intermediate-complexity climate model
Replicating the Hadley cell edge and subtropical jet latitude disconnect in idealized atmospheric models
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Understanding the dependence of mean precipitation on convective treatment and horizontal resolution in tropical aquachannel experiments
Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific
Examining the dynamics of a Borneo vortex using a balance approximation tool
Strengthening gradients in the tropical west Pacific connect to European summer temperatures on sub-seasonal timescales
Classification of large-scale environments that drive the formation of mesoscale convective systems over southern West Africa
Validation of boreal summer tropical–extratropical causal links in seasonal forecasts
Large uncertainty in observed estimates of tropical width from the meridional stream function
The impact of the Agulhas Current system on precipitation in southern Africa in regional climate simulations covering the recent past and future
Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification
Investigation of links between dynamical scenarios and particularly high impact of Aeolus on numerical weather prediction (NWP) forecasts
Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk?
Non-linear intensification of monsoon low-pressure systems by the BSISO
Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya
Metrics of the Hadley circulation strength and associated circulation trends
Characterising the interaction of tropical and extratropical air masses controlling East Asian summer monsoon progression using a novel frontal detection approach
Extreme Atlantic hurricane seasons made twice as likely by ocean warming
Synoptic processes of winter precipitation in the Upper Indus Basin
Acceleration of tropical cyclones as a proxy for extratropical interactions: synoptic-scale patterns and long-term trends
Subtle influence of the Atlantic Meridional Overturning Circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic
Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections
Zonal scale and temporal variability of the Asian monsoon anticyclone in an idealised numerical model
African easterly waves in an idealized general circulation model: instability and wave packet diagnostics
How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region
The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon
Dominant patterns of interaction between the tropics and mid-latitudes in boreal summer: causal relationships and the role of timescales
Abrupt transitions in an atmospheric single-column model with weak temperature gradient approximation
The American monsoon system in HadGEM3 and UKESM1
Matthew Davison and Peter Haynes
Weather Clim. Dynam., 5, 1153–1185, https://doi.org/10.5194/wcd-5-1153-2024, https://doi.org/10.5194/wcd-5-1153-2024, 2024
Short summary
Short summary
A simple model is used to study the relation between small-scale convection and large-scale variability in the tropics arising from the coupling between moisture and dynamics. In the model, moisture preferentially lies at either moist or dry states, which merge to form large-scale aggregated regions. On an equatorial β plane, these aggregated regions are localised at the Equator and propagate zonally. This forms an intermediate model between past simpler models and general circulation models.
Nicolás García-Lee, Claudio Bravo, Álvaro Gónzalez-Reyes, and Piero Mardones
Weather Clim. Dynam., 5, 1137–1151, https://doi.org/10.5194/wcd-5-1137-2024, https://doi.org/10.5194/wcd-5-1137-2024, 2024
Short summary
Short summary
This study analyses the 0 °C isotherm in Patagonia from 1959 to 2021, using observational and fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis data. The model aligns well with observations, highlighting significant altitude variations between the western and eastern sides of the austral Andes, a correlation between isotherm fluctuations and the Southern Annular Mode index, and an upward trend in the study area (especially in northwestern Patagonia).
Ting-Yu Cha and Michael M. Bell
Weather Clim. Dynam., 5, 1013–1029, https://doi.org/10.5194/wcd-5-1013-2024, https://doi.org/10.5194/wcd-5-1013-2024, 2024
Short summary
Short summary
Our study investigates the dynamics of polygonal eyewall structures observed in intensifying hurricanes like Michael (2018) by using a simplified modeling approach. We develop a two-layer model to simulate the interactions between the free atmosphere and boundary layer to demonstrate the importance of different physical mechanisms in the intensification process. This simplified model offers insights into the interactions between dynamics and convection during hurricane intensification.
Aleena Moolakkunnel Jaison, Lesley J. Gray, Scott M. Osprey, Jeff R. Knight, and Martin B. Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1818, https://doi.org/10.5194/egusphere-2024-1818, 2024
Short summary
Short summary
Models have biases in SAO representation, primarily due to lack of strong enough eastward wave forcing. We investigated if this bias arises from increased wave absorption in low-mid stratosphere due to circulation biases. Using model experiments, we found that removing biases in lower altitudes improve the SAO, but a significant bias remains. Thus, modifications to gravity wave parametrisation is required to improve the modelled SAO, potentially leading to improved predictability of SSW.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Clemens Spensberger
Weather Clim. Dynam., 5, 659–669, https://doi.org/10.5194/wcd-5-659-2024, https://doi.org/10.5194/wcd-5-659-2024, 2024
Short summary
Short summary
It is well-established that variations in convection in the tropical Indo-Pacific can influence weather in far-away regions. In this idea, I argue that the main theory used to explain this influence over large distances is incomplete. I propose hypotheses that could lead the way towards a more fundamental explanation and outline a novel approach that could be used to test the hypotheses I raise. The suggested approach might be useful to address also other long-standing questions.
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702, https://doi.org/10.5194/wcd-5-671-2024, https://doi.org/10.5194/wcd-5-671-2024, 2024
Short summary
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham
Weather Clim. Dynam., 5, 511–536, https://doi.org/10.5194/wcd-5-511-2024, https://doi.org/10.5194/wcd-5-511-2024, 2024
Short summary
Short summary
Our research enhances the understanding of the complex dynamics within the West African monsoon system by analyzing the impact of specific model parameters on its characteristics. Employing surrogate models, we identified critical factors such as the entrainment rate and the fall velocity of ice. Precise definition of these parameters in weather models could improve forecast accuracy, thus enabling better strategies to manage and reduce the impact of weather events.
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024, https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Short summary
This study investigates changes in weather systems that bring winter precipitation to south Asia. We find that these systems, known as western disturbances, are occurring more frequently and lasting longer into the summer months. This shift is leading to devastating floods, as happened recently in north India. By analysing 70 years of weather data, we trace this change to shifts in major air currents known as the subtropical jet. Due to climate change, such events are becoming more frequent.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Franco Molteni, Fred Kucharski, and Riccardo Farneti
Weather Clim. Dynam., 5, 293–322, https://doi.org/10.5194/wcd-5-293-2024, https://doi.org/10.5194/wcd-5-293-2024, 2024
Short summary
Short summary
We describe some new features of an intermediate-complexity coupled model, including a three-layer thermodynamic ocean model suitable to explore the extratropical response to tropical ocean variability. We present results on the model climatology and show that important features of interdecadal and interannual variability are realistically simulated in a
pacemakercoupled ensemble of 70-year runs, where portions of the tropical Indo-Pacific are constrained to follow the observed variability.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024, https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Short summary
Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones have an important effect on the evolution of downstream weather and predictability. In this study, we show that the occurrence of these airstreams over the North Pacific is modulated by tropical convection. Depending on the modulation, known atmospheric circulation patterns evolve quite differently, which may affect extended-range predictions in the Atlantic–European region.
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023, https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary
Short summary
A narrow rainfall belt in the tropics is an important feature for large-scale circulations and the global water cycle. The accurate simulation of this rainfall feature has been a long-standing problem, with the reasons behind that unclear. We present a novel diagnostic tool that allows us to disentangle processes important for rainfall, which changes due to modifications in model. Using our diagnostic tool, one can potentially identify sources of uncertainty in weather and climate models.
Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside
Weather Clim. Dynam., 4, 1087–1109, https://doi.org/10.5194/wcd-4-1087-2023, https://doi.org/10.5194/wcd-4-1087-2023, 2023
Short summary
Short summary
This study examines quasi-periodic variability in the tropical Pacific on interannual timescales and related physics using a recently developed time series analysis tool. We find that wind stress in the west Pacific and recharge–discharge of ocean heat content are likely related to each other on ~1.5–4.5-year timescales (but not on others) and dominate variability in sea surface temperatures on those timescales. This may have further implications for climate models and long-term prediction.
Sam Hardy, John Methven, Juliane Schwendike, Ben Harvey, and Mike Cullen
Weather Clim. Dynam., 4, 1019–1043, https://doi.org/10.5194/wcd-4-1019-2023, https://doi.org/10.5194/wcd-4-1019-2023, 2023
Short summary
Short summary
We examine a Borneo vortex case using computer simulations and satellite observations. The vortex is identified with high humidity through the atmosphere and has heaviest rainfall on its northern flank. Simulations represent circulation and rainfall accumulation well. The low-level Borneo vortex is coupled with a higher-level wave, which moves westwards along a layer with a sharp vertical gradient in moisture. Vortex growth occurs through mechanisms usually considered outside the tropics.
Chiem van Straaten, Dim Coumou, Kirien Whan, Bart van den Hurk, and Maurice Schmeits
Weather Clim. Dynam., 4, 887–903, https://doi.org/10.5194/wcd-4-887-2023, https://doi.org/10.5194/wcd-4-887-2023, 2023
Short summary
Short summary
Variability in the tropics can influence weather over Europe. This study evaluates a summertime connection between the two. It shows that strongly opposing west Pacific sea surface temperature anomalies have occurred more frequently since 1980, likely due to a combination of long-term warming in the west Pacific and the El Niño Southern Oscillation. Three to six weeks later, the distribution of hot and cold airmasses over Europe is affected.
Francis Nkrumah, Cornelia Klein, Kwesi Akumenyi Quagraine, Rebecca Berkoh-Oforiwaa, Nana Ama Browne Klutse, Patrick Essien, Gandomè Mayeul Leger Davy Quenum, and Hubert Azoda Koffi
Weather Clim. Dynam., 4, 773–788, https://doi.org/10.5194/wcd-4-773-2023, https://doi.org/10.5194/wcd-4-773-2023, 2023
Short summary
Short summary
It is not yet clear which variations in broader atmospheric conditions of the West African monsoon may lead to mesoscale convective system (MCS) occurrences in southern West Africa (SWA). In this study, we identified nine different weather patterns and categorized them as dry-, transition-, or monsoon-season types using a method called self-organizing maps (SOMs). It was revealed that a warmer Sahel region can create favourable conditions for MCS formation in SWA.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
William Torgerson, Juliane Schwendike, Andrew Ross, and Chris J. Short
Weather Clim. Dynam., 4, 331–359, https://doi.org/10.5194/wcd-4-331-2023, https://doi.org/10.5194/wcd-4-331-2023, 2023
Short summary
Short summary
We investigated intensity fluctuations that occurred during the rapid intensification of Hurricane Irma (2017) to understand their effects on the storm structure. Using high-resolution model simulations, we found that the fluctuations were caused by local regions of strong ascent just outside the eyewall that disrupted the storm, leading to a larger and more symmetrical storm eye. This alters the location and intensity of the strongest winds in the storm and hence the storm's impact.
Anne Martin, Martin Weissmann, and Alexander Cress
Weather Clim. Dynam., 4, 249–264, https://doi.org/10.5194/wcd-4-249-2023, https://doi.org/10.5194/wcd-4-249-2023, 2023
Short summary
Short summary
Global wind profiles from the Aeolus satellite mission are an important recent substitute for the Global Observing System, showing an overall positive impact on numerical weather prediction forecasts. This study highlights atmospheric dynamic phenomena constituting pathways for significant improvement of Aeolus for future studies, including large-scale tropical circulation systems and the interaction of tropical cyclones undergoing an extratropical transition with the midlatitude waveguide.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022, https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the
boreal summer intraseasonal oscillation– the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Ambrogio Volonté, Andrew G. Turner, Reinhard Schiemann, Pier Luigi Vidale, and Nicholas P. Klingaman
Weather Clim. Dynam., 3, 575–599, https://doi.org/10.5194/wcd-3-575-2022, https://doi.org/10.5194/wcd-3-575-2022, 2022
Short summary
Short summary
In this study we analyse the complex seasonal evolution of the East Asian summer monsoon. Using reanalysis data, we show the importance of the interaction between tropical and extratropical air masses converging at the monsoon front, particularly during its northward progression. The upper-level flow pattern (e.g. the westerly jet) controls the balance between the airstreams and thus the associated rainfall. This framework provides a basis for studies of extreme events and climate variability.
Peter Pfleiderer, Shruti Nath, and Carl-Friedrich Schleussner
Weather Clim. Dynam., 3, 471–482, https://doi.org/10.5194/wcd-3-471-2022, https://doi.org/10.5194/wcd-3-471-2022, 2022
Short summary
Short summary
Tropical cyclones are amongst the most dangerous weather events. Here we develop an empirical model that allows us to estimate the number and strengths of tropical cyclones for given atmospheric conditions and sea surface temperatures. An application of the model shows that atmospheric circulation is the dominant factor for seasonal tropical cyclone activity. However, warming sea surface temperatures have doubled the likelihood of extremely active hurricane seasons in the past decades.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Weather Clim. Dynam., 2, 1187–1207, https://doi.org/10.5194/wcd-2-1187-2021, https://doi.org/10.5194/wcd-2-1187-2021, 2021
Short summary
Short summary
Western disturbances are mid-latitude, high-altitude, low-pressure areas that bring orographic precipitation into the Upper Indus Basin. Using statistical tools, we show that the interaction between western disturbances and relief explains the near-surface, cross-barrier wind activity. We also reveal the existence of a moisture pathway from the nearby seas. Overall, we offer a conceptual framework for western-disturbance activity, particularly in terms of precipitation.
Anantha Aiyyer and Terrell Wade
Weather Clim. Dynam., 2, 1051–1072, https://doi.org/10.5194/wcd-2-1051-2021, https://doi.org/10.5194/wcd-2-1051-2021, 2021
Short summary
Short summary
We diagnose the mean circulations in the extratropics that are associated with rapid changes in the tropical storm storm speeds in the Atlantic. We show that rapid acceleration and deceleration are associated with distinct phasing between the tropical cyclone and weather waves of the extratropics. Over the past 5 decades, rapid acceleration and deceleration of tropical cyclones have reduced in magnitude. This might be related to the poleward shift and weakening of these extratropical waves.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Andrea M. Jenney, David A. Randall, and Elizabeth A. Barnes
Weather Clim. Dynam., 2, 653–673, https://doi.org/10.5194/wcd-2-653-2021, https://doi.org/10.5194/wcd-2-653-2021, 2021
Short summary
Short summary
Storm activity in the tropics is one of the key phenomena that provide weather predictability on an extended timescale of about 10–40 d. The influence of tropical storminess on places like North America is sensitive to the overall average state of the climate system. In this study, we try to unpack the reasons why climate models do not agree on how the influence of these storms on weather over the North Pacific and North America will change in the future.
Philip Rupp and Peter Haynes
Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, https://doi.org/10.5194/wcd-2-413-2021, 2021
Short summary
Short summary
We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
Joshua White and Anantha Aiyyer
Weather Clim. Dynam., 2, 311–329, https://doi.org/10.5194/wcd-2-311-2021, https://doi.org/10.5194/wcd-2-311-2021, 2021
Short summary
Short summary
Using a simple general circulation model, we examine the structure of waves in the mid-tropospheric jet over North Africa. We show that waves occur in near-stationary groups or wave packets. As they are not swept out of the jet, this may provide the opportunity for the packets to amplify via feedback from other energy sources like rain-producing cloud complexes and mineral dust that are known to operate here. Our results address the criticism that the easterly jet is too short to sustain waves.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, https://doi.org/10.5194/wcd-2-281-2021, 2021
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 d.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Benjamin A. Stephens and Charles S. Jackson
Weather Clim. Dynam., 1, 389–404, https://doi.org/10.5194/wcd-1-389-2020, https://doi.org/10.5194/wcd-1-389-2020, 2020
Short summary
Short summary
We analyze abrupt transitions between tropical rainfall regimes in a single-column model (SCM) of the tropical atmosphere. Multiple equilibria have been observed before in SCMs, but here we analyze actual bifurcations. We attribute the transitions to a sudden loss of evaporative cooling in the lower column due to nonlinearities in microphysics. This study may have implications for atmospheric dynamics more broadly but also for understanding abrupt transitions in paleoclimate.
Jorge L. García-Franco, Lesley J. Gray, and Scott Osprey
Weather Clim. Dynam., 1, 349–371, https://doi.org/10.5194/wcd-1-349-2020, https://doi.org/10.5194/wcd-1-349-2020, 2020
Short summary
Short summary
The American monsoon system is the main source of rainfall for the subtropical Americas and an important element of Latin American agriculture. Here we use state-of-the-art climate models from the UK Met Office in different configurations to analyse the performance of these models in the American monsoon. Resolution is found to be a key factor to improve monsoon representation, whereas integrated chemistry does not improve the simulated monsoon rainfall.
Cited articles
Adam, O., Schneider, T., and Harnik, N.: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation, J. Climate, 27, 7450–7461, 2014. a
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a
Ait-Chaalal, F. and Schneider, T.: Why eddy momentum fluxes are concentrated in the upper troposphere, J. Atmos. Sci., 72, 1585–1604, https://doi.org/10.1175/JAS-D-14-0243.1, 2015. a, b
Arnold, N. P., Tziperman, E., and Farrell, B.: Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM, J. Atmos. Sci., 69, 626–640, https://doi.org/10.1175/JAS-D-11-0136.1, 2012. a
Arnold, N. P., Kuang, Z., and Tziperman, E.: Enhanced MJO-like variability at high SST, J. Climate, 26, 988–1001, 2013. a
Arnold, N. P., Branson, M., Kuang, Z., Randall, D. A., and Tziperman, E.: MJO intensification with warming in the superparameterized CESM, J. Climate, 28, 2706–2724, 2015. a
Barnes, E. A. and Hartmann, D. L.: The global distribution of atmospheric eddy length scales, J. Climate, 25, 3409–3416, https://doi.org/10.1175/JCLI-D-11-00331.1, 2012. a
Boyle, J.: Upper level atmospheric stationary waves in the twentieth century climate of the Intergovernmental Panel on Climate Change simulations, J. Geophys. Res.-Atmos., 111, D14101, https://doi.org/10.1029/2005JD006612, 2006. a
Butchart, N.: The Brewer–Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014. a, b, c, d
Butchart, N., Scaife, A. A., Bourqui, M., de Grandpré, J., Hare, S. H. E., Kettleborough, J., Langematz, U, Manzini, E., Sassi, F., Shibata, K., Shindell, D., and Sigmond, M.: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation, Clim. Dynam., 27, 727–741, https://doi.org/10.1007/s00382-006-0162-4, 2006. a, b
Caballero, R. and Anderson, B. T.: Impact of midlatitude stationary waves on regional Hadley cells and ENSO, Geophys. Res. Lett., 36, L17704, https://doi.org/10.1029/2009gl039668, 2009. a, b
Caballero, R. and Carlson, H.: Surface superrotation, J. Atmos. Sci., 75, 3671–3689, https://doi.org/10.1175/JAS-D-18-0076.1, 2018. a
Caballero, R. and Huber, M.: Spontaneous transition to superrotation in warm climates simulated by CAM3, Geophys. Res. Lett., 37, L17704, https://doi.org/10.1029/2010GL043468, 2010. a
Carlson, H. and Caballero, R.: Enhanced MJO and transition to superrotation in warm climates, J. Adv. Model. Earth Syst., 8, 304–318, https://doi.org/10.1002/2015MS000615, 2016. a
Carr, M. T. and Bretherton, C. S.: Convective momentum transport over the tropical Pacific: Budget estimates, J. Atmos. Sci., 58, 1673–1693, 2001. a
Chen, G., Lu, J., and Frierson, D. M.: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend, J. Climate, 21, 5942–5959, 2008. a
Chen, P.: Isentropic cross-tropopause mass exchange in the extratropics, J. Geophys. Res., 100, 16661–16673, https://doi.org/10.1029/95JD01264, 1995. a
Chou, C. and Chen, C.-A.: Depth of convection and the weakening of tropical circulation in global warming, J. Climate, 23, 3019–3030, 2010. a
Collins, M.: El Niño-or La Niña-like climate change?, Clim. Dynam., 24, 89–104, 2005. a
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term climate change: projections, commitments and irreversibility, in: Climate Change 2013 – The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1029–1136, https://www.ipcc.ch/report/ar5/wg1/ (last access: October 2023), 2013. a, b
Copernicus Climate Change Service and Climate Data Store: CMIP6 climate projections, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.c866074c, 2021. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A., Edwards, J., Emmons, L., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E.,Polvani, L., Rasch, P. J., and Strand, W. G.: The community earth system model version 2 (CESM2), J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020. a, b
Dawson, A.: Windspharm: A high-level library for global wind field computations using spherical harmonics, J. Open Res. Softw., 4, e31, https://doi.org/10.5334/jors.129, 2016. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
DiNezio, P. N., Clement, A. C., Vecchi, G. A., Soden, B. J., Kirtman, B. P., and Lee, S.-K.: Climate response of the equatorial Pacific to global warming, J. Climate, 22, 4873–4892, https://doi.org/10.1175/2009JCLI2982.1, 2009. a, b, c
Dunkerton, T.: Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions, J. Geophys. Res., 100, 16675–16688, https://doi.org/10.1029/95JD01263, 1995. a
Edmon, H., Hoskins, B., and McIntyre, M.: Eliassen-Palm cross sections for the troposphere, J. Atmos. Sci., 37, 2600–2616, 1980. a
Eliassen, A. and Palm, E.: On the transfer of energy in stationary mountain waves, Geofys. Publ., 22, 1–23, 1961. a
ESGF: CMIP6, https://esgf-node.llnl.gov/projects/cmip6/ (last access: June 2024), 2024a. a
ESGF: WCRP Coupled Model Intercomparison Project (Phase 6), https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/ (last access: June 2024), 2024b. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Fedorov, A., Dekens, P., McCarthy, M., Ravelo, A., DeMenocal, P., Barreiro, M., Pacanowski, R., and Philander, S.: The Pliocene paradox (mechanisms for a permanent El Niño), Science, 312, 1485–1489, https://doi.org/10.1126/science.1122666, 2006. a
Freitas, A. C. V. and Rao, V. B.: Global changes in propagation of stationary waves in a warming scenario, Q. J. Roy. Meteorol. Soc., 140, 364–383, 2014. a
Frierson, D. M. and Hwang, Y.-T.: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming, J. Climate, 25, 720–733, 2012. a
Frierson, D. M., Lu, J., and Chen, G.: Width of the Hadley cell in simple and comprehensive general circulation models, Geophys. Res. Lett., 34, L18804, https://doi.org/10.1029/2007GL031115, 2007. a, b, c, d
Galanti, E., Raiter, D., Kaspi, Y., and Tziperman, E.: Spatial patterns of the tropical meridional circulation: Drivers and teleconnections, J. Geophys. Res.-Atmos., 127, e2021JD035531, https://doi.org/10.1029/2021JD035531, 2022. a, b
Gerber, E.: Stratospheric versus Tropospheric Control of the Strength and Structure of the Brewer–Dobson circulation, J. Atmos. Sci., 69, 2857–2877, https://doi.org/10.1175/JAS-D-11-0341.1, 2012. a
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. Roy. Meteorol. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905, 1980. a
Goyal, R., Jucker, M., Sen Gupta, A., Hendon, H. H., and England, M. H.: Zonal wave 3 pattern in the Southern Hemisphere generated by tropical convection, Nat. Geosci., 14, 732–738, 2021. a
Hall, A.: Projecting regional change, Science, 346, 1461–1462, https://doi.org/10.1126/science.aaa0629, 2014. a
Hausfather, Z. and Peters, G. P.: Emissions – the `business as usual' story is misleading, Nature, 577, 618–620, 2020. a
Held, I. M.: Equatorial Superrotation in Earth-like Atmospheric Models, Bernhard Haurwitz Memorial Lecture, https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/super.pdf (last access: June 2024), 1999. a
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006. a
Held, I. M., Ting, M., and Wang, H.: Northern winter stationary waves: Theory and modeling, J. Climate, 15, 2125–2144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2, 2002. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://doi.org/10.24381/cds.143582cf, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020. a, b
Hoskins, B. and Yang, G.-Y.: A Global Perspective on the Upper Branch of the Hadley Cell, J. Climate, 36, 6749–6762, https://doi.org/10.1175/JCLI-D-22-0537.1, 2023. a, b
Hoskins, B. J. and Yang, G.-Y.: The Detailed Dynamics of the Hadley Cell. Part II: December–February, J. Climate, 34, 805–823, https://doi.org/10.1175/JCLI-D-20-0504.1, 2021. a, b
Hoskins, B. J., Yang, G.-Y., and Fonseca, R. M.: The detailed dynamics of the June–August Hadley Cell, Q. J. Roy. Meteorol. Soc., 146, 557–575, https://doi.org/10.1002/qj.3702, 2020. a, b
Hsu, P.-c., Li, T., Luo, J.-J., Murakami, H., Kitoh, A., and Zhao, M.: Increase of global monsoon area and precipitation under global warming: a robust signal?, Geophys. Res. Lett., 39, L06701, https://doi.org/10.1029/2012GL051037, 2012. a, b
Hu, Y. and Fu, Q.: Observed poleward expansion of the Hadley circulation since 1979, Atmos. Chem. Phys., 7, 5229–5236, https://doi.org/10.5194/acp-7-5229-2007, 2007. a
Joseph, R., Ting, M., and Kushner, P. J.: The global stationary wave response to climate change in a coupled GCM, J. Climate, 17, 540–556, https://doi.org/10.1175/1520-0442(2004)017<0540:TGSWRT>2.0.CO;2, 2004. a, b
Kang, S. M.: Extratropical influence on the tropical rainfall distribution, Curr. Clim. Change Rep., 6, 24–36, 2020. a
Kang, S. M., Shin, Y., Kim, H., Xie, S.-P., and Hu, S.: Disentangling the mechanisms of equatorial Pacific climate change, Sci. Adv., 9, eadf5059, https://doi.org/10.1126/sciadv.adf5059, 2023. a, b
Karamperidou, C., Jin, F.-F., and Conroy, J. L.: The importance of ENSO nonlinearities in tropical pacific response to external forcing, Clim. Dynam., 49, 2695–2704, 2017. a
Kelly, P. and Mapes, B.: Zonal mean wind, the Indian monsoon, and July drying in the western Atlantic subtropics, J. Geophys. Res.-Atmos., 116, D00Q07, https://doi.org/10.1029/2010jd015405, 2011. a
Keyser, D., Schmidt, B. D., and Duffy, D. G.: A technique for representing three-dimensional vertical circulations in baroclinic disturbances, Mon. Weather Rev., 117, 2463–2494, 1989. a
Kim, D., Kim, H., Kang, S. M., Stuecker, M. F., and Merlis, T. M.: Weak Hadley cell intensity changes due to compensating effects of tropical and extratropical radiative forcing, npj Clim. Atmos. Sci., 5, 61, https://doi.org/10.1038/s41612-022-00287-x, 2022. a
Knutson, T. R. and Manabe, S.: Time-Mean Response over the Tropical Pacific to Increased Co22 in a Coupled Ocean-Atmosphere Model, J. Climate, 8, 2181–2199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2, 1995. a
Kraucunas, I. and Hartmann, D. L.: Equatorial Superrotation and the Factors Controlling the Zonal-Mean Zonal Winds in the Tropical Upper Troposphere, J. Atmos. Sci., 62, 371–389, https://doi.org/10.1175/jas-3365.1, 2005. a, b, c, d
Kraucunas, I. and Hartmann, D. L.: Tropical Stationary Waves in a Nonlinear Shallow-Water Model with Realistic Basic States, J. Atmos. Sci., 64, 2540–2557, https://doi.org/10.1175/jas3920.1, 2007. a, b
Krishnamurti, T., Biswas, M. K., and Bhaskar Rao, D.: Vertical extension of the Tibetan high of the Asian summer monsoon, Tellus A, 60, 1038–1052, 2008. a
Lan, J., Yang, J., Hu, Y., Li, X., Guo, J., Lin, Q., Han, J., Zhang, J., Wang, S., and Nie, J.: Weak Equatorial Superrotation during the Past 250 Million Years, J. Atmos. Sci., 80, 1003–1023, 2023. a
Lau, W. K. and Kim, K.-M.: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections, P. Natl. Acad. Sci. USA, 112, 3630–3635, 2015. a
Lee, S., Feldstein, S., Pollard, D., and White, T.: Do planetary wave dynamics contribute to equable climates?, J. Climate, 24, 2391–2404, 2011. a
Lee, S., L'Heureux, M., Wittenberg, A. T., Seager, R., O'Gorman, P. A., and Johnson, N. C.: On the future zonal contrasts of equatorial Pacific climate: Perspectives from Observations, Simulations, and Theories, npj Clim. Atmos. Sci., 5, 82, https://doi.org/10.1038/s41612-022-00301-2, 2022. a, b
Levine, X. and Boos, W.: A Mechanism for the Response of the Zonally Asymmetric Subtropical Hydrologic Cycle to Global Warming, J. Climate, 29, 7851–7867, https://doi.org/10.1175/JCLI-D-15-0826.1, 2016. a, b, c
Levine, X. J. and Schneider, T.: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport, J. Atmos. Sci., 68, 769–783, https://doi.org/10.1175/2010JAS3553.1, 2011. a
Levine, X. J. and Schneider, T.: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study, J. Atmos. Sci., 72, 2744–2761, https://doi.org/10.1175/JAS-D-14-0152.1, 2015. a
Lin, J.-L., Mapes, B. E., and Han, W.: What are the sources of mechanical damping in Matsuno–Gill-type models?, J. Climate, 21, 165–179, https://doi.org/10.1175/2007JCLI1546.1, 2008. a, b
Lorenz, D. and DeWeaver, E.: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations, J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087, 2007. a
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under global warming, Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443, 2007. a, b, c
Lu, J., Chen, G., and Frierson, D. M. W.: Response of the Zonal Mean Atmospheric Circulation to El Niño versus Global Warming, J. Climate, 21, 5835–5851, https://doi.org/10.1175/2008JCLI2200.1, 2008. a
Ma, J. and Yu, J.-Y.: Paradox in South Asian summer monsoon circulation change: Lower tropospheric strengthening and upper tropospheric weakening, Geophys. Res. Lett., 41, 2934–2940, 2014. a
Ma, J., Chadwick, R., Seo, K.-H., Dong, C., Huang, G., Foltz, G. R., and Jiang, J. H.: Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle, Annu. Rev. Earth Planet. Sci., 46, 549–580, https://doi.org/10.1146/annurev-earth-082517-010102, 2018. a, b
Maloney, E. D., Adames, Á. F., and Bui, H. X.: Madden–Julian oscillation changes under anthropogenic warming, Nat. Clim. Change, 9, 26–33, https://doi.org/10.1038/s41558-018-0331-6, 2019. a
Matthews, A. J.: A multiscale framework for the origin and variability of the South Pacific Convergence Zone, Q. J. Roy. Meteorol. Soc., 138, 1165–1178, 2012. a
Mitas, C. M. and Clement, A.: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses, Geophys. Res. Lett., 33, L01810, https://doi.org/10.1029/2005GL024406, 2006. a
Mitchell, D. M., Lo, Y. E., Seviour, W. J., Haimberger, L., and Polvani, L. M.: The vertical profile of recent tropical temperature trends: Persistent model biases in the context of internal variability, Environ. Res. Lett., 15, 1040b4, https://doi.org/10.1088/1748-9326/ab9af7, 2020. a
NCAR: Community Earth System Model 2 (CESM2), https://www.cesm.ucar.edu/models/cesm2 (last access: June 2024), 2024. a
Nguyen, H., Evans, A., Lucas, C., Smith, I., and Timbal, B.: The Hadley circulation in reanalyses: Climatology, variability, and change, J. Climate, 26, 3357–3376, https://doi.org/10.1175/JCLI-D-12-00224.1, 2013. a
Nguyen, H., Hendon, H., Lim, E. P., Boschat, G., Maloney, E., and Timbal, B.: Variability of the extent of the Hadley circulation in the Southern Hemisphere: A regional perspective, Clim. Dynam., 50, 129–142, 2018. a
Oberländer-Hayn, S., Gerber, E. P., Abalichin, J., Akiyoshi, H., Kerschbaumer, A., Kubin, A., Kunze, M., Langematz, U., Meul, S., Michou, M., Morgenstern, O., and Oman, L. D.: Is the Brewer–Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, 1772–1779, 2016. a
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., Van Ruijven, B. J., Van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Change, 42, 169–180, 2017. a
PANGEO Gallery: CMIP6 Gallery, https://gallery.pangeo.io/repos/pangeo-gallery/cmip6/ (last access: June 2024), 2024. a
Pierrehumbert, R. T.: Climate change and the tropical Pacific: The sleeping dragon wakes, P. Natl. Acad. Sci. USA, 97, 1355–1358, https://doi.org/10.1073/pnas.97.4.1355, 2000. a, b, c
Plumb, R. A.: On the three-dimensional propagation of stationary waves, J. Atmos. Sci., 42, 217–229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2, 1985. a, b, c
Postel, G. and Hitchmann, M.: A Climatology of Rossby Wave Breaking along the Subtropical Tropopause, J. Atmos. Sci., 56, 359–373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2, 1999. a, b
Raiter, D., Galanti, E., and Kaspi, Y.: The tropical atmospheric conveyor belt: A coupled Eulerian-Lagrangian analysis of the large-scale tropical circulation, Geophys. Res. Lett., 47, e2019GL086437, https://doi.org/10.1029/2019GL086437, 2020. a, b
Randel, W. J. and Park, M.: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS), J. Geophys. Res., 111, D12314, https://doi.org/10.1029/2005JD006490, 2006. a
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone, C., and Pumphrey, H.: Asian monsoon transport of pollution to the stratosphere, Science, 328, 611–613, 2010. a
Reichler, T., Dameris, M., and Sausen, R.: Determining the tropopause height from gridded data, Geophys. Res. Lett., 30, 2042, https://doi.org/10.1029/2003GL018240, 2003. a
Rodwell, M. J. and Hoskins, B. J.: Monsoons and the dynamics of deserts, Q. J. Roy. Meteorol. Soc., 122, 1385–1404, 1996. a
Rupp, P. and Haynes, P.: Zonal scale and temporal variability of the Asian monsoon anticyclone in an idealised numerical model, Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, 2021. a
Santer, B. D., Wigley, T. M. L., Mears, C., Wentz, F. J., Klein, S. A., Seidel, D. J., Taylor, K. E., Thorne, P. W., Wehner, M. F., Gleckler, P. J., Boyle, J. S., Collins, W. D., Dixon, K. W., Doutriaux, C., Free, M., Fu, Q., Hansen, J. E., Jones, G. S., Ruedy, R., Karl, T. R., Lanzante, J. R., Meehl, G. A., Ramaswamy, V., Russell, G., and Schmidt, G. A.: Amplification of surface temperature trends and variability in the tropical atmosphere, Science, 309, 1551–1556, 2005. a
Sardeshmukh, P. D. and Held, I. M.: The vorticity balance in the tropical upper troposphere of a general circulation model, J. Atmos. Sci., 41, 768–778, https://doi.org/10.1175/1520-0469(1984)041<0768:TVBITT>2.0.CO;2, 1984. a
Sardeshmukh, P. D. and Hoskins, B. J.: Vorticity balances in the tropics during the 1982–83 El Niñio-Southern oscillation event, Q. J. Roy. Meteorol. Soc., 111, 261–278, 1985. a
Schneider, T.: The general circulation of the atmosphere, Annu. Rev. Earth Planet. Sci., 34, 655–688, 2006. a
Schneider, T., O'Gorman, P. A., and Levine, X. J.: Water vapor and the dynamics of climate changes, Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302, 2010. a
Schwendike, J., Govekar, P., Reeder, M. J., Wardle, R., Berry, G. J., and Jakob, C.: Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations, J. Geophys. Res.-Atmos., 119, 1322–1339, https://doi.org/10.1002/2013jd020742, 2014. a, b
Seager, R., Harnik, N., Kushnir, Y., Robinson, W., and Miller, J.: Mechanisms of hemispherically symmetric climate variability, J. Climate, 16, 2960–2978, 2003. a
Seidel, D. J., Fu, Q., Randel, W. J., and Reichler, T. J.: Widening of the tropical belt in a changing climate, Nat. Geosci., 1, 21–24, https://doi.org/10.1038/ngeo.2007.38, 2008. a
Shaw, T. A.: On the Role of Planetary-Scale Waves in the Abrupt Seasonal Transition of the Northern Hemisphere General Circulation, J. Atmos. Sci., 71, 1724–1746, https://doi.org/10.1175/jas-d-13-0137.1, 2014. a
Shaw, T. A.: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation, Curr. Clim. Change Rep., 5, 345–357, https://doi.org/10.1007/s40641-019-00145-8, 2019. a
Shepherd, T. and McLandress, C.: A Robust Mechanism for Strengthening of the Brewer–Dobson Circulation in Response to Climate Change: Critical-Layer Control of Subtropical Wave Breaking, J. Atmos. Sci., 68, 784–797, https://doi.org/10.1175/2010JAS3608.1, 2011. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703–708, 2014. a
Simpson, I. R., Seager, R., Ting, M., and Shaw, T. A.: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate, Nat. Clim. Change, 6, 65–70, https://doi.org/10.1038/nclimate2783, 2016. a
Singh, M. S. and O'Gorman, P. A.: Upward shift of the atmospheric general circulation under global warming: Theory and simulations, J. Climate, 25, 8259–8276, 2012. a
Siu, L. W. and Bowman, K. P.: Unsteady vortex behavior in the Asian monsoon anticyclone, J. Atmos. Sci., 77, 4067–4088, 2020. a
Sooraj, K., Terray, P., and Mujumdar, M.: Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models, Clim. Dynam., 45, 233–252, https://doi.org/10.1007/s00382-014-2257-7, 2015. a, b
Suarez, M. and Duffy, D.: Terrestrial Superrotation: A Bifurcation of the General Circulation, J. Atmos. Sci., 49, 1541–1554, https://doi.org/10.1175/1520-0469(1992)049<1541:TSABOT>2.0.CO;2, 1992. a
Sun, Y., Li, L. Z., Ramstein, G., Zhou, T., Tan, N., Kageyama, M., and Wang, S.: Regional meridional cells governing the interannual variability of the Hadley circulation in boreal winter, Clim. Dynam., 52, 831–853, https://doi.org/10.1007/s00382-018-4263-7, 2019. a, b
Tandon, N. F., Gerber, E. P., Sobel, A. H., and Polvani, L. M.: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations, J. Climate, 26, 4304–4321, https://doi.org/10.1175/JCLI-D-12-00598.1, 2013. a
Tziperman, E. and Farrell, B.: Pliocene equatorial temperature: Lessons from atmospheric superrotation, Paleoceanography, 24, PA1101, https://doi.org/10.1029/2008PA001652, 2009. a, b, c
Ueda, H., Iwai, A., Kuwako, K., and Hori, M. E.: Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs, Geophys. Res. Lett., 33, L06703, https://doi.org/10.1029/2005GL025336, 2006. a, b
Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, in: 2nd Edn., Cambridge University Press, Cambridge, UK, ISBN 9781107588417, https://doi.org/10.1017/9781107588417, 2017. a
Wang, B., Jin, C., and Liu, J.: Understanding future change of global monsoons projected by CMIP6 models, J. Climate, 33, 6471–6489, https://doi.org/10.1175/JCLI-D-19-0993.1, 2020. a
Wang, C., Zhang, L., Lee, S.-K., Wu, L., and Mechoso, C. R.: A global perspective on CMIP5 climate model biases, Nat. Clim. Change, 4, 201–205, 2014. a
Wang, L. and Kushner, P.: Diagnosing the stratosphere‐troposphere stationary wave response to climate change in a general circulation model, J. Geophys. Res., 116, D16113, https://doi.org/10.1029/2010JD015473, 2011. a
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Permanent El Niño-like conditions during the Pliocene warm period, Science, 309, 758–761, https://doi.org/10.1126/science.1112596, 2005. a
Waugh, D. and Polvani, L.: Climatology of Intrusions into the Tropical Upper Troposphere, Geophys. Res. Lett., 27, 3857–3860, https://doi.org/10.1029/2000GL012250, 2000. a, b
Waugh, D. W. and Funatsu, B. M.: Intrusions into the tropical upper troposphere: Three-dimensional structure and accompanying ozone and OLR distributions, J. Atmos. Sci., 60, 637–653, 2003. a
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017. a, b
Wilks, D. S.: Statistical methods in the atmospheric sciences, in: vol. 100, Academic Press, ISBN 9780080456225, 2011. a
Wills, R. C., White, R. H., and Levine, X. J.: Northern hemisphere stationary waves in a changing climate, Curr. Clim. Change Rep., 5, 372–389, https://doi.org/10.1007/s40641-019-00147-6, 2019. a, b, c
Wu, Y. and Shaw, T. A.: The impact of the Asian summer monsoon circulation on the tropopause, J. Climate, 29, 8689–8701, https://doi.org/10.1175/JCLI-D-16-0204.1, 2016. a, b, c
Xie, S.-P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., Hawkins, E., Johnson, N. C., Cassou, C., Giannini, A., and Watanabe, M.: Towards predictive understanding of regional climate change, Nat. Clim. Change, 5, 921–930, https://doi.org/10.1038/nclimate2689, 2015. a
Zaplotnik, Ž., Pikovnik, M., and Boljka, L.: Recent Hadley circulation strengthening: a trend or multidecadal variability?, J. Climate, 35, 4157–4176, 2022. a
Zhang, C., McGauley, M., and Bond, N. A.: Shallow meridional circulation in the tropical eastern Pacific, J. Climate, 17, 133–139, https://doi.org/10.1175/2007JCLI1870.1, 2004. a
Zhang, G. and Wang, Z.: Interannual Variability of the Atlantic Hadley Circulation in Boreal Summer and Its Impacts on Tropical Cyclone Activity, J. Climate, 26, 8529–8544, https://doi.org/10.1175/jcli-d-12-00802.1, 2013. a, b
Zhang, P. and Lutsko, N. J.: Seasonal superrotation in Earth's troposphere, J. Atmos. Sci., 79, 3297–3314, 2022. a
Zurita-Gotor, P.: The Role of the Divergent Circulation for Large-Scale Eddy Momentum Transport in the Tropics. Part I: Observations, J. Atmos. Sci., 76, 1125–1144, https://doi.org/10.1175/jas-d-18-0297.1, 2019. a, b, c
Short summary
We analyze the present and future states of the tropical upper troposphere. Observations and climate model simulations suggest that interactions between disparate families of waves and the mean flow maintain present-day upper-level winds, and each component undergoes complex changes due to global warming. While the net east–west flow of the atmosphere may remain unaltered, this study indicates robust changes to local circulations that may influence tropical precipitation and regional climate.
We analyze the present and future states of the tropical upper troposphere. Observations and...