Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
Thomas Birner
Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany
Related authors
Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside
Weather Clim. Dynam., 4, 1087–1109, https://doi.org/10.5194/wcd-4-1087-2023, https://doi.org/10.5194/wcd-4-1087-2023, 2023
Short summary
Short summary
This study examines quasi-periodic variability in the tropical Pacific on interannual timescales and related physics using a recently developed time series analysis tool. We find that wind stress in the west Pacific and recharge–discharge of ocean heat content are likely related to each other on ~1.5–4.5-year timescales (but not on others) and dominate variability in sea surface temperatures on those timescales. This may have further implications for climate models and long-term prediction.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Frederik Harzer, Hella Garny, Felix Ploeger, J. Moritz Menken, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2195, https://doi.org/10.5194/egusphere-2025-2195, 2025
Short summary
Short summary
We study ozone transport in the extratropical lowermost stratosphere using potential temperature as vertical coordinate, thereby distinguishing adiabatic and diabatic processes. We find that on top of known dominant transport processes (quasi-horizontal mixing, slow diabatic descent) vertical mixing plays an important role near the tropopause. Our findings are relevant for understanding ozone's role in climate including its imprint on tropospheric ozone via stratosphere-troposphere air exchange.
Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, and Katharina Turhal
Atmos. Chem. Phys., 25, 1227–1252, https://doi.org/10.5194/acp-25-1227-2025, https://doi.org/10.5194/acp-25-1227-2025, 2025
Short summary
Short summary
The lowermost stratosphere (LMS) plays an important role in the Earth's climate, containing strong gradients of ozone and water vapor. Our results indicate that the thermodynamic structure of the LMS was changing between 1979–2019 in response to anthropogenic climate change and the recovery of stratospheric ozone, also indicating large-scale circulation changes. We find that both the upper and the lower LMS boundaries show an (upward) trend, which has implications for the LMS mass.
Rasul Baikhadzhaev, Felix Ploeger, Peter Preusse, Manfred Ern, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4088, https://doi.org/10.5194/egusphere-2024-4088, 2025
Short summary
Short summary
Across four reanalyses, shallow branch of the stratospheric overturning circulation was found to be driven by the largest waves with wavenumbers 1 to 3, and deep branch of the circulation was found to be driven by smaller-scale waves. Yet, the height of the level separating the branches is depended on the reanalysis considered. Thus using the appropriate separation levels in model inter-comparisons could reduce the spread between models regarding climatology and trends in the circulation.
Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
Atmos. Chem. Phys., 24, 13653–13679, https://doi.org/10.5194/acp-24-13653-2024, https://doi.org/10.5194/acp-24-13653-2024, 2024
Short summary
Short summary
The tropopause separates the troposphere, where many greenhouse gases originate, from the stratosphere. This study examines a tropopause defined by potential vorticity – an analogue for angular momentum that changes sharply in the subtropics, creating a transport barrier. Between 1980 and 2017, this tropopause shifted poleward at lower altitudes and equatorward above, suggesting height-dependent changes in atmospheric circulation that may affect greenhouse gas distribution and global warming.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside
Weather Clim. Dynam., 4, 1087–1109, https://doi.org/10.5194/wcd-4-1087-2023, https://doi.org/10.5194/wcd-4-1087-2023, 2023
Short summary
Short summary
This study examines quasi-periodic variability in the tropical Pacific on interannual timescales and related physics using a recently developed time series analysis tool. We find that wind stress in the west Pacific and recharge–discharge of ocean heat content are likely related to each other on ~1.5–4.5-year timescales (but not on others) and dominate variability in sea surface temperatures on those timescales. This may have further implications for climate models and long-term prediction.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Short summary
Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Cited articles
Albers, J. R., Kiladis, G. N., Birner, T., and Dias, J.: Tropical
Upper-Tropospheric Potential Vorticity Intrusions during Sudden Stratospheric
Warmings, J. Atmos. Sci., 73, 2361–2384, https://doi.org/10.1175/JAS-D-15-0238.1, 2016. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a
Birner, T., Thompson, D. W. J., and Shepherd, T. G.: Up‐gradient eddy fluxes
of potential vorticity near the subtropical jet, Geophys. Res. Lett., 40,
5988–5993, https://doi.org/10.1002/2013GL057728, 2013. a, b, c, d
Burger, A. P.: Scale Consideration of Planetary Motions of the Atmosphere,
Tellus, 10, 195–205, https://doi.org/10.1111/j.2153-3490.1958.tb02005.x, 1958. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B. Am. Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015. a, b
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate, 20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a
Charney, J. G.: The Dynamics Of Long Waves In A Baroclinic Westerly Current, J. Meteorol., 4, 136–162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2, 1947. a
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances
from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083, 1961. a
Charney, J. G. and Eliassen, A.: A Numerical Method for Predicting the
Perturbations of the Middle Latitude Westerlies, Tellus, 1, 38–54,
https://doi.org/10.1111/j.2153-3490.1949.tb01258.x, 1949. a, b
de la Cámara, A., Albers, J. R., Birner, T., Garcia, R. R., Hitchcock, P., Kinnison, D. E., and Smith, A. K.: Sensitivity of Sudden Stratospheric
Warmings to Previous Stratospheric Conditions, J. Atmos. Sci., 74, 2857–2877, https://doi.org/10.1175/JAS-D-17-0136.1, 2017. a, b
Domeisen, D. I. V. and Plumb, R. A.: Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability,
Geophys. Res. Lett., 39, L20817, https://doi.org/10.1029/2012GL053684, 2012. a
Domeisen, D. I. V., Sun, L., and Chen, G.: The role of synoptic eddies in the
tropospheric response to stratospheric variability, Geophys. Res. Lett., 40, 4933–4937, https://doi.org/10.1002/grl.50943, 2013. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 2. Predictability Arising From Stratosphere–Troposphere Coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020. a
Dunn-Sigouin, E. and Shaw, T.: Dynamics of anomalous stratospheric eddy heat
flux events in an idealized model, J. Atmos. Sci., 77, 2187–2202, https://doi.org/10.1175/JAS-D-19-0231.1, 2020. a
Dwyer, J. G. and O'Gorman, P. A.: Moist Formulations of the Eliassen–Palm
Flux and Their Connection to the Surface Westerlies, J. Atmos. Sci., 74, 513–530, https://doi.org/10.1175/JAS-D-16-0111.1, 2017. a, b, c
Eady, E. T.: Long Waves and Cyclone Waves, Tellus, 1, 33–52,
https://doi.org/10.1111/j.2153-3490.1949.tb01265.x, 1949. a
Eliassen, A. and Palm, E.: On the transfer of energy in stationary mountain
waves, Geofys. Pub., 22, 1–3, 1961. a
Esler, J. G. and Matthewman, N. J.: Stratospheric Sudden Warmings as
Self-Tuning Resonances. Part II: Vortex Displacement Events, J. Atmos. Sci., 68, 2505–2523, https://doi.org/10.1175/JAS-D-11-08.1, 2011. a, b
Garfinkel, C. I., White, I., Gerber, E. P., Jucker, M., and Erez, M.: The
Building Blocks of Northern Hemisphere Wintertime Stationary Waves, J. Climate, 33, 5611–5633, https://doi.org/10.1175/JCLI-D-19-0181.1, 2020. a
Gerber, E. P.: Stratospheric versus Tropospheric Control of the Strength and
Structure of the Brewer–Dobson Circulation, J. Atmos. Sci., 69, 2857–2877, https://doi.org/10.1175/JAS-D-11-0341.1, 2012. a
Gerber, E. P. and Martineau, P.: Quantifying the variability of the annular
modes: reanalysis uncertainty vs. sampling uncertainty, Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, 2018. a
Gerber, E. P. and Polvani, L. M.: Stratosphere–Troposphere Coupling in a
Relatively Simple AGCM: The Importance of Stratospheric Variability, J. Climate, 22, 1920–1933, https://doi.org/10.1175/2008JCLI2548.1, 2009. a, b
Hartmann, D. L.: Baroclinic Instability of Realistic Zonal-Mean States to
Planetary Waves1, J. Atmos. Sci., 36, 2336–2349,
https://doi.org/10.1175/1520-0469(1979)036<2336:BIORZM>2.0.CO;2, 1979. a, b
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine, K. P.: On the “Downward Control” of Extratropical Diabatic Circulations by Eddy-Induced Mean Zonal Forces, J. Atmos. Sci., 48, 651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991. a
Held, I. M.: Stationary and quasi-stationary eddies in the extratropical
troposphere: theory, in: Large-Scale Dynamical Processes in the Atmosphere, edited by: Hoskins, B. J. and Pearce, R., Academic Press, London, UK, 1983. a
Held, I. M.: The gap between simulation and understanding in climate modeling, B. Am. Meteorol. Soc., 86, 1609–1614, 2005. a
Held, I. M. and Hoskins, B. J.: Large-Scale Eddies and the General Circulation of the Troposphere, in: Issues in Atmospheric and Oceanic Modeling, vol. 28 of Advances in Geophysics, edited by: Saltzman, B., Elsevier, Orlando, USA, 3–31, 1985. a
Held, I. M., Ting, M., and Wang, H.: Northern Winter Stationary Waves: Theory
and Modeling, J. Climate, 15, 2125–2144,
https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2, 2002. a
Hitchcock, P.: On the value of reanalyses prior to 1979 for dynamical studies
of stratosphere–troposphere coupling, Atmos. Chem. Phys., 19, 2749–2764, https://doi.org/10.5194/acp-19-2749-2019, 2019. a
Hitchcock, P. and Haynes, P. H.: Stratospheric control of planetary waves,
Geophys. Res. Lett., 43, 11,884–11,892, https://doi.org/10.1002/2016GL071372, 2016. a, b, c
Hitchcock, P. and Simpson, I. R.: The Downward Influence of Stratospheric
Sudden Warmings, J. Atmos. Sci., 71, 3856–3876, https://doi.org/10.1175/JAS-D-14-0012.1, 2014. a
Holton, J. R. and Mass, C.: Stratospheric Vacillation Cycles, J. Atmos. Sci., 33, 2218–2225, https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2, 1976. a
Hoskins, B. J.: Dynamical processes in the atmosphere and the use of models,
Q. J. Roy. Meteorol. Soc., 109, 1–21, https://doi.org/10.1002/qj.49710945902, 1983a. a
Hoskins, B. J., James, I. N., and White, G.: The Shape, Propagation and
Mean-Flow Interaction of Large-Scale Weather Systems, J. Atmos. Sci., 40,
1595–1612, 1983. a
Jucker, M. and Reichler, T.: Dynamical Precursors for Statistical Prediction of Stratospheric Sudden Warming Events, Geophys. Res. Lett., 45, 13124–13132, https://doi.org/10.1029/2018GL080691, 2018. a, b, c
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. a
Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The Life Cycle of the Northern Hemisphere Sudden Stratospheric Warmings, J. Climate, 17,
2584–2596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2, 2004. a
Lindgren, E. A. and Sheshadri, A.: The role of wave–wave interactions in
sudden stratospheric warming formation, Weather Clim. Dynam., 1, 93–109, https://doi.org/10.5194/wcd-1-93-2020, 2020. a
Lindgren, E. A., Sheshadri, A., and Plumb, R. A.: Sudden Stratospheric Warming Formation in an Idealized General Circulation Model Using Three Types of Tropospheric Forcing, J. Geophys. Res.-Atmos., 123, 10125–10139, https://doi.org/10.1029/2018JD028537, 2018. a
Martineau, P.: S-RIP: Zonal-mean dynamical variables of global atmospheric reanalyses on pressure levels, Centre for Environmental Data Analysis, https://doi.org/10.5285/b241a7f536a244749662360bd7839312, 2017. a
Martineau, P., Wright, J. S., Zhu, N., and Fujiwara, M.: Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data, 10, 1925–1941, https://doi.org/10.5194/essd-10-1925-2018, 2018. a, b
Matsuno, T.: Vertical Propagation of Stationary Planetary Waves in the Winter
Northern Hemisphere, J. Atmos. Sci., 27, 871–883,
https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970. a
Matsuno, T.: A Dynamical Model of the Stratospheric Sudden Warming, J. Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971. a
Matthewman, N. J. and Esler, J. G.: Stratospheric Sudden Warmings as
Self-Tuning Resonances. Part I: Vortex Splitting Events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/JAS-D-11-07.1, 2011. a, b, c
Pegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie, E., Burgman,
R., Bell, R., DelSole, T., Min, D., Zhu, Y., Li, W., Sinsky, E., Guan, H.,
Gottschalck, J., Metzger, E. J., Barton, N. P., Achuthavarier, D., Marshak,
J., Koster, R. D., Lin, H., Gagnon, N., Bell, M., Tippett, M. K., Robertson, A. W., Sun, S., Benjamin, S. G., Green, B. W., Bleck, R., and Kim, H.: The
Subseasonal Experiment (SubX): A Multimodel Subseasonal Prediction Experiment, B. Am. Meteorol. Soc., 100, 2043–2060, https://doi.org/10.1175/BAMS-D-18-0270.1, 2019. a
Phillips, N. A.: Geostrophic motion, Rev. Geophys., 1, 123–175, 1963. a
Plumb, R. A.: PlanetaryWaves and the Extratropical Winter Stratosphere, in: The Stratosphere: Dynamics, Transport, and Chemistry, vol. 190, edited by: Polvani, L. M., Sobel, A. H., and Waugh, D. W., AGU – American Geophysical Union, Washington, D.C., USA, 23–41, https://doi.org/10.1029/GM190, 2010. a
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N., Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher, M.: ERA-20C: An Atmospheric Reanalysis of the Twentieth Century, J. Climate, 29,
4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016. a, b
Schoeberl, M. R.: Stratospheric warmings: Observations and theory, Rev.
Geophys., 16, 521–538, https://doi.org/10.1029/RG016i004p00521, 1978. a
Scinocca, J. F. and Haynes, P. H.: Dynamical Forcing of Stratospheric Planetary Waves by Tropospheric Baroclinic Eddies, J. Atmos. Sci., 55, 2361–2392, https://doi.org/10.1175/1520-0469(1998)055<2361:DFOSPW>2.0.CO;2, 1998. a, b
Scott, R. K. and Polvani, L. M.: Stratospheric control of upward wave flux near the tropopause, Geophys. Res. Lett., 31, L02115, https://doi.org/10.1029/2003GL017965, 2004. a, b, c
Scott, R. K. and Polvani, L. M.: Internal Variability of the Winter
Stratosphere. Part I: Time-Independent Forcing, J. Atmos. Sci., 63, 2758–2776, https://doi.org/10.1175/JAS3797.1, 2006. a, b
Sjoberg, J. P. and Birner, T.: Transient Tropospheric Forcing of Sudden
Stratospheric Warmings, J. Atmos. Sci., 69, 3420–3432,
https://doi.org/10.1175/JAS-D-11-0195.1, 2012. a
Sjoberg, J. P. and Birner, T.: Stratospheric Wave–Mean Flow Feedbacks and
Sudden Stratospheric Warmings in a Simple Model Forced by Upward Wave Activity Flux, J. Atmos. Sci., 71, 4055–4071, https://doi.org/10.1175/JAS-D-14-0113.1, 2014. a, b
Smagorinsky, J.: The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere, Q. J. Roy.
Meteorol. Soc., 79, 342–366, https://doi.org/10.1002/qj.49707934103, 1953. a, b
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M.: Stratospheric
Connection to Northern Hemisphere Wintertime Weather: Implications for
Prediction, J. Climate, 15, 1421–1428,
https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2, 2002. a
Tripathi, O. P., Charlton-Perez, A., Sigmond, M., and Vitart, F.: Enhanced
long-range forecast skill in boreal winter following stratospheric strong
vortex conditions, Environ. Res. Lett., 10, 104007,
https://doi.org/10.1088/1748-9326/10/10/104007, 2015. a
Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics, Cambridge University
Press, Cambridge, 2006. a
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C.,
Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H.-S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D.-J., Xiao, H., Zaripov, R., and Zhang, L.: The Subseasonal to Seasonal (S2S) Prediction Project Database, B.
Am. Meteorol. Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1, 2017.
a
White, I., Garfinkel, C. I., Gerber, E. P., Jucker, M., Aquila, V., and Oman,
L. D.: The Downward Influence of Sudden Stratospheric Warmings: Association
with Tropospheric Precursors, J. Climate, 32, 85–108, https://doi.org/10.1175/JCLI-D-18-0053.1, 2019. a, b, c
Short summary
This study addresses the origin and impacts of a source of large-scale atmospheric waves in the lower stratosphere, which have not been examined before. This wave source is caused by interactions of waves of smaller scales. Here we show that as it lies in the lower stratosphere, this wave source can precede extreme events in the stratosphere and that such events can then lead to a response of the tropospheric weather patterns several weeks later (potential for long-term forecasting).
This study addresses the origin and impacts of a source of large-scale atmospheric waves in the...