Articles | Volume 6, issue 1
https://doi.org/10.5194/wcd-6-197-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-197-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pacific Decadal Oscillation-driven interdecadal variability of snowfall over the Karakoram and the Western Himalayas
Priya Bharati
Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, India
Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, India
Kieran Mark Rainwater Hunt
Department of Meteorology, University of Reading, Reading, UK
National Centre for Atmospheric Science, University of Reading, Reading, UK
Related authors
No articles found.
Sai Prabala Swetha Chittella, Andrew Orr, Pranab Deb, and Quentin Dalaiden
EGUsphere, https://doi.org/10.5194/egusphere-2025-4292, https://doi.org/10.5194/egusphere-2025-4292, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Precipitation plays a vital role in regulating Antarctica's ice sheet mass balance and ice shelf stability, with much of it coming from extreme events that also drive variability. We examined trends in precipitation and extremes using advanced methods and found that the increases are primarily driven by human influence, with greenhouse gases identified as the dominant factor.
Kieran M. R. Hunt and Hannah C. Bloomfield
EGUsphere, https://doi.org/10.5194/egusphere-2025-4474, https://doi.org/10.5194/egusphere-2025-4474, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Bangladesh’s power grid is highly vulnerable to tropical cyclones. Using nearly a decade of daily data, we show landfalling storms cut national electricity supply by about 20 % on the day, with coastal regions hit hardest (up to 38 %). Damage comes from high winds, storm surge and heavy rain. Power imports from India often can’t help during big events because both areas are struck together. Building sturdier, climate-resilient infrastructure is essential.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
Weather Clim. Dynam., 6, 43–112, https://doi.org/10.5194/wcd-6-43-2025, https://doi.org/10.5194/wcd-6-43-2025, 2025
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Isa Dijkstra, Hannah C. Bloomfield, and Kieran M. R. Hunt
Adv. Geosci., 65, 127–140, https://doi.org/10.5194/adgeo-65-127-2025, https://doi.org/10.5194/adgeo-65-127-2025, 2025
Short summary
Short summary
Energy systems across the globe are evolving to meet climate mitigation targets. This requires rapid reductions in fossil fuel use and much more renewable generation. Renewable energy is dependent on the weather. A consequence of this is that there will be periods of low renewable energy production, driven by particular weather conditions. We look at the weather conditions during these periods and show the Indian energy sector could prepare for these events out to 14 days ahead.
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025, https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
Short summary
In this study, we train machine learning models on tree rings, speleothems, and instrumental rainfall to estimate seasonal monsoon rainfall over India over the last 500 years. Our models highlight multidecadal droughts in the mid-17th and 19th centuries, and we link these to historical famines. Using techniques from explainable AI (artificial intelligence), we show that our models use known relationships between local hydroclimate and the monsoon circulation.
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024, https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Short summary
This study investigates changes in weather systems that bring winter precipitation to south Asia. We find that these systems, known as western disturbances, are occurring more frequently and lasting longer into the summer months. This shift is leading to devastating floods, as happened recently in north India. By analysing 70 years of weather data, we trace this change to shifts in major air currents known as the subtropical jet. Due to climate change, such events are becoming more frequent.
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022, https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the
boreal summer intraseasonal oscillation– the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Cited articles
Adler, R., Sapiano, M., Huffman, G., Bolvin, D., Gu, G., Wang, J., and Becker, A.: The new version 2.3 of the Global Precipitation Climatology Project (GPCP) monthly analysis product, University of Maryland, 1072–1084, https://psl.noaa.gov/thredds/catalog/Datasets/gpcp/catalog.html?dataset=Datasets/gpcp/precip.mon.mean.nc (last access: 10 February 2024), 2016.
Aggarwal, D., Chakraborty R., and Attada, R.: Investigating bi-decadal precipitation changes over the Northwest Himalayas during the pre-monsoon: role of Pacific decadal oscillations, Clim. Dynam., 62, 1203–1218, https://doi.org/10.1007/s00382-023-06969-3, 2024.
Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., and Putkonen, J.: Spatial patterns of precipitation and topography in the Himalaya, Geological Society of America, https://doi.org/10.1130/2006.2398(03), 2006.
Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications, Hydrol. Earth Syst. Sci., 8, 47–61, https://doi.org/10.5194/hess-8-47-2004, 2004.
Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, S. J. S., and Armstrong, B.: Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow, Reg. Environ. Change, 19, 1249–1261, https://doi.org/10.1007/s10113-018-1429-0, 2019.
Barlow, M., Wheeler, M., Lyon, B., and Cullen, H.: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation, Mon. Weather Rev., 133, 3579–3594, https://doi.org/10.1175/MWR3026.1, 2005.
Barros, A. P., Chiao, S., Lang, T. J., Burbank, D., and Putkonen, J.: From weather to climate Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya, Geological Society of America, https://doi.org/10.1130/S2006.2398(02), 2006.
Basu, S., Bieniek, P. A., and Deoras, A.: An investigation of reduced western disturbance activity over Northwest India in November–December 2015 compared to 2014 – A case study, Asia-Pacif. J. Atmos. Sci., 53, 75–83, https://doi.org/10.1007/s13143-017-0006-7, 2017.
Baudouin, J. P., Herzog, M., and Petrie, C. A.: Cross-validating precipitation datasets in the Indus River basin, Hydrol. Earth Syst. Sci., 24, 427–450, https://doi.org/10.5194/hess-24-427-2020, 2020.
Baudouin, J. P., Herzog, M., and Petrie, C. A.: Synoptic processes of winter precipitation in the Upper Indus Basin, Weather Clim. Dynam., 2, 1187–1207, https://doi.org/10.5194/wcd-2-1187-2021, 2021.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Behera, S. K. and Yamagata, T.: Subtropical SST dipole events in the southern Indian Ocean, Geophys. Res. Lett., 28, 327–330, https://doi.org/10.1029/2000GL011451, 2001.
Bharati, P., Deb, P., Hunt, K. M., Orr, A., and Dash, M. K.: ENSO-induced latitudinal variation of the subtropical jet modulates extreme winter precipitation over the Western Himalaya, Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-4057-2, in press, 2025.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., and Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res.-Earth, 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Bosilovich, M. G., Chen, J., Robertson, F. R., and Adler, R. F.: Evaluation of global precipitation in reanalyses, J. Appl. Meteorol. Clim., 47, 2279–2299, https://doi.org/10.1175/2008JAMC1921.1, 2008.
Cannon, F., Carvalho, L. M., Jones, C., and Bookhagen, B.: Multi-annual variations in winter westerly disturbance activity affecting the Himalaya, Clim. Dynam., 44, 441–455, https://doi.org/10.1007/s00382-014-2248-8, 2015.
Cannon, F., Carvalho, L. M., Jones, C., Hoell, A., Norris, J., Kiladis, G. N., and Tahir, A. A.: The influence of tropical forcing on extreme winter precipitation in the western Himalaya, Clim. Dynam., 48, 1213–1232, https://doi.org/10.1007/s00382-016-3137-0, 2017.
Dahri, Z. H., Moors, E., Ludwig, F., Ahmad, S., Khan, A., Ali, I., and Kabat, P.: Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus basin, Int. J. Climatol., 38, 3842–3860, https://doi.org/10.1002/joc.5539, 2018.
Dai, A.: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010, Clim. Dynam., 41, 633–646, https://doi.org/10.1007/s00382-012-1446-5, 2013.
de Kok, R. J., Tuinenburg, O. A., Bonekamp, P. N., and Immerzeel, W. W.: Irrigation as a potential driver for anomalous glacier behavior in High Mountain Asia, Geophys. Res. Lett., 45, 2047–2054, https://doi.org/10.1002/2017GL076158, 2018.
Deser, C., Phillips, A. S., and Hurrell, J. W.: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900, J. Climate, 17, 3109–3124, https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2, 2004.
Dettinger, M. D., Cayan, D. R., Diaz, H. F., and Meko, D. M.: North–south precipitation patterns in western North America on interannual-to-decadal timescales, J. Climate, 11, 3095–3111, https://doi.org/10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2, 1998.
Dimri, A. P.: Relationship between ENSO phases with Northwest India winter precipitation, Int. J. Climatol., 33, 1917–1923, https://doi.org/10.1002/joc.3559, 2013.
Dimri, A. P. and Dash, S. K.: Wintertime climatic trends in the western Himalayas, Climatic Change, 111, 775–800, https://doi.org/10.1007/s10584-011-0201-y, 2012.
Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., and Sikka, D. R.: Western disturbances: a review, Rev. Geophys., 53, 225–246, https://doi.org/10.1002/2014RG000460, 2015.
Dollan, I. J., Maina, F. Z., Kumar, S. V., Nikolopoulos, E. I., and Maggioni, V.: An assessment of gridded precipitation products over High Mountain Asia, J. Hydrol.: Reg. Stud., 52, 101675, https://doi.org/10.1016/j.ejrh.2024.101675, 2024.
Dong, B. and Dai, A.: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe, Clim. Dynam., 45, 2667–2681, https://doi.org/10.1007/s00382-015-2500-x, 2015.
Duchon, C. E.: Lanczos filtering in one and two dimensions, J. Appl. Meteorol. Clim., 18, 1016-1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2, 1979.
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J.: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US, Geophys. Res. Lett., 28, 2077–2080, https://doi.org/10.1029/2000GL012745, 2001.
Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J., and Dehecq, A.: Manifestations and mechanisms of the Karakoram glacier Anomaly, Nat. Geosci., 13, 8–16, https://doi.org/10.1038/s41561-019-0513-5, 2020.
Filippi, L., Palazzi, E., von Hardenberg, J., and Provenzale, A.: Multidecadal variations in the relationship between the NAO and winter precipitation in the Hindu Kush–Karakoram, J. Climate, 27, 7890–7902, https://doi.org/10.1175/JCLI-D-14-00286.1, 2014.
Forsythe, N., Fowler, H. J., Li, X. F., Blenkinsop, S., and Pritchard, D.: Karakoram temperature and glacial melt driven by regional atmospheric circulation variability, Nat. Clim. Change, 7, 664–670, https://doi.org/10.1038/NCLIMATE3361, 2017.
Gardelle, J., Berthier, E., and Arnaud, Y.: Slight mass gain of Karakoram glaciers in the early twenty-first century, Nat. Geosci., 5, 322–325, https://doi.org/10.1038/NGEO1450, 2012.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Harris, I. P. D. J., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, 2014.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., and Berrisford, P.: Operational global reanalysis: Progress, future directions and synergies with NWP, ERA report Series No. 27, European Centre for Medium Range Weather Forecasts, Reading, UK, https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=download (last access: 10 February 2025), 2018.
Hewitt, K.: The Karakoram anomaly? Glacier expansion and the `elevation effect', Karakoram Himalaya, Mt. Res. Dev., 25, 332–340, https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2, 2005.
Hewitt, K..: Glaciers of the Karakoram Himalaya, in: Encyclopedia of Snow, Ice and Glaciers, Vol. 25, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer Netherlands, Dordrecht, 429–436, https://doi.org/10.1007/978-94-007-6311-1, 2014.
Hoell, A., Barlow, M., and Saini, R.: Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections, J. Climate, 26, 8850–8867, https://doi.org/10.1175/JCLI-D-12-00306.1, 2013.
Hu, X. and Yuan, W.: Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events, Int. J. Climatol., 41, 2625–2637, https://doi.org/10.1002/joc.6980, 2021.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., and Stocker, E. F.: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., and Yoo, S. H.: NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG), Algorithm theoretical basis document (ATBD) version 4, 2020-05, https://disc.gsfc.nasa.gov/datasets?keywords=GPM_IMERGV07&page=1 (last access: 10 February 2025), 2015.
Hunt, K. M. and Zaz, S. N.: Linking the North Atlantic Oscillation to winter precipitation over the Western Himalaya through disturbances of the subtropical jet, Clim. Dynam., 60, 2389–2403, https://doi.org/10.1007/s00382-022-06450-7, 2023.
Hunt, K. M., Turner, A. G., and Shaffrey, L. C.: The evolution, seasonality and impacts of western disturbances, Q. J. Roy. Meteorol. Soc., 144, 278–290, https://doi.org/10.1002/qj.3200, 2017.
Hunt, K. M. R., Curio, J., Turner, A. G., and Schiemann, R.: Subtropical westerly jet influence on occurrence of western disturbances and Tibetan Plateau vortices, Geophys. Res. Lett., 45, 8629–8636, https://doi.org/10.1029/2018GL077734, 2018.
Hunt, K. M. R., Baudouin, J.-P., Turner, A. G., Dimri, A. P., Jeelani, G., Pooja, Chattopadhyay, R., Cannon, F., Arulalan, T., Shekhar, M. S., Sabin, T. P., and Palazzi, E.: Western disturbances and climate variability: a review of recent developments, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-820, 2024.
Javed, A., Kumar, P., Hodges, K. I., Sein, D. V., Dubey, A. K., and Tiwari, G.: Does the recent revival of western disturbances govern the Karakoram anomaly?, J. Climate, 35, 4383–4402, https://doi.org/10.1175/JCLI-D-21-0129.1, 2022.
Joshi, M. K., Rai, A., and Pandey, A. C.: Validation of TMPA and GPCP 1DD against the ground truth rain-gauge data for Indian region, Int. J. Climatol., 33, 2633–2648, https://doi.org/10.1002/joc.3612, 2013.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kamil, S., Almazroui, M., Kang, I. S., Hanif, M., Kucharski, F., Abid, M. A., and Saeed, F.: Long-term ENSO relationship to precipitation and storm frequency over western Himalaya–Karakoram–Hindukush region during the winter season, Clim. Dynam., 53, 5265–5278, https://doi.org/10.1007/s00382-019-04859-1, 2019.
Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., and Milly, P. C.: Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle, Nat. Geosci., 7, 834–840, https://doi.org/10.1038/NGEO2269, 2014.
Kar, S. C. and Rana, S.: Interannual variability of winter precipitation over northwest India and adjoining region: impact of global forcings, Theor. Appl. Climatol., 116, 609–623, https://doi.org/10.1007/s00704-013-0968-z, 2014.
Kishore, P., Jyothi, S., Basha, G., Rao, S. V. B., Rajeevan, M., Velicogna, I., and Sutterley, T. C.: Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends, Clim. Dynam., 46, 541–556, https://doi.org/10.1007/s00382-015-2597-y, 2016.
Krishnan, R. and Sugi, M.: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall, Clim. Dynam., 21, 233–242, https://doi.org/10.1007/s00382-003-0330-8, 2003.
Krishnan, R., Sabin, T. P., Madhura, R. K., Vellore, R. K., Mujumdar, M., Sanjay, J., and Rajeevan, M.: Non-monsoonal precipitation response over the Western Himalayas to climate change, Clim. Dynam., 52, 4091–4109, https://doi.org/10.1007/s00382-018-4357-2, 2019.
Krishnamurthy, L. and Krishnamurthy, V.: Decadal scale oscillations and trend in the Indian monsoon rainfall, Clim. Dynam., 43, 319–331, https://doi.org/10.1007/s00382-013-1870-1, 2014a.
Krishnamurthy, L. and Krishnamurthy, V. J. C. D.: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation, Clim. Dynam., 42, 2397–2410, https://doi.org/10.1007/s00382-013-1856-z, 2014b.
Kumar, P., Saharwardi, M. S., Banerjee, A., Azam, M. F., Dubey, A. K., and Murtugudde, R.: Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram, Sci. Rep., 9, 18192, https://doi.org/10.1038/s41598-019-54553-9, 2019.
Lang, T. J. and Barros, A. P.: Winter storms in the central Himalayas, J. Meteorol. Soc. Jpn. Ser. II, 82, 829–844, https://doi.org/10.2151/jmsj.2004.829, 2004.
Mantua, N. J., Hare, S. R., and Zhang, Y.: A Pacific interdecadal climate oscillation with impacts on salmon production, Oceanogr. Literat. Rev., 1, 36, 1998.
Matsumura, S., Horinouchi, T., Sugimoto, S., and Sato, T.: Response of the Baiu rainband to northwest Pacific SST anomalies and its impact on atmospheric circulation, J. Climate, 29, 3075–3093, https://doi.org/10.1175/JCLI-D-15-0691.1, 2016.
Ménégoz, M., Gallée, H., and Jacobi, H. W.: Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations, Hydrol. Earth Syst. Sci., 17, 3921–3936, https://doi.org/10.5194/hess-17-3921-2013, 2013.
Midhuna, T. M. and Dimri, A. P.: Impact of arctic oscillation on Indian winter monsoon, Meteorol. Atmos. Phys., 131, 1157–1167, https://doi.org/10.1007/s00703-018-0628-z, 2019.
Midhuna, T. M., Kumar, P., and Dimri, A. P.: A new Western Disturbance Index for the Indian winter monsoon, J. Earth Syst. Sci., 129, 1-14, https://doi.org/10.1007/s12040-019-1324-1, 2020.
Newman, M., Shin, S. I., and Alexander, M. A.: Natural variation in ENSO flavors, Geophys. Res. Lett., 38, L14705, https://doi.org/10.1029/2011GL047658, 2011.
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., and Smith, C. A.: The Pacific decadal oscillation, revisited, J. Climate, 29, 4399–4427, https://doi.org/10.1175/JCLI-D-15-0508.1, 2016.
Nischal, Attada, R. and Hunt, K. M.: Evaluating winter precipitation over the western Himalayas in a high-resolution Indian regional reanalysis using multisource climate datasets, J. Appl. Meteorol. Clim., 61, 1613–1633, https://doi.org/10.1175/JAMC-D-21-0172.1, 2022.
Norris, J., Carvalho, L. M., Jones, C., and Cannon, F.: WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya, J. Geophys. Res.-Atmos., 120, 3114–3138, https://doi.org/10.1002/2014JD022592, 2015.
Norris, J., Carvalho, L. M., Jones, C., Cannon, F., Bookhagen, B., Palazzi, E., and Tahir, A. A.: The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation, Clim. Dynam., 49, 2179–2204, https://doi.org/10.1007/s00382-016-3414-y, 2017.
Norris, J., Carvalho, L. M., Jones, C., and Cannon, F.: Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations, Clim. Dynam., 52, 159–180, https://doi.org/10.1007/s00382-018-4133-3, 2019.
Palazzi, E., Von Hardenberg, J., and Provenzale, A.: Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios, J. Geophys. Res.-Atmos., 118, 85–100, https://doi.org/10.1029/2012JD018697, 2013.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319–324, 1999.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from drought stress, Nature, 569, 649–654, https://doi.org/10.1038/s41586-019-1240-1, 2019.
Qin, M., Li, D., Dai, A., Hua, W., and Ma, H.: The influence of the Pacific Decadal Oscillation on North Central China precipitation during boreal autumn, Int. J. Climatol., 38, e821–e831, https://doi.org/10.1002/joc.5410, 2018.
Rana, S., McGregor, J., and Renwick, J.: Precipitation seasonality over the Indian subcontinent: An evaluation of gauge, reanalyses, and satellite retrievals, J. Hydrometeorol., 16, 631–651, https://doi.org/10.1175/JHM-D-14-0106.1, 2015.
Rana, S., McGregor, J., and Renwick, J.: Dominant modes of winter precipitation variability over Central Southwest Asia and inter-decadal change in the ENSO teleconnection, Clim. Dynam., 53, 5689–5707, https://doi.org/10.1007/s00382-019-04889-9, 2019.
Ridley, J., Wiltshire, A., and Mathison, C.: More frequent occurrence of westerly disturbances in Karakoram up to 2100, Sci. Total Environ., 468, S31–S35, https://doi.org/10.1016/j.scitotenv.2013.03.074, 2013.
Roy, J., Moors, E., Murthy, M. S. R., Prabhakar, S. V. R. K., Khattak, B. N., Shi, P., Huggel, C., and Chitale, V.: Exploring futures of the Hindu Kush Himalaya: scenarios and pathways. The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people, Springer, Cham, 99–125, https://doi.org/10.1007/978-3-319-92288-1_4, 2020.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., and Ziese, M.: GPCC full data monthly product version 2018 at 0.25: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data, Global Precipitation Climatology Centre, https://downloads.psl.noaa.gov/Datasets/gpcc/full_v7/ (last access: 10 February 2025), 2018.
Singh, T., Saha, U., Prasad, V. S., and Gupta, M. D.: Assessment of newly-developed high resolution reanalyses (IMDAA, NGFS and ERA5) against rainfall observations for Indian region, Atmos. Res., 259, 105679, https://doi.org/10.1016/j.atmosres.2021.105679, 2021.
Strangeways, I.: A history of rain gauges, Weather, 65, 133–138, https://doi.org/10.1002/wea.548, 2010.
Syed, F. S., Giorgi, F., Pal, J. S., and Keay, K.: Regional climate model simulation of winter climate over Central-Southwest Asia, with emphasis on NAO and ENSO effects, Int. J. Climatol., 30, 220–235, https://doi.org/10.1002/joc.1887, 2010.
Tahir, A. A., Chevallier, P., Arnaud, Y., and Ahmad, B.: Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan, Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011, 2011.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Wang, L., Chen, W., Zhou, W., and Huang, R.: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway, J. Climate, 22, 600–614, https://doi.org/10.1175/2008JCLI2295.1, 2009.
Wang, S., Huang, J., He, Y., and Guan, Y.: Combined effects of the Pacific decadal oscillation and El Nino-southern oscillation on global land dry–wet changes, Sci. Rep., 4, 6651, https://doi.org/10.1038/srep06651, 2014.
Wang, W., Matthes, K., Omrani, N. E., and Latif, M.: Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation, Sci. Rep., 6, 29537, https://doi.org/10.1038/srep29537, 2016.
Wang, X., Tolksdorf, V., Otto, M., and Scherer, D.: High Asia Refined Analysis Version 2 (HAR v2): a New Atmospheric Data Set for the Third Pole Region, EGU General Assembly 2020, Online, 4–8 May 2020, p. 8756, EGU2020-8756, https://doi.org/10.5194/egusphere-egu2020-8756, 2020.
Wittenberg, A. T., Rosati, A., Delworth, T. L., Vecchi, G. A., and Zeng, F.: ENSO modulation: Is it decadally predictable?, J. Climate, 27, 2667–2681, https://doi.org/10.1175/JCLI-D-13-00577.1, 2014.
Wu, B. and Wang, J.: Winter Arctic oscillation, Siberian high and East Asian winter monsoon, Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373, 2002.
Wu, X. and Mao, J.: Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation, Clim. Dynam., 47, 3203–3220, https://doi.org/10.1007/s00382-016-3021-y, 2016.
Xie, P. and Arkin, P. A.: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, B. Am. Meteorol. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2, 1997.
Yadav, R. K., Rupa Kumar, K., and Rajeevan, M.: Role of Indian Ocean sea surface temperatures in modulating northwest Indian winter precipitation variability, Theor. Appl. Climatol., 87, 73–83, https://doi.org/10.1007/s00704-005-0221-5, 2007.
Yadav, R. K., Rupa Kumar, K., and Rajeevan, M.: Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation, J. Geophys. Res.-Atmos., 114, D12112, https://doi.org/10.1029/2008JD011318, 2009.
Yadav, R. K., Yoo, J. H., Kucharski, F., and Abid, M. A.: Why is ENSO influencing northwest India winter precipitation in recent decades?, J. Climate, 23, 1979–1993, https://doi.org/10.1175/2009JCLI3202.1, 2010.
Yamagami, Y. and Tozuka, T.: Interdecadal changes of the Indian Ocean subtropical dipole mode, Clim. Dynam., 44, 3057–3066, https://doi.org/10.1007/s00382-014-2202-9, 2015.
Yang, Q., Ma, Z., and Xu, B.: Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation, Climatic Change, 144, 405–417, https://doi.org/10.1007/s10584-016-1662-9, 2017.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE; Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, B. Am. Metorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Yin, J. and Zhang, Y.: Decadal changes of East Asian jet streams and their relationship with the mid-high latitude circulations, Clim. Dynam., 56, 2801–2821, https://doi.org/10.1007/s00382-020-05613-8, 2021.
Zhang, R. and Delworth, T. L.: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability, Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/2007GL031601, 2007.
Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like interdecadal variability: 1900–93, J. Climate, 10, 1004–1020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2, 1997.
Short summary
Our study highlights that the negative phase of the Pacific Decadal Oscillation (PDO) enhanced winter snowfall in the Karakoram and the Western Himalayas (KH) from 1940 to 2022. This is driven by deep convection, adiabatic cooling, and a wave-like atmospheric pattern linked to the subtropical jet (STJ). The PDO–STJ relationship offers insights into decadal snowfall predictability in KH, emphasizing the PDO's role in regional climate dynamics.
Our study highlights that the negative phase of the Pacific Decadal Oscillation (PDO) enhanced...