Articles | Volume 2, issue 1
https://doi.org/10.5194/wcd-2-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Patrick Johannes Stoll
CORRESPONDING AUTHOR
Department of Physics and Technology, Arctic University of Norway, Tromsø, Norway
Thomas Spengler
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Annick Terpstra
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Rune Grand Graversen
Department of Physics and Technology, Arctic University of Norway, Tromsø, Norway
Norwegian Meteorological Institute, Tromsø, Norway
Related authors
Morteza Babaei, Rune Grand Graversen, Johannes Patrick Stoll, and Jakub Petříček
EGUsphere, https://doi.org/10.5194/egusphere-2025-3867, https://doi.org/10.5194/egusphere-2025-3867, 2025
Short summary
Short summary
Extreme weather events have historically caused major challenges for humanity. Yet, our understanding of the mechanisms that contribute to their formation remains unclear. Our study provides evidence that locally amplified and slow-moving planetary waves are responsible for the formation of extreme cold spells. These findings are obtained based on two novel metrics assessing the amplitude and speed of ridges and troughs separately at all longitudes around latitude circles.
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Kai-Uwe Eiselt and Rune Grand Graversen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4685, https://doi.org/10.5194/egusphere-2025-4685, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We train machine-learning models to predict avalanche problems from meteorological and snow-cover data in northern Norway. A major part of the work is the estimation of avalanche-problem changes throughout the 21st century based on future climate projections. We find that while the avalanche danger generally declines towards 2100, the avalanche characteristics will likely change, meaning fewer dry but more wet avalanches, having potential implications for the avalanche-danger forecast quality.
Andrea Marcheggiani and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3855, https://doi.org/10.5194/egusphere-2025-3855, 2025
Short summary
Short summary
Cold air outbreaks, where cold polar air flows over warmer oceans, help restore midlatitude atmospheric temperature gradients near strong ocean currents, supporting storm formation. Using a novel method, we show that moderate outbreaks cover less than 15 % of the Gulf Stream region but explain up to 40 % of near-surface variability. In the North Pacific, they are more extensive and still account for a large share of variability, highlighting their key role in shaping storm tracks.
Morteza Babaei, Rune Grand Graversen, Johannes Patrick Stoll, and Jakub Petříček
EGUsphere, https://doi.org/10.5194/egusphere-2025-3867, https://doi.org/10.5194/egusphere-2025-3867, 2025
Short summary
Short summary
Extreme weather events have historically caused major challenges for humanity. Yet, our understanding of the mechanisms that contribute to their formation remains unclear. Our study provides evidence that locally amplified and slow-moving planetary waves are responsible for the formation of extreme cold spells. These findings are obtained based on two novel metrics assessing the amplitude and speed of ridges and troughs separately at all longitudes around latitude circles.
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189, https://doi.org/10.5194/egusphere-2025-2189, 2025
Short summary
Short summary
Hemispheric heatwaves have fundamental implications for ecosystems and societies. They are studied together with the large-scale atmospheric dynamics, through the lens of the poleward heat transports by planetary-scale waves. Extremely weak transports of heat towards the Poles are found to be associated with hemispheric heatwaves in the Northern Hemisphere mid-latitudes. Therefore, we conclude that heat transports are a clear indicator, and possibly a precursor of hemispehric heatwaves.
Kai-Uwe Eiselt and Rune Grand Graversen
The Cryosphere, 19, 1849–1871, https://doi.org/10.5194/tc-19-1849-2025, https://doi.org/10.5194/tc-19-1849-2025, 2025
Short summary
Short summary
In this study we optimise and train a random forest model to predict avalanche danger in northern Norway based on meteorological reanalysis data. The model performance is at the low end compared to recent similar studies. A hindcast of the frequency of avalanche days (based on the avalanche-danger level) is performed from 1970 to 2024, and a correlation is found with the Arctic Oscillation. This has potential implications for longer-term avalanche predictability.
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
Weather Clim. Dynam., 6, 431–446, https://doi.org/10.5194/wcd-6-431-2025, https://doi.org/10.5194/wcd-6-431-2025, 2025
Short summary
Short summary
The transport of moisture from warmer and moister to colder and drier regions mainly occurs in brief and narrow bursts. In the mid-latitudes, such bursts are generally referred to as atmospheric rivers; in the Arctic they are often referred to as warm moist intrusions. We introduce a new definition to identify such bursts which is based primarily on their elongated structure. With this more general definition, we show that bursts in moisture transport occur frequently across all climate zones.
Chris Weijenborg and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3404, https://doi.org/10.5194/egusphere-2024-3404, 2024
Short summary
Short summary
The swift succession of storms, referred to as cyclone clustering, is often associated with weather extremes. We introduce a detection scheme for these events and subdivide these into two types. One type is associated with storms that follow each other in space, whereas the other type requires a proximity over time. Cyclone clustering is more frequent during winter and the first type is associated with stronger storms, suggesting that the two types emerge due to different mechanisms.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Fumiaki Ogawa and Thomas Spengler
Weather Clim. Dynam., 5, 1031–1042, https://doi.org/10.5194/wcd-5-1031-2024, https://doi.org/10.5194/wcd-5-1031-2024, 2024
Short summary
Short summary
The exchange of energy and moisture between the atmosphere and ocean is maximised along strong meridional contrasts in sea surface temperature, such as across the Gulf Stream and Kuroshio. We find that these strong meridional contrasts confine and determine the position of evaporation and precipitation, as well as storm occurrence and intensity. The general intensity of the water cycle and storm activity, however, is determined by the underlying absolute sea surface temperature.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Grand Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam., 3, 1037–1062, https://doi.org/10.5194/wcd-3-1037-2022, https://doi.org/10.5194/wcd-3-1037-2022, 2022
Short summary
Short summary
Eddies in mid-latitudes characterize the exchange of heat between the tropics and the poles. This exchange is largely uneven, with a few extreme events bearing most of the heat transported across latitudes in a season. It is thus important to understand what the dynamical mechanisms are behind these events. Here, we identify recurrent weather regime patterns associated with extreme transports, and we identify scales of mid-latitudinal eddies that are mostly responsible for the transport.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022, https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Short summary
In order to understand the atmosphere, we rely on a hierarchy of models ranging from very simple to very complex. Comparing different steps in this hierarchy usually entails comparing different models. Here we combine two such steps that are commonly used in one modelling framework. This makes comparisons both much easier and much more direct.
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021, https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary
Short summary
Comparing simulations with realistic and smoothed SSTs, we find that the intensification of individual cyclones in the Gulf Stream and Kuroshio regions is only marginally affected by reducing the SST gradient. In contrast, we observe a reduced cyclone activity and a shift in storm tracks. Considering differences of the variables occurring within/outside of a radius of any cyclone, we find cyclones to play only a secondary role in explaining the mean states differences among the SST experiments.
Kristine Flacké Haualand and Thomas Spengler
Weather Clim. Dynam., 2, 695–712, https://doi.org/10.5194/wcd-2-695-2021, https://doi.org/10.5194/wcd-2-695-2021, 2021
Short summary
Short summary
Given the recent focus on the influence of upper tropospheric structure in wind and temperature on midlatitude weather, we use an idealised model to investigate how structural modifications impact cyclone development. We find that cyclone intensification is less sensitive to these modifications than to changes in the amount of cloud condensation, suggesting that an accurate representation of the upper-level troposphere is less important for midlatitude weather than previously anticipated.
Cited articles
Balasubramanian, G. and Yau, M.: The life cycle of a simulated marine cyclone:
Energetics and PV diagnostics, J. Atmos. Sci., 53,
639–653, 1996. a
Blechschmidt, A.-M.: A 2-year climatology of polar low events over the Nordic
Seas from satellite remote sensing, Geophys. Res. Lett., 35, L09815, https://doi.org/10.1029/2008GL033706, 2008. a
Businger, S. and Reed, R. J.: Cyclogenesis in cold air masses, Weather
Forecast., 4, 133–156, 1989. a
Charney, J. G. and Eliassen, A.: On the growth of the hurricane depression,
J. Atmos. Sci., 21, 68–75, 1964. a
Claud, C., Heinemann, G., Raustein, E., and McMurdie, L.: Polar low le Cygne:
satellite observations and numerical simulations, Q. J.
Roy. Meteor. Soc., 130, 1075–1102, 2004. a
Claud, C., Duchiron, B., and Terray, P.: Associations between large-scale
atmospheric circulation and polar low developments over the North Atlantic
during winter, J. Geophys. Res.-Atmos., 112, D12101, https://doi.org/10.1029/2006JD008251, 2007. a
Copernicus Arctic Regional Reanalysis Service: CARA, availabe at:
https://climate.copernicus.eu/copernicus-arctic-regional-reanalysis-service, last access: 11 June 2020. a
Dacre, H., Hawcroft, M., Stringer, M., and Hodges, K.: An extratropical cyclone
atlas: A tool for illustrating cyclone structure and evolution
characteristics, B. Am. Meteorol. Soc., 93,
1497–1502, 2012. a
Davis, C. A. and Emanuel, K. A.: Potential vorticity diagnostics of
cyclogenesis, Mon. Weather Rev., 119, 1929–1953, 1991. a
De Boor, C.: A practical guide to splines, Springer, New York, USA, 1978. a
Emanuel, K. A.: An air-sea interaction theory for tropical cyclones. Part I:
Steady-state maintenance, J. Atmos. Sci., 43, 585–605,
1986. a
Emanuel, K. A. and Rotunno, R.: Polar lows as arctic hurricanes, Tellus A, 41,
1–17, 1989. a
Føre, I., Kristjánsson, J. E., Saetra, Ø., Breivik, Ø.,
Røsting, B., and Shapiro, M.: The full life cycle of a polar low over the
Norwegian Sea observed by three research aircraft flights, Q. J.
Roy. Meteor. Soc., 137, 1659–1673, 2011. a
Furevik, B. R., Schyberg, H., Noer, G., Tveter, F., and Röhrs, J.: ASAR and
ASCAT in polar low situations, J. Atmos. Ocean. Tech.,
32, 783–792, 2015. a
Harrold, T. and Browning, K.: The polar low as a baroclinic disturbance,
Q. J. Roy. Meteor. Soc., 95, 710–723, 1969. a
Haualand, K. F. and Spengler, T.: Direct and Indirect Effects of Surface Fluxes
on Moist Baroclinic Development in an Idealized Framework, J.
Atmos. Sci., 77, 3211–3225, https://doi.org/10.1175/JAS-D-19-0328.1, 2020. a, b, c
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter,
147, 5–6, 2016. a
Holton, J. and Hakim, G.: An Introduction to Dynamic Meteorology, vol. 5, Elsevier Science, Academic Press, New York, USA, 2013. a
Jonassen, M. O., Chechin, D., Karpechko, A., Lüpkes, C., Spengler, T.,
Tepstra, A., Vihma, T., and Zhang, X.: Dynamical processes in the Arctic
atmosphere, in: Physics and Chemistry of the Arctic Atmosphere,
Springer, Cham, Switzerland, 1–51, https://doi.org/10.1007/978-3-030-33566-3_1,
2020. a
Kolstad, E. W. and Bracegirdle, T.: Sensitivity of an apparently hurricane-like
polar low to sea-surface temperature, Q. J. Roy. Meteor. Soc., 143, 966–973, 2017. a
Kolstad, E. W., Bracegirdle, T. J., and Zahn, M.: Re-examining the roles of
surface heat flux and latent heat release in a “hurricane-like” polar low
over the Barents Sea, J. Geophys. Res.-Atmos., 121,
7853–7867, 2016. a
Kristjánsson, J. E., Barstad, I., Aspelien, T., Føre, I., Godøy, Ø., Hov, Ø., Irvine, E., Iversen, T., Kolstad, E., Nordeng, T. E., McInnes, H., Randriamampianina, R., Reuder, J., Saetra, Ø., Shapiro, M., Spengler, T., and Ólafsson, H.: The Norwegian IPY-THORPEX: Polar lows and Arctic fronts during the 2008
Andøya campaign, B. Am. Meteorol. Soc., 92,
1443–1466, 2011. a
Kuo, Y.-H., Low-Nam, S., and Reed, R. J.: Effects of surface energy fluxes
during the early development and rapid intensification stages of seven
explosive cyclones in the western Atlantic, Mon. Weather Rev., 119,
457–476, 1991a. a
Laffineur, T., Claud, C., Chaboureau, J.-P., and Noer, G.: Polar lows over the
Nordic Seas: Improved representation in ERA-Interim compared to ERA-40 and
the impact on downscaled simulations, Mon. Weather Rev., 142,
2271–2289, 2014. a
Mansfield, D.: Polar lows: The development of baroclinic disturbances in cold
air outbreaks, Q. J. Roy. Meteorol. Soc., 100,
541–554, 1974. a
Markowski, P. and Richardson, Y.: Mesoscale meteorology in midlatitudes,
John Wiley & Sons, Chichester, UK, https://doi.org/10.1002/9780470682104, 2011. a, b
Noer, G. and Lien, T.: Dates and Positions of Polar lows over the Nordic Seas
between 2000 and 2010, Norwegian Meteorological Institute, Oslo, Norway, report, 16, 1–7, 2010. a
Nordeng, T. E. and Rasmussen, E. A.: A most beautiful polar low. A case study
of a polar low development in the Bear Island region, Tellus A, 44, 81–99, https://doi.org/10.1034/j.1600-0870.1992.00001.x, 1992. a, b, c
Nygård, T., Graversen, R. G., Uotila, P., Naakka, T., and Vihma, T.: Strong
dependence of wintertime Arctic moisture and cloud distributions on
atmospheric large-scale circulation, J. Climate, 32, 8771–8790,
2019. a
Ooyama, K.: A dynamical model for the study of tropical cyclone development,
Geofis. Int., 4, 187–198, 1964. a
Rasmussen, E.: The polar low as an extratropical CISK disturbance, Q.
J. Roy. Meteor. Soc., 105, 531–549, 1979. a
Reed, R. J. and Blier, W.: A Case Study of Comma Cloud Development in the
Eastern Pacific, Mon. Weather Rev., 114, 1681–1695, 1986. a
Reed, R. J. and Duncan, C. N.: Baroclinic instability as a mechanism for the
serial development of polar lows: a case study, Tellus A, 39, 376–384, 1987. a
Renfrew, I.: SYNOPTIC METEOROLOGY, Polar Lows, in: Encyclopedia of Atmospheric
Sciences, edited by: North, G. R., Pyle, J., and Zhang, F.,
Academic Press, Oxford, UK, 379–385, 2015. a
Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by
simplified least squares procedures, Anal. Chem., 36, 1627–1639,
1964. a
Shapiro, M. A. and Keyser, D.: Fronts, jet streams and the tropopause, in:
Extratropical cyclones, Springer, Boston, USA, 167–191, https://doi.org/10.1007/978-1-944970-33-8_10, 1990. a, b
Stoelinga, M. T.: A potential vorticity-based study of the role of diabatic
heating and friction in a numerically simulated baroclinic cyclone, Mon. Weather Rev., 124, 849–874, 1996. a
Wehrens, R. and Buydens, L. M.: Self-and super-organizing maps in R: the
Kohonen package, J. Stat. Softw., 21, 1–19, 2007. a
Yanase, W., Fu, G., Niino, H., and Kato, T.: A polar low over the Japan Sea on
21 January 1997. Part II: A numerical study, Mon. Weather Rev., 132,
1552–1574, 2004. a
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community...