Research article
04 Nov 2021
Research article
| 04 Nov 2021
Flow dependence of wintertime subseasonal prediction skill over Europe
Constantin Ardilouze et al.
Related authors
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Constantin Ardilouze, Lauriane Batté, and Michel Déqué
Adv. Sci. Res., 14, 115–121, https://doi.org/10.5194/asr-14-115-2017, https://doi.org/10.5194/asr-14-115-2017, 2017
Short summary
Short summary
Was the July 2015 heat wave that struck Western Europe predictable more than 10 days ahead and to what extent? This article addresses the question by assessing forecasts from the CNRM-CM sub-seasonal forecast system. It is found that a warm anomaly was anticipated up to one month ahead despite the limited skill of the forecast system at such lead-time. The possible causes for this relative success are then discussed.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Pierre Nabat, Samuel Somot, Christophe Cassou, Marc Mallet, Martine Michou, Dominique Bouniol, Bertrand Decharme, Thomas Drugé, Romain Roehrig, and David Saint-Martin
Atmos. Chem. Phys., 20, 8315–8349, https://doi.org/10.5194/acp-20-8315-2020, https://doi.org/10.5194/acp-20-8315-2020, 2020
Short summary
Short summary
The present work aims at better understanding regional climate–aerosol interactions over the Euro-Mediterranean region by studying the relationships between aerosols and atmospheric circulation. Based on 40-year regional climate simulations (1979–2018), our results show the role of the North Atlantic Oscillation in driving the interannual aerosol variability, and that of weather regimes for the daily variability, with ensuing effects on shortwave surface radiation and surface temperature.
Constantin Ardilouze, Lauriane Batté, and Michel Déqué
Adv. Sci. Res., 14, 115–121, https://doi.org/10.5194/asr-14-115-2017, https://doi.org/10.5194/asr-14-115-2017, 2017
Short summary
Short summary
Was the July 2015 heat wave that struck Western Europe predictable more than 10 days ahead and to what extent? This article addresses the question by assessing forecasts from the CNRM-CM sub-seasonal forecast system. It is found that a warm anomaly was anticipated up to one month ahead despite the limited skill of the forecast system at such lead-time. The possible causes for this relative success are then discussed.
George J. Boer, Douglas M. Smith, Christophe Cassou, Francisco Doblas-Reyes, Gokhan Danabasoglu, Ben Kirtman, Yochanan Kushnir, Masahide Kimoto, Gerald A. Meehl, Rym Msadek, Wolfgang A. Mueller, Karl E. Taylor, Francis Zwiers, Michel Rixen, Yohan Ruprich-Robert, and Rosie Eade
Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, https://doi.org/10.5194/gmd-9-3751-2016, 2016
Short summary
Short summary
The Decadal Climate Prediction Project (DCPP) investigates our ability to skilfully predict climate variations from a year to a decade ahead by means of a series of retrospective forecasts. Quasi-real-time forecasts are also produced for potential users. In addition, the DCPP investigates how perturbations such as volcanoes affect forecasts and, more broadly, what new information can be learned about the mechanisms governing climate variations by means of case studies of past climate behaviour.
Lauriane Batté and Michel Déqué
Geosci. Model Dev., 9, 2055–2076, https://doi.org/10.5194/gmd-9-2055-2016, https://doi.org/10.5194/gmd-9-2055-2016, 2016
Short summary
Short summary
Taking into account model inadequacies is a key challenge in climate forecasting. As part of the FP7-SPECS project, we examine how stochastic perturbations of atmospheric model dynamics impact seasonal forecast quality of the CNRM coupled model. The method described in this paper helps derive model error statistics as well as improve key aspects of our forecasting system such as systematic errors over the North Atlantic mid-latitudes.
Related subject area
Atmospheric predictability
Differences in the sub-seasonal predictability of extreme stratospheric events
Impact of Eurasian autumn snow on the winter North Atlantic Oscillation in seasonal forecasts of the 20th century
Bimodality in ensemble forecasts of 2 m temperature: identification
Seasonal forecasts of the Saharan heat low characteristics: a multi-model assessment
Emergence of representative signals for sudden stratospheric warmings beyond current predictable lead times
The impact of GPS and high-resolution radiosonde nudging on the simulation of heavy precipitation during HyMeX IOP6
Seasonal climate influences on the timing of the Australian monsoon onset
Subseasonal prediction of springtime Pacific–North American transport using upper-level wind forecasts
A dynamic and thermodynamic analysis of the 11 December 2017 tornadic supercell in the Highveld of South Africa
How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas)
Robust predictors for seasonal Atlantic hurricane activity identified with causal effect networks
Subseasonal midlatitude prediction skill following Quasi-Biennial Oscillation and Madden–Julian Oscillation activity
Large impact of tiny model domain shifts for the Pentecost 2014 mesoscale convective system over Germany
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Short summary
Accurate predictions of the stratospheric polar vortex can enhance surface weather predictability. Stratospheric events themselves are less predictable, with strong inter-event differences. We assess the predictability of stratospheric acceleration and deceleration events in a sub-seasonal prediction system, finding that the predictability of events is largely dependent on event magnitude, while extreme drivers of deceleration events are not fully represented in the model.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Cameron Bertossa, Peter Hitchcock, Arthur DeGaetano, and Riwal Plougonven
Weather Clim. Dynam., 2, 1209–1224, https://doi.org/10.5194/wcd-2-1209-2021, https://doi.org/10.5194/wcd-2-1209-2021, 2021
Short summary
Short summary
While the assumption of Gaussianity leads to many simplifications, ensemble forecasts often exhibit non-Gaussian distributions. This work has systematically identified the presence of a specific case of
non-Gaussianity, bimodality. It has been found that bimodality occurs in a large portion of global 2 m temperature forecasts. This has drastic implications on forecast skill as the minimum probability in a bimodal distribution often lies at the maximum probability of a Gaussian distribution.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Zheng Wu, Bernat Jiménez-Esteve, Raphaël de Fondeville, Enikő Székely, Guillaume Obozinski, William T. Ball, and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 841–865, https://doi.org/10.5194/wcd-2-841-2021, https://doi.org/10.5194/wcd-2-841-2021, 2021
Short summary
Short summary
We use an advanced statistical approach to investigate the dynamics of the development of sudden stratospheric warming (SSW) events in the winter Northern Hemisphere. We identify distinct signals that are representative of these events and their event type at lead times beyond currently predictable lead times. The results can be viewed as a promising step towards improving the predictability of SSWs in the future by using more advanced statistical methods in operational forecasting systems.
Alberto Caldas-Alvarez, Samiro Khodayar, and Peter Knippertz
Weather Clim. Dynam., 2, 561–580, https://doi.org/10.5194/wcd-2-561-2021, https://doi.org/10.5194/wcd-2-561-2021, 2021
Short summary
Short summary
The prediction capabilities of GPS, operational (low-resolution) and targeted (high-resolution) radiosondes for data assimilation in a Mediterranean heavy precipitation event at different model resolutions are investigated. The results show that even if GPS provides accurate observations, their lack of vertical information hampers the improvement, demonstrating the need for assimilating radiosondes, where the location and timing of release was more determinant than the vertical resolution.
Joel Lisonbee and Joachim Ribbe
Weather Clim. Dynam., 2, 489–506, https://doi.org/10.5194/wcd-2-489-2021, https://doi.org/10.5194/wcd-2-489-2021, 2021
Short summary
Short summary
Why do some monsoon seasons start early, while others start late? For the Australian monsoon, some previous research suggested the El Niño–Southern Oscillation in the months before the onset influenced the monsoon timing. This research tests if this is still correct and if other large-scale climate patterns also influenced onset timing. We found that a strong La Niña pattern usually coincided with an early onset but weak La Niña and El Niño patterns did not show a consistent pattern.
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021, https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.
Lesetja E. Lekoloane, Mary-Jane M. Bopape, Tshifhiwa Gift Rambuwani, Thando Ndarana, Stephanie Landman, Puseletso Mofokeng, Morne Gijben, and Ngwako Mohale
Weather Clim. Dynam., 2, 373–393, https://doi.org/10.5194/wcd-2-373-2021, https://doi.org/10.5194/wcd-2-373-2021, 2021
Short summary
Short summary
We analysed a tornadic supercell that tracked through the northern Highveld region of South Africa for 7 h. We found that atmospheric conditions were conducive for tornado-associated severe storms over the region. A 4.4 km resolution model run by the South African Weather Service was able to predict this supercell, including its timing. However, it underestimated its severity due to underestimations of other important factors necessary for real-world development of these kinds of storms.
Raphael Portmann, Juan Jesús González-Alemán, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, https://doi.org/10.5194/wcd-1-597-2020, 2020
Short summary
Short summary
In September 2018 an intense Mediterranean cyclone with structural similarities to a hurricane, a so-called medicane, caused severe damage in Greece. Its development was uncertain, even just a few days in advance. The reason for this was uncertainties in the jet stream over the North Atlantic 3 d prior to cyclogenesis that propagated into the Mediterranean. They led to an uncertain position of the upper-level disturbance and, as a result, of the position and thermal structure of the cyclone.
Peter Pfleiderer, Carl-Friedrich Schleussner, Tobias Geiger, and Marlene Kretschmer
Weather Clim. Dynam., 1, 313–324, https://doi.org/10.5194/wcd-1-313-2020, https://doi.org/10.5194/wcd-1-313-2020, 2020
Short summary
Short summary
Seasonal outlooks of Atlantic hurricane activity are required to enable risk reduction measures and disaster preparedness. Many seasonal forecasts are based on a selection of climate signals from which a statistical model is constructed. The crucial step in this approach is to select the most relevant predictors without overfitting. Here we show that causal effect networks can be used to identify the most robust predictors. Based on these predictors we construct a competitive forecast model.
Kirsten J. Mayer and Elizabeth A. Barnes
Weather Clim. Dynam., 1, 247–259, https://doi.org/10.5194/wcd-1-247-2020, https://doi.org/10.5194/wcd-1-247-2020, 2020
Short summary
Short summary
Tropical storms are key for harnessing midlatitude weather prediction skill 2–8 weeks into the future. Recently, stratospheric activity was shown to impact tropical storminess and thus may also be important for midlatitude prediction skill on these timescales. This work analyzes two forecast systems to assess whether they capture this additional skill. We find there is enhanced prediction out through week 4 when both the tropical and stratospheric phenomena are active.
Christian Barthlott and Andrew I. Barrett
Weather Clim. Dynam., 1, 207–224, https://doi.org/10.5194/wcd-1-207-2020, https://doi.org/10.5194/wcd-1-207-2020, 2020
Short summary
Short summary
The mesoscale convective system (MCS) that affected Germany at Pentecost 2014 was one of the most severe for decades. However, the predictability of this system was very low. By moving the model domain by just one grid point changed whether the MCS was successfully simulated or not. The decisive factor seems to be small differences in the initial track of the convection: cooler air near the coast inhibited development there, but tracks slightly more inland found more favorable conditions.
Cited articles
Ardilouze, C., Batté, L., and Déqué, M.: Subseasonal-to-seasonal
(S2S) forecasts with CNRM-CM: a case study on the July 2015 West-European
heat wave, Adv. Sci. Res., 14, 115–121, 2017. a
Bach, E., Motesharrei, S., Kalnay, E., and Ruiz-Barradas, A.: Local
Atmosphere–Ocean Predictability: Dynamical Origins, Lead Times, and
Seasonality, J. Climate, 32, 7507–7519, 2019. a
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence
of low-frequency atmospheric circulation patterns, Mon. Weather Rev.,
115, 1083–1126, 1987. a
Batté, L. and Déqué, M.: Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: applications for seasonal forecasts, Geosci. Model Dev., 9, 2055–2076, https://doi.org/10.5194/gmd-9-2055-2016, 2016. a
Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527, 2008. a
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and
Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate,
Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010. a, b
Chevallier, M., Massonnet, F., Goessling, H., Guémas, V., and Jung, T.: The
role of sea ice in sub-seasonal predictability, in: Sub-Seasonal to Seasonal
Prediction, Elsevier, 201–221, https://doi.org/10.1016/B978-0-12-811714-9.00010-3, 2019. a
de Andrade, F. M., Young, M. P., MacLeod, D., Hirons, L. C., Woolnough, S. J.,
and Black, E.: Subseasonal Precipitation Prediction for Africa: Forecast
Evaluation and Sources of Predictability, Weather Forecast., 36,
265–284, 2021. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, 2011. a
Domeisen, D. I.: Estimating the frequency of sudden stratospheric warming
events from surface observations of the North Atlantic Oscillation, J.
Geophys. Res.-Atmos., 124, 3180–3194, 2019. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The role of the stratosphere in
subseasonal to seasonal prediction: 2. Predictability arising from
stratosphere-troposphere coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020. a
Domeisen, D. I., White, C. J., Afargan-Gerstman, H., Muñoz, A. G., Janiga, M. A., Vitart, F., Wulff, C. O., Antoine, S., Ardilouze, C., Batté, L., Bloomfield, H. C., Brayshaw, D., Camargo, S. J., Charlton-Pérez, A., Collins, D., Cowan, T., del Mar Chaves, M., Ferranti, L., Goméz, R., González, P. L., González Romero, C., Infanti, J. M., Karozis, S., Kim, H., Kolstad, E. W., LaJoie, E., Lledó, L., Magnusson, L., Malguzzi, P., Manrique-Suñén, A., Mastrangelo, D., Materia, S., Medina, H., Palma, L., Pineda, L. E., Sfetsos, A., Son, S.-W., Soret, A., Strazzo, S., and Tian, D.: Advances in the subseasonal prediction of extreme events, B. Am. Meteor. Soc., in review, 2021. a
Dorrington, J. and Strommen, K.: Jet speed variability obscures Euro-Atlantic
regime structure, Geophys. Res. Lett., 47, e2020GL087907, https://doi.org/10.1029/2020GL087907, 2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Falkena, S. K., de Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Revisiting
the identification of wintertime atmospheric circulation regimes in the
Euro-Atlantic sector, Q. J. Roy. Meteor. Soc.,
146, 2801–2814, 2020. a
Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent verification of the
ECMWF ensemble over the Euro-Atlantic sector, Q. J. Roy.
Meteor. Soc., 141, 916–924, 2015. a
Ferranti, L., Magnusson, L., Vitart, F., and Richardson, D. S.: How far in
advance can we predict changes in large-scale flow leading to severe cold
conditions over Europe?, Q. J. Roy. Meteor.
Soc., 144, 1788–1802, 2018. a
Ferro, C.: Fair scores for ensemble forecasts, Q. J. Roy.
Meteor. Soc., 140, 1917–1923, 2014. a
Ferro, C. A., Richardson, D. S., and Weigel, A. P.: On the effect of ensemble
size on the discrete and continuous ranked probability scores, Meteorological
Applications: A journal of forecasting, practical applications, training
techniques and modelling, Met. Apps., 15, 19–24, 2008. a
Hamouda, M. E., Pasquero, C., and Tziperman, E.: Decoupling of the Arctic
Oscillation and North Atlantic Oscillation in a warmer climate, Nature
Climate Change, 11, 137–142, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], accessed on 29 October 2021, https://doi.org/10.24381/cds.bd0915c6, 2018. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Jung, T., Hilmer, M., Ruprecht, E., Kleppek, S., Gulev, S. K., and Zolina, O.:
Characteristics of the recent eastward shift of interannual NAO
variability, J. Climate, 16, 3371–3382, 2003. a
Keeley, S. P. E., Sutton, R. T., and Shaffrey, L. C.: Does the North Atlantic
Oscillation show unusual persistence on intraseasonal timescales?,
Geophys. Res. Lett., 36, L22706, https://doi.org/10.1029/2009GL040367, 2009. a, b
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 reanalysis:
General specifications and basic characteristics, J.
Meteorol. Soc. Jpn. Ser. II, 93, 5–48, 2015. a
Kolstad, E. W., Wulff, C. O., Domeisen, D. I., and Woollings, T.: Tracing North
Atlantic Oscillation forecast errors to stratospheric origins, J.
Climate, 33, 9145–9157, 2020. a
Lee, R. W., Woolnough, S. J., Charlton-Perez, A. J., and Vitart, F.: ENSO
modulation of MJO teleconnections to the North Atlantic and Europe,
Geophys. Res. Lett., 46, 13535–13545, 2019. a
Lin, H., Brunet, G., and Derome, J.: An observed connection between the North
Atlantic Oscillation and the Madden–Julian oscillation, J. Climate,
22, 364–380, 2009. a
Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., Dirmeyer, P. A., Ferranti, L., Johnson, N. C., Jones, J., Kirtman,B. P., Lang, A. L., Molod, A., Newman, M., Robertson, A. W., Schubert, S., Waliser, D. E., and Albers, J.:
Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and
Beyond, B. Am. Meteorol. Soc., 101, E608–E625,
2020. a
Mayer, K. J. and Barnes, E. A.: Subseasonal Forecasts of Opportunity
Identified by an Explainable Neural Network, Geophys. Res. Lett.,
48, e2020GL092092, https://doi.org/10.1029/2020GL092092, 2021. a
Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H., Coelho, C. A. S., Danabasoglu, G., Dirmeyer, P. A., Doblas-Reyes, F. J., Domeisen, D. I. V., Ferranti, L., Ilynia, T., Kumar, A., Müller, W. A., Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma,M., Vitart, F., White, C. J., Alvarez, M. S., Ardilouze, C., Attard, H., Baggett, C., Balmaseda, M. A., Beraki, A. F., Bhattacharjee, P. S., Bilbao, R., de Andrade, F. M., DeFlorio, M. J., Díaz, L. B., Ehsan, M. A., Fragkoulidis, G., Grainger, S., Green, B. W., Hell, M. C., Infanti, J. M., Isensee, K., Kataoka, T., Kirtman, B. P., Klingaman, N. P., Lee, J.-Y., Mayer, K., McKay, R., Mecking, J. V., Miller, D. E., Neddermann, N., Ng, C. H. J., Ossó, A., Pankatz, K., Peatman, S., Pegion, K., Perlwitz, J., Recalde-Coronel, G. C., Reintges, A., Renkl,C., Solaraju-Murali, B., Spring, A., Stan, C., Sun, Y. Q., Tozer, C. R., Vigaud, N., Woolnough, S., and Yeager, S.: Current and emerging developments in subseasonal to
decadal prediction, B. Am. Meteorol. Soc., 101,
E869–E896, 2020. a
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather regimes: Recurrence
and quasi stationarity, J. Atmos. Sci., 52, 1237–1256,
1995. a
Minami, A. and Takaya, Y.: Enhanced Northern Hemisphere correlation skill of
subseasonal predictions in the strong negative phase of the Arctic
Oscillation, J. Geophys. Res.-Atmos., 125,
e2019JD031268, https://doi.org/10.1029/2019JD031268, 2020. a
NOAA Climate Prediction Center NAO index: North Atlantic Oscillation (NAO), available at: ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii,
last access: 11 December 2020. a
Pokorná, L. and Huth, R.: Climate impacts of the NAO are sensitive to how
the NAO is defined, Theor. Appl. Climatol., 119, 639–652,
2015. a
Roberts, C. D., Vitart, F., and Balmaseda, M. A.: Hemispheric Impact of North
Atlantic SSTs in Subseasonal Forecasts, Geophys. Res. Lett., 48,
e2020GL0911446, https://doi.org/10.1029/2020GL091446, 2021. a
Robertson, A. W., Vigaud, N., Yuan, J., and Tippett, M. K.: Toward Identifying
Subseasonal Forecasts of Opportunity Using North American Weather Regimes,
Mon. Weather Rev., 148, 1861–1875, 2020. a
Seager, R., Kushnir, Y., Nakamura, J., Ting, M., and Naik, N.: Northern
Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10,
Geophys. Res. Lett., 37, L14703, https://doi.org/10.1029/2010GL043830, 2010. a
Specq, D., Batté, L., Déqué, M., and Ardilouze, C.: Multimodel
forecasting of precipitation at subseasonal timescales over the southwest
tropical Pacific, Earth Space Sci., 7, e2019EA001003, https://doi.org/10.1029/2019EA001003, 2020. a, b
Sun, L., Perlwitz, J., Richter, J. H., Hoerling, M. P., and Hurrell, J. W.:
Attribution of NAO Predictive Skill Beyond 2 Weeks in Boreal Winter,
Geophys. Res. Lett., 47, e2020GL090451, https://doi.org/10.1029/2020GL090451, 2020. a
Thompson, D. W. and Wallace, J. M.: The Arctic Oscillation signature in the
wintertime geopotential height and temperature fields, Geophys. Res.
Lett., 25, 1297–1300, 1998. a
World Climate Research Programme (WCRP): CMIP6 data, available at: https://esgf-node.llnl.gov/search/cmip6/, last access: 29 October 2021. a
Vautard, R.: Multiple weather regimes over the North Atlantic: Analysis of
precursors and successors, Mon. Weather Rev., 118, 2056–2081, 1990. a
Vigaud, N., Robertson, A. W., and Tippett, M. K.: Predictability of recurrent
weather regimes over North America during winter from submonthly reforecasts, Mon. Weather Rev., 146, 2559–2577, 2018. a
Vitart, F.: Monthly forecasting at ECMWF, Mon. Weather Rev., 132,
2761–2779, 2004. a
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H.-S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D.-J., Xiao, H., Zaripov, R., and Zhang, L.: The
subseasonal to seasonal (S2S) prediction project database, B.
Am. Meteor. Soc., 98, 163–173, 2017 (data available at: http://s2sprediction.net/, last access: 29 October 2021).
a, b
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., H. Douville, H., Franchisteguy, L., Ethé, C., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1, J. Adv. Model. Earth Sy., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019. a
White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J., Lazo, J. K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R., Kjellström, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B., and Zebiak, S. E.:
Potential applications of subseasonal-to-seasonal (S2S) predictions,
Meteorol. Appl., 24, 315–325, 2017. a
Woollings, T., Franzke, C., Hodson, D., Dong, B., Barnes, E. A., Raible, C.,
and Pinto, J.: Contrasting interannual and multidecadal NAO variability,
Clim. Dynam., 45, 539–556, 2015. a
Yamagami, A. and Matsueda, M.: Subseasonal Forecast Skill for Weekly Mean
Atmospheric Variability Over the Northern Hemisphere in Winter and Its
Relationship to Midlatitude Teleconnections, Geophys. Res. Lett.,
47, e2020GL088508, https://doi.org/10.1029/2020GL088508, 2020. a
Zheng, C., Chang, E. K.-M., Kim, H., Zhang, M., and Wang, W.: Subseasonal to
seasonal prediction of wintertime northern hemisphere extratropical cyclone
activity by S2S and NMME models, J. Geophys. Res.-Atmos., 124, 12057–12077, 2019. a
Zuo, J., Ren, H.-L., Wu, J., Nie, Y., and Li, Q.: Subseasonal variability and
predictability of the Arctic Oscillation/North Atlantic Oscillation in
BCC_AGCM2. 2, Dynam. Atmos. Oceans, 75, 33–45, 2016. a
Short summary
Forecasting temperature patterns beyond 2 weeks is very challenging, although occasionally, forecasts show more skill over Europe. Our study indicates that the level of skill varies concurrently for two distinct forecast systems. It also shows that higher skill occurs when forecasts are issued during specific patterns of atmospheric circulation that tend to be particularly persistent.
These results could help forecasters estimate a priori how trustworthy extended-range forecasts will be.
Forecasting temperature patterns beyond 2 weeks is very challenging, although occasionally,...