Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1033-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-1033-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flow dependence of wintertime subseasonal prediction skill over Europe
Constantin Ardilouze
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Damien Specq
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Lauriane Batté
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Christophe Cassou
CECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France
Related authors
Onaïa Savary, Constantin Ardilouze, and Julien Cattiaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-3308, https://doi.org/10.5194/egusphere-2025-3308, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We investigate the link between European meteorological droughts and persistent year-round weather regimes derived from mid-tropospheric circulation. Using a novel regionalization based on drought synchronicity and reanalysis data, we show that regime frequency anomalies partly explain drought occurrence, especially in western Europe and in winter, highlighting both the potential and limits of regime-based drought prediction.
Gabriel Narváez-Campo and Constantin Ardilouze
EGUsphere, https://doi.org/10.5194/egusphere-2024-2962, https://doi.org/10.5194/egusphere-2024-2962, 2024
Short summary
Short summary
We demonstrate the capability of a global operational system to predict seasonal river discharges by accounting for interactions between the atmosphere, ocean, land, and rivers. The fully coupled approach introduces a convenient single-step workflow, allowing the simultaneous production of atmospheric and streamflow forecasts. Overall, the approach outperforms the classical Ensemble Streamflow Prediction approach, providing insight into the next-generation hydrological forecasting systems.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Onaïa Savary, Constantin Ardilouze, and Julien Cattiaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-3308, https://doi.org/10.5194/egusphere-2025-3308, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We investigate the link between European meteorological droughts and persistent year-round weather regimes derived from mid-tropospheric circulation. Using a novel regionalization based on drought synchronicity and reanalysis data, we show that regime frequency anomalies partly explain drought occurrence, especially in western Europe and in winter, highlighting both the potential and limits of regime-based drought prediction.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Gabriel Narváez-Campo and Constantin Ardilouze
EGUsphere, https://doi.org/10.5194/egusphere-2024-2962, https://doi.org/10.5194/egusphere-2024-2962, 2024
Short summary
Short summary
We demonstrate the capability of a global operational system to predict seasonal river discharges by accounting for interactions between the atmosphere, ocean, land, and rivers. The fully coupled approach introduces a convenient single-step workflow, allowing the simultaneous production of atmospheric and streamflow forecasts. Overall, the approach outperforms the classical Ensemble Streamflow Prediction approach, providing insight into the next-generation hydrological forecasting systems.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Cited articles
Ardilouze, C., Batté, L., and Déqué, M.: Subseasonal-to-seasonal
(S2S) forecasts with CNRM-CM: a case study on the July 2015 West-European
heat wave, Adv. Sci. Res., 14, 115–121, 2017. a
Bach, E., Motesharrei, S., Kalnay, E., and Ruiz-Barradas, A.: Local
Atmosphere–Ocean Predictability: Dynamical Origins, Lead Times, and
Seasonality, J. Climate, 32, 7507–7519, 2019. a
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence
of low-frequency atmospheric circulation patterns, Mon. Weather Rev.,
115, 1083–1126, 1987. a
Batté, L. and Déqué, M.: Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: applications for seasonal forecasts, Geosci. Model Dev., 9, 2055–2076, https://doi.org/10.5194/gmd-9-2055-2016, 2016. a
Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527, 2008. a
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and
Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate,
Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010. a, b
Chevallier, M., Massonnet, F., Goessling, H., Guémas, V., and Jung, T.: The
role of sea ice in sub-seasonal predictability, in: Sub-Seasonal to Seasonal
Prediction, Elsevier, 201–221, https://doi.org/10.1016/B978-0-12-811714-9.00010-3, 2019. a
de Andrade, F. M., Young, M. P., MacLeod, D., Hirons, L. C., Woolnough, S. J.,
and Black, E.: Subseasonal Precipitation Prediction for Africa: Forecast
Evaluation and Sources of Predictability, Weather Forecast., 36,
265–284, 2021. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, 2011. a
Domeisen, D. I.: Estimating the frequency of sudden stratospheric warming
events from surface observations of the North Atlantic Oscillation, J.
Geophys. Res.-Atmos., 124, 3180–3194, 2019. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The role of the stratosphere in
subseasonal to seasonal prediction: 2. Predictability arising from
stratosphere-troposphere coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020. a
Domeisen, D. I., White, C. J., Afargan-Gerstman, H., Muñoz, A. G., Janiga, M. A., Vitart, F., Wulff, C. O., Antoine, S., Ardilouze, C., Batté, L., Bloomfield, H. C., Brayshaw, D., Camargo, S. J., Charlton-Pérez, A., Collins, D., Cowan, T., del Mar Chaves, M., Ferranti, L., Goméz, R., González, P. L., González Romero, C., Infanti, J. M., Karozis, S., Kim, H., Kolstad, E. W., LaJoie, E., Lledó, L., Magnusson, L., Malguzzi, P., Manrique-Suñén, A., Mastrangelo, D., Materia, S., Medina, H., Palma, L., Pineda, L. E., Sfetsos, A., Son, S.-W., Soret, A., Strazzo, S., and Tian, D.: Advances in the subseasonal prediction of extreme events, B. Am. Meteor. Soc., in review, 2021. a
Dorrington, J. and Strommen, K.: Jet speed variability obscures Euro-Atlantic
regime structure, Geophys. Res. Lett., 47, e2020GL087907, https://doi.org/10.1029/2020GL087907, 2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Falkena, S. K., de Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Revisiting
the identification of wintertime atmospheric circulation regimes in the
Euro-Atlantic sector, Q. J. Roy. Meteor. Soc.,
146, 2801–2814, 2020. a
Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent verification of the
ECMWF ensemble over the Euro-Atlantic sector, Q. J. Roy.
Meteor. Soc., 141, 916–924, 2015. a
Ferranti, L., Magnusson, L., Vitart, F., and Richardson, D. S.: How far in
advance can we predict changes in large-scale flow leading to severe cold
conditions over Europe?, Q. J. Roy. Meteor.
Soc., 144, 1788–1802, 2018. a
Ferro, C.: Fair scores for ensemble forecasts, Q. J. Roy.
Meteor. Soc., 140, 1917–1923, 2014. a
Ferro, C. A., Richardson, D. S., and Weigel, A. P.: On the effect of ensemble
size on the discrete and continuous ranked probability scores, Meteorological
Applications: A journal of forecasting, practical applications, training
techniques and modelling, Met. Apps., 15, 19–24, 2008. a
Hamouda, M. E., Pasquero, C., and Tziperman, E.: Decoupling of the Arctic
Oscillation and North Atlantic Oscillation in a warmer climate, Nature
Climate Change, 11, 137–142, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], accessed on 29 October 2021, https://doi.org/10.24381/cds.bd0915c6, 2018. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Jung, T., Hilmer, M., Ruprecht, E., Kleppek, S., Gulev, S. K., and Zolina, O.:
Characteristics of the recent eastward shift of interannual NAO
variability, J. Climate, 16, 3371–3382, 2003. a
Keeley, S. P. E., Sutton, R. T., and Shaffrey, L. C.: Does the North Atlantic
Oscillation show unusual persistence on intraseasonal timescales?,
Geophys. Res. Lett., 36, L22706, https://doi.org/10.1029/2009GL040367, 2009. a, b
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 reanalysis:
General specifications and basic characteristics, J.
Meteorol. Soc. Jpn. Ser. II, 93, 5–48, 2015. a
Kolstad, E. W., Wulff, C. O., Domeisen, D. I., and Woollings, T.: Tracing North
Atlantic Oscillation forecast errors to stratospheric origins, J.
Climate, 33, 9145–9157, 2020. a
Lee, R. W., Woolnough, S. J., Charlton-Perez, A. J., and Vitart, F.: ENSO
modulation of MJO teleconnections to the North Atlantic and Europe,
Geophys. Res. Lett., 46, 13535–13545, 2019. a
Lin, H., Brunet, G., and Derome, J.: An observed connection between the North
Atlantic Oscillation and the Madden–Julian oscillation, J. Climate,
22, 364–380, 2009. a
Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., Dirmeyer, P. A., Ferranti, L., Johnson, N. C., Jones, J., Kirtman,B. P., Lang, A. L., Molod, A., Newman, M., Robertson, A. W., Schubert, S., Waliser, D. E., and Albers, J.:
Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and
Beyond, B. Am. Meteorol. Soc., 101, E608–E625,
2020. a
Mayer, K. J. and Barnes, E. A.: Subseasonal Forecasts of Opportunity
Identified by an Explainable Neural Network, Geophys. Res. Lett.,
48, e2020GL092092, https://doi.org/10.1029/2020GL092092, 2021. a
Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H., Coelho, C. A. S., Danabasoglu, G., Dirmeyer, P. A., Doblas-Reyes, F. J., Domeisen, D. I. V., Ferranti, L., Ilynia, T., Kumar, A., Müller, W. A., Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma,M., Vitart, F., White, C. J., Alvarez, M. S., Ardilouze, C., Attard, H., Baggett, C., Balmaseda, M. A., Beraki, A. F., Bhattacharjee, P. S., Bilbao, R., de Andrade, F. M., DeFlorio, M. J., Díaz, L. B., Ehsan, M. A., Fragkoulidis, G., Grainger, S., Green, B. W., Hell, M. C., Infanti, J. M., Isensee, K., Kataoka, T., Kirtman, B. P., Klingaman, N. P., Lee, J.-Y., Mayer, K., McKay, R., Mecking, J. V., Miller, D. E., Neddermann, N., Ng, C. H. J., Ossó, A., Pankatz, K., Peatman, S., Pegion, K., Perlwitz, J., Recalde-Coronel, G. C., Reintges, A., Renkl,C., Solaraju-Murali, B., Spring, A., Stan, C., Sun, Y. Q., Tozer, C. R., Vigaud, N., Woolnough, S., and Yeager, S.: Current and emerging developments in subseasonal to
decadal prediction, B. Am. Meteorol. Soc., 101,
E869–E896, 2020. a
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather regimes: Recurrence
and quasi stationarity, J. Atmos. Sci., 52, 1237–1256,
1995. a
Minami, A. and Takaya, Y.: Enhanced Northern Hemisphere correlation skill of
subseasonal predictions in the strong negative phase of the Arctic
Oscillation, J. Geophys. Res.-Atmos., 125,
e2019JD031268, https://doi.org/10.1029/2019JD031268, 2020. a
NOAA Climate Prediction Center NAO index: North Atlantic Oscillation (NAO), available at: ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii,
last access: 11 December 2020. a
Pokorná, L. and Huth, R.: Climate impacts of the NAO are sensitive to how
the NAO is defined, Theor. Appl. Climatol., 119, 639–652,
2015. a
Roberts, C. D., Vitart, F., and Balmaseda, M. A.: Hemispheric Impact of North
Atlantic SSTs in Subseasonal Forecasts, Geophys. Res. Lett., 48,
e2020GL0911446, https://doi.org/10.1029/2020GL091446, 2021. a
Robertson, A. W., Vigaud, N., Yuan, J., and Tippett, M. K.: Toward Identifying
Subseasonal Forecasts of Opportunity Using North American Weather Regimes,
Mon. Weather Rev., 148, 1861–1875, 2020. a
Seager, R., Kushnir, Y., Nakamura, J., Ting, M., and Naik, N.: Northern
Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10,
Geophys. Res. Lett., 37, L14703, https://doi.org/10.1029/2010GL043830, 2010. a
Specq, D., Batté, L., Déqué, M., and Ardilouze, C.: Multimodel
forecasting of precipitation at subseasonal timescales over the southwest
tropical Pacific, Earth Space Sci., 7, e2019EA001003, https://doi.org/10.1029/2019EA001003, 2020. a, b
Sun, L., Perlwitz, J., Richter, J. H., Hoerling, M. P., and Hurrell, J. W.:
Attribution of NAO Predictive Skill Beyond 2 Weeks in Boreal Winter,
Geophys. Res. Lett., 47, e2020GL090451, https://doi.org/10.1029/2020GL090451, 2020. a
Thompson, D. W. and Wallace, J. M.: The Arctic Oscillation signature in the
wintertime geopotential height and temperature fields, Geophys. Res.
Lett., 25, 1297–1300, 1998. a
World Climate Research Programme (WCRP): CMIP6 data, available at: https://esgf-node.llnl.gov/search/cmip6/, last access: 29 October 2021. a
Vautard, R.: Multiple weather regimes over the North Atlantic: Analysis of
precursors and successors, Mon. Weather Rev., 118, 2056–2081, 1990. a
Vigaud, N., Robertson, A. W., and Tippett, M. K.: Predictability of recurrent
weather regimes over North America during winter from submonthly reforecasts, Mon. Weather Rev., 146, 2559–2577, 2018. a
Vitart, F.: Monthly forecasting at ECMWF, Mon. Weather Rev., 132,
2761–2779, 2004. a
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H.-S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D.-J., Xiao, H., Zaripov, R., and Zhang, L.: The
subseasonal to seasonal (S2S) prediction project database, B.
Am. Meteor. Soc., 98, 163–173, 2017 (data available at: http://s2sprediction.net/, last access: 29 October 2021).
a, b
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., H. Douville, H., Franchisteguy, L., Ethé, C., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1, J. Adv. Model. Earth Sy., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019. a
White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J., Lazo, J. K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R., Kjellström, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B., and Zebiak, S. E.:
Potential applications of subseasonal-to-seasonal (S2S) predictions,
Meteorol. Appl., 24, 315–325, 2017. a
Woollings, T., Franzke, C., Hodson, D., Dong, B., Barnes, E. A., Raible, C.,
and Pinto, J.: Contrasting interannual and multidecadal NAO variability,
Clim. Dynam., 45, 539–556, 2015. a
Yamagami, A. and Matsueda, M.: Subseasonal Forecast Skill for Weekly Mean
Atmospheric Variability Over the Northern Hemisphere in Winter and Its
Relationship to Midlatitude Teleconnections, Geophys. Res. Lett.,
47, e2020GL088508, https://doi.org/10.1029/2020GL088508, 2020. a
Zheng, C., Chang, E. K.-M., Kim, H., Zhang, M., and Wang, W.: Subseasonal to
seasonal prediction of wintertime northern hemisphere extratropical cyclone
activity by S2S and NMME models, J. Geophys. Res.-Atmos., 124, 12057–12077, 2019. a
Zuo, J., Ren, H.-L., Wu, J., Nie, Y., and Li, Q.: Subseasonal variability and
predictability of the Arctic Oscillation/North Atlantic Oscillation in
BCC_AGCM2. 2, Dynam. Atmos. Oceans, 75, 33–45, 2016. a
Short summary
Forecasting temperature patterns beyond 2 weeks is very challenging, although occasionally, forecasts show more skill over Europe. Our study indicates that the level of skill varies concurrently for two distinct forecast systems. It also shows that higher skill occurs when forecasts are issued during specific patterns of atmospheric circulation that tend to be particularly persistent.
These results could help forecasters estimate a priori how trustworthy extended-range forecasts will be.
Forecasting temperature patterns beyond 2 weeks is very challenging, although occasionally,...