Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1131-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-1131-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamical drivers of Greenland blocking in climate models
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Erica Madonna
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Clemens Spensberger
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Camille Li
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Stephen Outten
Nansen Environmental and Remote Sensing Center, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-90, https://doi.org/10.5194/nhess-2023-90, 2023
Manuscript not accepted for further review
Short summary
Short summary
The benefits of establishing wind storm damage relationships are twofold: 1) forecasting losses and 2) assessment of the damages post event. The present study uses the daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns in the complex terrain of Norway.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1709, https://doi.org/10.5194/egusphere-2024-1709, 2024
Short summary
Short summary
The transport of moisture from warmer and moister towards colder and drier regions mainly occurs in brief and narrow. In the mid-latitudes, such bursts are generally referred to as atmospheric rivers, in the Arctic they are often referred to as warm moist intrusions. We introduce a new definition to identify such bursts which is based primarily on their elongated structure. With this more general definition, we show that bursts in moisture transport occur frequently across all climate zones.
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024, https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Short summary
The North Atlantic Oscillation is linked to wintertime weather events over Europe. One feature often overlooked is how much the climate variability explained by the NAO has changed over time. We show that there has been a considerable increase in the percentage variance explained by the NAO over the 20th century and that this is not reproduced by 50 CMIP6 climate models, which are generally biased too high. This has implications for projections and prediction of weather events in the region.
Clemens Spensberger
Weather Clim. Dynam., 5, 659–669, https://doi.org/10.5194/wcd-5-659-2024, https://doi.org/10.5194/wcd-5-659-2024, 2024
Short summary
Short summary
It is well-established that variations in convection in the tropical Indo-Pacific can influence weather in far-away regions. In this idea, I argue that the main theory used to explain this influence over large distances is incomplete. I propose hypotheses that could lead the way towards a more fundamental explanation and outline a novel approach that could be used to test the hypotheses I raise. The suggested approach might be useful to address also other long-standing questions.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-90, https://doi.org/10.5194/nhess-2023-90, 2023
Manuscript not accepted for further review
Short summary
Short summary
The benefits of establishing wind storm damage relationships are twofold: 1) forecasting losses and 2) assessment of the damages post event. The present study uses the daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns in the complex terrain of Norway.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022, https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Short summary
In order to understand the atmosphere, we rely on a hierarchy of models ranging from very simple to very complex. Comparing different steps in this hierarchy usually entails comparing different models. Here we combine two such steps that are commonly used in one modelling framework. This makes comparisons both much easier and much more direct.
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021, https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary
Short summary
Comparing simulations with realistic and smoothed SSTs, we find that the intensification of individual cyclones in the Gulf Stream and Kuroshio regions is only marginally affected by reducing the SST gradient. In contrast, we observe a reduced cyclone activity and a shift in storm tracks. Considering differences of the variables occurring within/outside of a radius of any cyclone, we find cyclones to play only a secondary role in explaining the mean states differences among the SST experiments.
Erica Madonna, David S. Battisti, Camille Li, and Rachel H. White
Weather Clim. Dynam., 2, 777–794, https://doi.org/10.5194/wcd-2-777-2021, https://doi.org/10.5194/wcd-2-777-2021, 2021
Short summary
Short summary
The amount of precipitation over Europe varies substantially from year to year, with impacts on crop yields and energy production. In this study, we show that it is possible to infer much of the winter precipitation and temperature signal over Europe by knowing only the frequency of occurrence of certain atmospheric circulation patterns. The results highlight the importance of (daily) weather for understanding and interpreting seasonal signals.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Emily Gleeson, Stephen Outten, Bjørg Jenny Kokkvoll Engdahl, Eoin Whelan, Ulf Andrae, and Laura Rontu
Adv. Sci. Res., 17, 255–267, https://doi.org/10.5194/asr-17-255-2020, https://doi.org/10.5194/asr-17-255-2020, 2020
Short summary
Short summary
The single-column version of the shared ALADIN-HIRLAM numerical weather prediction system, called MUSC, was developed by Météo-France in the 2000s and has a growing user-base. Tools to derive the required input, to run experiments and to handle outputs have been developed within the HARMONIE-AROME configuration of the ALADIN-HIRLAM system. We also illustrate the usefulness of MUSC for testing and developing physical parametrizations related to cloud microphysics and radiative transfer.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
Short summary
Arctic sea ice loss has been linked to changes in mid-latitude weather and climate. However, the literature offers differing views on the strength, robustness, and even existence of these linkages. We use a statistical tool (Causal Effect Networks) to show that one proposed pathway linking Barents–Kara ice and mid-latitude circulation is intermittent in observations and likely only active under certain conditions. This result may help explain apparent inconsistencies across previous studies.
Clemens Spensberger and Sebastian Schemm
Weather Clim. Dynam., 1, 175–189, https://doi.org/10.5194/wcd-1-175-2020, https://doi.org/10.5194/wcd-1-175-2020, 2020
Short summary
Short summary
In this paper, we take a second look at the development of an intense storm that made landfall in Norway a few hours into the new year of 1992, focussing on the effect of the Scandinavian mountains on the storm. We find that the cyclone core evolves largely unaffected, although both the warm and the cold fronts decay rapidly while passing over the mountains. This result suggests that the fronts of a cyclone can become detached from their cyclone core as part of the cyclone’s occlusion process.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Hanna Joos, Erica Madonna, Kasja Witlox, Sylvaine Ferrachat, Heini Wernli, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 6243–6255, https://doi.org/10.5194/acp-17-6243-2017, https://doi.org/10.5194/acp-17-6243-2017, 2017
Short summary
Short summary
The influence of pollution on the precipitation formation in warm conveyor belts (WCBs), the most rising air streams in low-pressure systems is investigated. We investigate in detail the cloud properties and resulting precipitation along these rising airstreams which are simulated with a global climate model. Overall, no big impact of aerosols on precipitation can be seen, however, when comparing the most polluted/cleanest WCBs, a suppression of precipitation by aerosols is observed.
I. Esau, R. Davy, S. Outten, S. Tyuryakov, and S. Zilitinkevich
Nonlin. Processes Geophys., 20, 589–604, https://doi.org/10.5194/npg-20-589-2013, https://doi.org/10.5194/npg-20-589-2013, 2013
S. D. Outten and I. Esau
Atmos. Chem. Phys., 13, 5163–5172, https://doi.org/10.5194/acp-13-5163-2013, https://doi.org/10.5194/acp-13-5163-2013, 2013
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Related subject area
Dynamical processes in polar regions, incl. polar–midlatitude interactions
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Circulation responses to surface heating and implications for polar amplification
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions
Simultaneous Bering Sea and Labrador Sea ice melt extremes in March 2023: A confluence of meteorological events aligned with stratosphere-troposphere interactions
European summer weather linked to North Atlantic freshwater anomalies in preceding years
On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe
The role of boundary layer processes in summer-time Arctic cyclones
Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling
The role of Rossby waves in polar weather and climate
Reanalysis representation of low-level winds in the Antarctic near-coastal region
The composite development and structure of intense synoptic-scale Arctic cyclones
Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation
Jet stream variability in a polar warming scenario – a laboratory perspective
Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter
Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat
A global climatology of polar lows investigated for local differences and wind-shear environments
Characteristics of long-track tropopause polar vortices
Identification, characteristics and dynamics of Arctic extreme seasons
Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic
Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic
The role of tropopause polar vortices in the intensification of summer Arctic cyclones
Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5
Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events
A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017
Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
The role of wave–wave interactions in sudden stratospheric warming formation
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024, https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are channel-shaped features within the atmosphere that carry moisture from the mid-latitudes to the poles, bringing warm temperatures and moisture that can cause melt in the Arctic. We used variable-resolution grids to model ARs around the Greenland ice sheet and compared this output to uniform-resolution grids and reanalysis products. We found that the variable-resolution grids produced ARs and precipitation that were more similar to observation-based products.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024, https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary
Short summary
One of the intriguing problems associated with recent climate trends is the rapid temperature increase in the Arctic. In this paper, we address the Arctic warming problem using a laboratory atmospheric general circulation model. We show that variations in polar cooling lead to significant changes in polar-cell structure, resulting in a substantial increase in temperature. Our modeling results provide a plausible explanation for Arctic warming amplification.
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
EGUsphere, https://doi.org/10.5194/egusphere-2024-925, https://doi.org/10.5194/egusphere-2024-925, 2024
Short summary
Short summary
The month of March marks the Arctic sea ice maximum when the ice cover extent reaches its peak within the annual cycle. This study chronicles the meteorological conditions that led to the anomalous, tandem March 2023 ice melt event in the Labrador and Bering seas. A sudden stratospheric warming event initiated the development of anticyclonic circulation patterns over these areas which aided northward transport of anomalously warm, moist air and drove their unusual sea ice melt.
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023, https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Kristian Strommen, Stephan Juricke, and Fenwick Cooper
Weather Clim. Dynam., 3, 951–975, https://doi.org/10.5194/wcd-3-951-2022, https://doi.org/10.5194/wcd-3-951-2022, 2022
Short summary
Short summary
Observational data suggest that the extent of Arctic sea ice influences mid-latitude winter weather. However, climate models generally fail to reproduce this link, making it unclear if models are missing something or if the observed link is just a coincidence. We show that if one explicitly represents the effect of unresolved sea ice variability in a climate model, then it is able to reproduce this link. This implies that the link may be real but that many models simply fail to simulate it.
Costanza Rodda, Uwe Harlander, and Miklos Vincze
Weather Clim. Dynam., 3, 937–950, https://doi.org/10.5194/wcd-3-937-2022, https://doi.org/10.5194/wcd-3-937-2022, 2022
Short summary
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Matthew T. Bray and Steven M. Cavallo
Weather Clim. Dynam., 3, 251–278, https://doi.org/10.5194/wcd-3-251-2022, https://doi.org/10.5194/wcd-3-251-2022, 2022
Short summary
Short summary
Tropopause polar vortices (TPVs) are a high-latitude atmospheric phenomenon that impact weather inside and outside of polar regions. Using a set of long-lived TPVs to gain insight into the conditions that are most supportive of TPV survival, we describe patterns of vortex formation and movement. In addition, we analyze the characteristics of these TPVs and how they vary by season. These results help us to better understand TPVs which, in turn, may improve forecasts of related weather events.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022, https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary
Short summary
Water vapor profoundly impacts the Arctic, for example by contributing to sea ice melt. A substantial portion of water vapor in the Arctic originates at mid-latitudes and is transported poleward in a few episodic and intense events. This transport is accomplished by low- and high-pressure systems occurring in specific regions or following particular tracks. Here, we explore how the type of weather system impacts where the water vapor is coming from and how it is transported poleward.
Suzanne L. Gray, Kevin I. Hodges, Jonathan L. Vautrey, and John Methven
Weather Clim. Dynam., 2, 1303–1324, https://doi.org/10.5194/wcd-2-1303-2021, https://doi.org/10.5194/wcd-2-1303-2021, 2021
Short summary
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
Corwin J. Wright, Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour
Weather Clim. Dynam., 2, 1283–1301, https://doi.org/10.5194/wcd-2-1283-2021, https://doi.org/10.5194/wcd-2-1283-2021, 2021
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the atmosphere and are believed to help cause extreme winter weather events such as the 2018 Beast from the East in Europe and North America. Here, we use unique data from the European Space Agency's new Aeolus satellite to make the first-ever measurements at a global scale of wind changes due to an SSW in the lower part of the atmosphere to help us understand how SSWs affect the atmosphere and surface weather.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
Short summary
Arctic sea ice loss has been linked to changes in mid-latitude weather and climate. However, the literature offers differing views on the strength, robustness, and even existence of these linkages. We use a statistical tool (Causal Effect Networks) to show that one proposed pathway linking Barents–Kara ice and mid-latitude circulation is intermittent in observations and likely only active under certain conditions. This result may help explain apparent inconsistencies across previous studies.
Erik A. Lindgren and Aditi Sheshadri
Weather Clim. Dynam., 1, 93–109, https://doi.org/10.5194/wcd-1-93-2020, https://doi.org/10.5194/wcd-1-93-2020, 2020
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are extreme events that influence surface weather up to 2 months after onset. We remove wave–wave interactions (WWIs) in vertical sections of a general circulation model to investigate the role of WWIs in SSW formation. We show that the effects of WWIs depend strongly on the pressure levels where they occur and the zonal structure of the wave forcing in the troposphere. Our results highlight the importance of upper-level processes in stratospheric dynamics.
Cited articles
Altenhoff, A. M., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies,
H. C.: Linkage of atmospheric blocks and synoptic-scale Rossby waves: A
climatological analysis, Tellus A, 60, 1053–1063,
https://doi.org/10.1111/j.1600-0870.2008.00354.x, 2008. a, b, c
Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N.,
Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S.: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution, J. Geophys. Res.-Atmos., 118, 3956–3971, https://doi.org/10.1002/jgrd.50231, 2013. a, b, c, d
Barnes, E. A. and Hartmann, D. L.: Influence of eddy‐driven jet latitude on
North Atlantic jet persistence and blocking frequency in CMIP3
integrations, Geophys. Res. Lett., 37, L23802, https://doi.org/10.1029/2010GL045700, 2010. a
Barnes, E. A. and Hartmann, D. L.: Rossby wave scales, propagation, and the
variability of eddy-driven jets, J. Atmos. Sci., 68, 2893–2908,
https://doi.org/10.1175/JAS-D-11-039.1, 2011. a
Barnes, E. A. and Hartmann, D. L.: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change, J. Geophys. Res. Atmos., 117, D09117, https://doi.org/10.1029/2012JD017469, 2012. a, b
Barnes, E. A. and Polvani, L.: Response of the midlatitude jets, and of their
variability, to increased greenhouse gases in the CMIP5 models, J.
Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013. a, b
Barnes, E. A., Slingo, J., and Woollings, T.: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios, Climate Dyn., 38, 2467–2481, https://doi.org/10.1007/s00382-011-1243-6, 2012. a
Béguin, A., Martius, O., Sprenger, M., Spichtinger, P., Folini, D., and
Wernli, H.: Tropopause level Rossby wave breaking in the Northern
Hemisphere: a feature-based validation of the ECHAM5-HAM climate model,
Int. J. Climatol., 33, 3073–3082, https://doi.org/10.1002/joc.3631, 2013. a
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L., and Roberts, M.:
Atmospheric blocking in a high resolution climate model: influences of mean
state, orography and eddy forcing, Atmos. Sci. Lett., 14, 34–40,
https://doi.org/10.1002/asl2.412, 2013. a
Brunner, L., Hegerl, G. C., and Steiner, A. K.: Connecting atmospheric blocking to European temperature extremes in spring, J. Climate, 30, 585–594, https://doi.org/10.1175/JCLI-D-16-0518.1, 2017. a
Chen, X. and Luo, D.: Arctic sea ice decline and continental cold anomalies:
Upstream and downstream effects of Greenland blocking, Geophys. Res. Lett., 44, 3411–3419, https://doi.org/10.1002/2016GL072387, 2017. a, b
Christidis, N. and Stott, P. A.: Changes in the geopotential height at 500 hPa under the influence of external climatic forcings, Geophys. Res. Lett., 42, 10798–10806, https://doi.org/10.1002/2015GL066669, 2015. a
Collins M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frölicher, T., Jacot Des Combes, H., Koll Roxy, M., Losada, I., McInnes, K., Ratter, B., Rivera-Arriaga, E., Susanto, R. D., Swingedouw, D., and Tibig, L.: Extremes, Abrupt Changes and Managing Risk, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., in press, 2021. a
Davini, P. and D’Andrea, F.: Northern Hemisphere atmospheric blocking
representation in global climate models: Twenty years of improvements?, J.
Climate, 29, 8823–8840, https://doi.org/10.1175/JCLI-D-16-0242.1, 2016. a, b, c, d
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
Diagnostics, Variability, and Trends of Northern Hemisphere Blocking, J. Climate, 25, 6496–6509, https://doi.org/10.1175/JCLI-D-12-00032.1, 2012. a, b
Davini, P., Cagnazzo, C., Fogli, P. G., Manzini, E., Gualdi, S., and Navarra,
A.: European blocking and Atlantic jet stream variability in the NCEP/NCAR
reanalysis and the CMCC-CMS climate model, Clim. Dynam., 43, 71–85,
https://doi.org/10.1007/s00382-013-1873-y, 2014. a, b, c
Davini, P., Corti, S., D'Andrea, F., Rivière, G., and von Hardenberg, J.:
Improved winter European atmospheric blocking frequencies in
high-resolution global climate simulations, J. Adv. Model. Earth Sy., 9,
2615–2634, https://doi.org/10.1002/2017MS001082, 2017. a, b, c, d
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical
Northern Hemisphere wintertime circulation: Geographical distribution and
regional persistence characteristics, Mon. Weather Rev., 111, 1567–1586,
https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2, 1983. a
Drouard, M., Woollings, T., Sexton, D. M. H., and McSweeney, C. F.: Dynamical
differences between short and long blocks in the Northern Hemisphere, J. Geophys. Res.-Atmos., 126, e2020JD034082, https://doi.org/10.1029/2020JD034082,
2021. a, b
Dunn-Sigouin, E. and Son, S.-W.: Northern Hemisphere blocking frequency and
duration in the CMIP5 models, J. Geophys. Res.-Atmos., 118, 1179–1188,
https://doi.org/10.1002/jgrd.50143, 2013. a, b, c
ECMWF: ERA Interim, Daily, ECMWF [data set], available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/, last access: 3 November 2021. a
Eichelberger, S. J. and Hartmann, D. L.: Northern Hemisphere blocking frequency and duration in the CMIP5 models, J. Climate, 20, 5149–5163,
https://doi.org/10.1175/JCLI4279.1, 2007. a
Fettweis, X., Hanna, E., Lang, C., Belleflamme, A., Erpicum, M., and Gallée, H.: Brief communication “Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet”, The Cryosphere, 7, 241–248, https://doi.org/10.5194/tc-7-241-2013, 2013. a
Hanna, E., Cappelen, J., Fettweis, X., Mernild, S. H., Mote, T. L., Mottram,
R., Steffen, K., Ballinger, T. J., and Hall, R. J.: Greenland surface air
temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change, Int. J. Climatol., 41, E1336–E1352,
https://doi.org/10.1002/joc.6771, 2021. a
Harvey, B., Shaffrey, L., and Woollings, T.: Equator-to-pole temperature
differences and the extra-tropical storm track responses of the CMIP5 climate models, Clim. Dynam., 43, 1171–1182, https://doi.org/10.1007/s00382-013-1883-9, 2014. a, b
Harvey, B., Cook, P., Shaffrey, L., and Schiemann, R.: The Response of the
Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the
CMIP3, CMIP5, and CMIP6 Climate Models, J. Geophys. Res.-Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701, 2020. a
Hermann, M., Papritz, L., and Wernli, H.: A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017, Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, 2020. a
IPCC: Summary for policymakers, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Iqbal, W., Leung, W.-N., and Hannachi, A.: Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5, Clim. Dynam., 51, 235–247, https://doi.org/10.1007/s00382-017-3917-1, 2018. a
Kidston, J. and Gerber, E.: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology, Geophys. Res. Lett., 37, L09708, https://doi.org/10.1029/2010GL042873, 2010. a
Kwon, Y.-O., Camacho, A., Martinez, C., and Seo, H.: North Atlantic winter
eddy-driven jet and atmospheric blocking variability in the Community Earth
System Model version 1 Large Ensemble simulations, Clim. Dynam., 51,
3275–3289, https://doi.org/10.1007/s00382-018-4078-6, 2018. a, b, c
Li, C. and Wettstein, J. J.: Thermally Driven and Eddy-Driven Jet Variability
in Reanalysis, J. Climate, 25, 1587–1596, https://doi.org/10.1175/JCLI-D-11-00145.1,
2012. a
Li, C., Michel, C., Seland Graff, L., Bethke, I., Zappa, G., Bracegirdle, T. J., Fischer, E., Harvey, B. J., Iversen, T., King, M. P., Krishnan, H., Lierhammer, L., Mitchell, D., Scinocca, J., Shiogama, H., Stone, D. A., and Wettstein, J. J.: Midlatitude atmospheric circulation responses under 1.5 and 2.0 ∘C warming and implications for regional impacts, Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, 2018. a, b
Luo, D., Zhang, W., Zhong, L., and Dai, A.: A nonlinear theory of atmospheric
blocking: A potential vorticity gradient view, J. Atmos. Sci., 76,
2399–2427, https://doi.org/10.1175/JAS-D-18-0324.1, 2019. a
Lupo, A. R. and Smith, P. J.: Climatological features of blocking anticyclones in the Northern Hemisphere, Tellus A, 47, 439–456,
https://doi.org/10.1034/j.1600-0870.1995.t01-3-00004.x, 1995. a
Madonna, E., Li, C., Grams, C. M., and Woollings, T.: The link between eddy-driven jet variability and weather regimes in the North
Atlantic-European sector, Quart. J. Roy. Meteor. Soc., 143, 2960–2972,
https://doi.org/10.1002/qj.3155, 2017. a
Madonna, E., Li, C., and Wettstein, J. J.: Suppressed eddy driving during
southward excursions of the North Atlantic jet on synoptic to seasonal time scales, Atmos. Sci. Lett., 20, e937, https://doi.org/10.1002/asl.937, 2019. a
Martius, O., Schwierz, C., and Davies, H. C.: Breaking Waves at the Tropopause in the Wintertime Northern Hemisphere: Climatological Analyses of the Orientation and the Theoretical LC1/2 Classification, J. Atmos. Sci., 64, 2576–2592, https://doi.org/10.1175/JAS3977.1, 2007. a
Masato, G., Hoskins, B., and Woollings, T. J.: Wave-breaking characteristics of midlatitude blocking, Quart. J. Roy. Meteor. Soc., 138, 1285–1296,
https://doi.org/10.1002/qj.990, 2012. a, b
Matsueda, M. and Endo, H.: The robustness of future changes in Northern
Hemisphere blocking: A large ensemble projection with multiple sea
surface temperature patterns, Geophys. Res. Lett., 44, 5158–5166,
https://doi.org/10.1002/2017GL073336, 2017. a
McLeod, J. T. and Mote, T. L.: Assessing the role of precursor cyclones on the
formation of extreme Greenland blocking episodes and their impact on summer
melting across the Greenland ice sheet, J. Geophys. Res.-Atmos., 120,
12357–12377, https://doi.org/10.1002/2015JD023945, 2015. a
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design, Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017. a, b, c
Nakamura, H. and Wallace, J. M.: Synoptic behavior of baroclinic eddies during the blocking onset, Mon. Weather Rev., 121, 1892–1903, https://doi.org/10.1175/1520-0493(1993)121<1892:SBOBED>2.0.CO;2, 1993. a
National Energy Research Scientific Computing Center: C20C+ Detection and Attribution Project, HAPPI, National Energy Research Scientific Computing Center [data set], https://portal.nersc.gov/c20c/data.html (last access: 3 November 2021). a
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms, Bull. Amer. Meteor. Soc., 94, 529–547, https://doi.org/10.1175/bams-d-11-00154.1, 2013. a
Pelly, J. L. and Hoskins, B. J.: A new perspective on blocking, J. Atmos. Sci., 60, 743–755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2, 2003. a, b
Pfahl, S. and Wernli, H.: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales, Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261, 2012. a
Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., and Wernli, H.:
Importance of latent heat release in ascending air streams for atmospheric
blocking, Nat. Geosci., 8, 610–614, https://doi.org/10.1038/ngeo2487, 2015. a
Pithan, F., Shepherd, T. G., Zappa, G., and Sandu, I.: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic
drag, Geophys. Res. Lett., 43, 7231–7240, https://doi.org/10.1002/2016GL069551,
2016. a
Rex, D. F.: Blocking action in the middle troposphere and its effect upon
regional climate, Tellus, 2, 275–301,
https://doi.org/10.1111/j.2153-3490.1950.tb00331.x, 1950. a
Rivière, G.: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes, J. Atmos. Sci., 66, 1569–1592, https://doi.org/10.1175/2008JAS2919.1, 2009. a
Rivière, G.: A dynamical interpretation of the poleward shift of the jet
streams in global warming scenarios, J. Atmos. Sci., 68, 1253–1272,
https://doi.org/10.1175/2011JAS3641.1, 2011. a
Rivière, G. and Orlanski, I.: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation, J. Atmos. Sci., 64, 241–266, https://doi.org/10.1175/JAS3850.1, 2007. a
Scaife, A. A., Woollings, T., Knight, J., Martin, G., and Hinton, T.:
Atmospheric blocking and mean biases in climate models, J. Climate, 23,
6143–6152, https://doi.org/10.1175/2010JCLI3728.1, 2010. a, b
Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams, C. M., and
Russo, S.: Influence of blocking on Northern European and Western Russian
heatwaves in large climate model ensembles, Environ. Res. Lett., 13,
054015, https://doi.org/10.1088/1748-9326/aaba55, 2018. a
Scherrer, S. C., Croci-Maspoli, M., Schwierz, C., and Appenzeller, C.:
Two–dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region, Int. J. Climatol., 26, 233–249, https://doi.org/10.1002/joc.1250, 2006. a, b, c
Schiemann, R., Demory, M.-E., Shaffrey, L. C., Strachan, J., Vidale, P. L.,
Mizielinski, M. S., Roberts, M. J., Matsueda, M., Wehner, M. F., and Jung,
T.: The resolution sensitivity of Northern Hemisphere blocking in four 25 km atmospheric global circulation models, J. Climate, 30, 337–358,
https://doi.org/10.1175/JCLI-D-16-0100.1, 2017. a
Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale, P. L.: Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, 2020. a, b, c
Shaw, T., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C., Hwang, Y.-T., Li, C., O’Gorman, P., Rivière, G., Simpson, I., and Voigt, A.: Storm track processes and the opposing influences of climate change, Nat. Geosci., 9, 656–664, https://doi.org/10.1038/ngeo2783, 2016. a
Sillmann, J. and Croci-Maspoli, M.: Present and future atmospheric blocking and its impact on European mean and extreme climate, Geophys. Res. Lett., 36, L10702, https://doi.org/10.1029/2009GL038259, 2009. a, b, c
Spensberger, C.: Dynlib: A library of diagnostics, feature detection
algorithms, plotting and convenience functions for dynamic meteorology, Zenodo [code], https://doi.org/10.5281/zenodo.4639624, 2021. a
Spensberger, C. and Spengler, T.: A New Look at Deformation as a Diagnostic for Large-Scale Flow, J. Atmos. Sci., 71, 4221–4234,
https://doi.org/10.1175/JAS-D-14-0108.1, 2014. a, b
Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams, C. M., Knippertz, P., Madonna, E., Schemm, S., Škerlak, B., and Wernli, H.: Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim, Bull. Amer. Meteor. Soc., 98, 1739–1748,
https://doi.org/10.1175/BAMS-D-15-00299.1, 2017. a, b
Steinfeld, D. and Pfahl, S.: The role of latent heating in atmospheric blocking dynamics: a global climatology, Clim. Dynam., 53, 6159–6180,
https://doi.org/10.1007/s00382-019-04919-6, 2019. a
Swenson, E. T. and Straus, D. M.: Rossby wave breaking and transient eddy
forcing during Euro-Atlantic circulation regimes, J. Atmos. Sci., 74,
1735–1755, https://doi.org/10.1175/JAS-D-16-0263.1, 2017. a, b
Thorncroft, C., Hoskins, B., and McIntyre, M.: Two paradigms of baroclinic-wave life-cycle behaviour, Quart. J. Roy. Meteor. Soc., 119, 17–55, https://doi.org/10.1002/qj.49711950903, 1993.
a
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x, 1990. a, b
Treidl, R., Birch, E., and Sajecki, P.: Blocking action in the Northern
Hemisphere: A climatological study, Atmos.-Ocean, 19, 1–23,
https://doi.org/10.1080/07055900.1981.9649096, 1981. a, b
Trigo, R., Trigo, I., DaCamara, C., and Osborn, T.: Climate impact of the
European winter blocking episodes from the NCEP/NCAR Reanalyses, Clim.
Dynam., 23, 17–28, https://doi.org/10.1007/s00382-004-0410-4, 2004. a
Tyrlis, E. and Hoskins, B.: The morphology of Northern Hemisphere blocking,
J. Atmos. Sci., 65, 1653–1665, https://doi.org/10.1175/2007JAS2338.1, 2008. a
Tyrlis, E., Bader, J., Manzini, E., and Matei, D.: Reconciling different
methods of high-latitude blocking detection, Quart. J. Roy. Meteor. Soc., 147, 1–27, https://doi.org/10.1002/qj.3960, 2020. a
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016. a
Vial, J. and Osborn, T. J.: Assessment of atmosphere-ocean general circulation model simulations of winter northern hemisphere atmospheric blocking, Clim. Dynam., 39, 95–112, https://doi.org/10.1007/s00382-011-1177-z, 2012. a, b, c
Wachowicz, L. J., Preece, J. R., Mote, T. L., Barrett, B. S., and Henderson,
G. R.: Historical trends of seasonal Greenland blocking under different
blocking metrics, Int. J. Climatol., 41, E3263–E32782507,
https://doi.org/10.1002/joc.6923, 2020. a, b
Ward, J. L., Flanner, M. G., and Dunn‐Sigouin, E.: Impacts of Greenland
block location on clouds and surface energy fluxes over the Greenland Ice Sheet, J. Geophys. Res.-Atmos., 125, e2020JD033172,
https://doi.org/10.1029/2020JD033172, 2020. a
Wernli, H. and Schwierz, C.: Surface cyclones in the ERA40 dataset (1958–2001). Part I: Novel identification method and global climatology, J.
Atmos. Sci., 63, 2486–2507, https://doi.org/10.1175/JAS3766.1, 2006. a
Woollings, T., Hoskins, B., Blackburn, M., and Berrisford, P.: A new Rossby
wave–breaking interpretation of the North Atlantic Oscillation, J. Atmos. Sci., 65, 609–626, https://doi.org/10.1175/2007JAS2347.1, 2008. a, b, c
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North Atlantic eddy-driven jet stream, Quart. J. Roy. Meteor. Soc., 136, 856–868,
https://doi.org/10.1002/qj.625, 2010. a, b
Yin, J. H.: A consistent poleward shift of the storm tracks in simulations of
21st century climate, Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684, 2005. a
Short summary
Climate models still struggle to correctly represent blocking frequency over the North Atlantic–European domain. This study makes use of five large ensembles of climate simulations and the ERA-Interim reanalyses to investigate the Greenland blocking frequency and one of its drivers, namely cyclonic Rossby wave breaking. We particularly try to understand the discrepancies between two specific models, out of the five, that behave differently.
Climate models still struggle to correctly represent blocking frequency over the North...