Articles | Volume 2, issue 1
https://doi.org/10.5194/wcd-2-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-19-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Patrick Johannes Stoll
CORRESPONDING AUTHOR
Department of Physics and Technology, Arctic University of Norway, Tromsø, Norway
Thomas Spengler
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Annick Terpstra
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Rune Grand Graversen
Department of Physics and Technology, Arctic University of Norway, Tromsø, Norway
Norwegian Meteorological Institute, Tromsø, Norway
Related authors
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Chris Weijenborg and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3404, https://doi.org/10.5194/egusphere-2024-3404, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
The swift succession of storms, referred to as cyclone clustering, is often associated with weather extremes. We introduce a detection scheme for these events and subdivide these into two types. One type is associated with storms that follow each other in space, whereas the other type requires a proximity over time. Cyclone clustering is more frequent during winter and the first type is associated with stronger storms, suggesting that the two types emerge due to different mechanisms.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Kai-Uwe Eiselt and Rune Grand Graversen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2865, https://doi.org/10.5194/egusphere-2024-2865, 2024
Short summary
Short summary
In this study we optimise and train a random forest model to predict avalanche danger in northern Norway based on meteorological reanalysis data. A 4-level and a binary case are considered. The model performance in the 4-level case is at the low end compared to recent similar studies. A hindcast of a measure for avalanche activity is performed from 1970-2023 and a correlation is found with the Arctic Oscillation. This has potential implications for longer-term avalanche predictability.
Fumiaki Ogawa and Thomas Spengler
Weather Clim. Dynam., 5, 1031–1042, https://doi.org/10.5194/wcd-5-1031-2024, https://doi.org/10.5194/wcd-5-1031-2024, 2024
Short summary
Short summary
The exchange of energy and moisture between the atmosphere and ocean is maximised along strong meridional contrasts in sea surface temperature, such as across the Gulf Stream and Kuroshio. We find that these strong meridional contrasts confine and determine the position of evaporation and precipitation, as well as storm occurrence and intensity. The general intensity of the water cycle and storm activity, however, is determined by the underlying absolute sea surface temperature.
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1709, https://doi.org/10.5194/egusphere-2024-1709, 2024
Short summary
Short summary
The transport of moisture from warmer and moister towards colder and drier regions mainly occurs in brief and narrow. In the mid-latitudes, such bursts are generally referred to as atmospheric rivers, in the Arctic they are often referred to as warm moist intrusions. We introduce a new definition to identify such bursts which is based primarily on their elongated structure. With this more general definition, we show that bursts in moisture transport occur frequently across all climate zones.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Grand Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam., 3, 1037–1062, https://doi.org/10.5194/wcd-3-1037-2022, https://doi.org/10.5194/wcd-3-1037-2022, 2022
Short summary
Short summary
Eddies in mid-latitudes characterize the exchange of heat between the tropics and the poles. This exchange is largely uneven, with a few extreme events bearing most of the heat transported across latitudes in a season. It is thus important to understand what the dynamical mechanisms are behind these events. Here, we identify recurrent weather regime patterns associated with extreme transports, and we identify scales of mid-latitudinal eddies that are mostly responsible for the transport.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022, https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Short summary
In order to understand the atmosphere, we rely on a hierarchy of models ranging from very simple to very complex. Comparing different steps in this hierarchy usually entails comparing different models. Here we combine two such steps that are commonly used in one modelling framework. This makes comparisons both much easier and much more direct.
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021, https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary
Short summary
Comparing simulations with realistic and smoothed SSTs, we find that the intensification of individual cyclones in the Gulf Stream and Kuroshio regions is only marginally affected by reducing the SST gradient. In contrast, we observe a reduced cyclone activity and a shift in storm tracks. Considering differences of the variables occurring within/outside of a radius of any cyclone, we find cyclones to play only a secondary role in explaining the mean states differences among the SST experiments.
Kristine Flacké Haualand and Thomas Spengler
Weather Clim. Dynam., 2, 695–712, https://doi.org/10.5194/wcd-2-695-2021, https://doi.org/10.5194/wcd-2-695-2021, 2021
Short summary
Short summary
Given the recent focus on the influence of upper tropospheric structure in wind and temperature on midlatitude weather, we use an idealised model to investigate how structural modifications impact cyclone development. We find that cyclone intensification is less sensitive to these modifications than to changes in the amount of cloud condensation, suggesting that an accurate representation of the upper-level troposphere is less important for midlatitude weather than previously anticipated.
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Short summary
In this work, a coupled ocean and sea-ice ensemble-based assimilation system is used to assess the impact of different observations on the assimilation system. The focus of this study is on sea-ice observations, including the use of satellite observations of sea-ice concentration, sea-ice thickness and snow depth for assimilation. The study showed that assimilation of sea-ice thickness in addition to sea-ice concentration has a large positive impact on the coupled model.
Related subject area
Dynamical processes in polar regions, incl. polar–midlatitude interactions
Concurrent Bering Sea and Labrador Sea ice melt extremes in March 2023: a confluence of meteorological events aligned with stratosphere–troposphere interactions
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Circulation responses to surface heating and implications for polar amplification
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions
European summer weather linked to North Atlantic freshwater anomalies in preceding years
On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe
The role of boundary layer processes in summer-time Arctic cyclones
Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling
The role of Rossby waves in polar weather and climate
Reanalysis representation of low-level winds in the Antarctic near-coastal region
The composite development and structure of intense synoptic-scale Arctic cyclones
Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation
Jet stream variability in a polar warming scenario – a laboratory perspective
Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter
Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat
A global climatology of polar lows investigated for local differences and wind-shear environments
Characteristics of long-track tropopause polar vortices
Identification, characteristics and dynamics of Arctic extreme seasons
Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic
Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic
The role of tropopause polar vortices in the intensification of summer Arctic cyclones
Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5
Dynamical drivers of Greenland blocking in climate models
Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events
A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017
Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
The role of wave–wave interactions in sudden stratospheric warming formation
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024, https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Short summary
This study chronicles the meteorological conditions that led to the anomalous, tandem March 2023 ice melt event in the Labrador and Bering seas. A sudden stratospheric warming event initiated the development of an anticyclonic circulation pattern over the Greenland–Labrador region, while the La Niña background state supported ridging conditions over Alaska, both of which aided northward transport of warm, moist air and drove the concurrent sea ice melt extremes.
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024, https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are channel-shaped features within the atmosphere that carry moisture from the mid-latitudes to the poles, bringing warm temperatures and moisture that can cause melt in the Arctic. We used variable-resolution grids to model ARs around the Greenland ice sheet and compared this output to uniform-resolution grids and reanalysis products. We found that the variable-resolution grids produced ARs and precipitation that were more similar to observation-based products.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024, https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary
Short summary
One of the intriguing problems associated with recent climate trends is the rapid temperature increase in the Arctic. In this paper, we address the Arctic warming problem using a laboratory atmospheric general circulation model. We show that variations in polar cooling lead to significant changes in polar-cell structure, resulting in a substantial increase in temperature. Our modeling results provide a plausible explanation for Arctic warming amplification.
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Hannah L. Croad, John Methven, Ben Harvey, Sarah P. E. Keeley, and Ambrogio Volonté
Weather Clim. Dynam., 4, 617–638, https://doi.org/10.5194/wcd-4-617-2023, https://doi.org/10.5194/wcd-4-617-2023, 2023
Short summary
Short summary
The interaction between Arctic cyclones and the sea ice surface in summer is investigated by analysing the friction and sensible heat flux processes acting in two cyclones with contrasting evolution. The major finding is that the effects of friction on cyclone strength are dependent on a particular feature of cyclone structure: whether they have a warm or cold core during growth. Friction leads to cooling within both cyclone types in the lower atmosphere, which may contribute to their longevity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Kristian Strommen, Stephan Juricke, and Fenwick Cooper
Weather Clim. Dynam., 3, 951–975, https://doi.org/10.5194/wcd-3-951-2022, https://doi.org/10.5194/wcd-3-951-2022, 2022
Short summary
Short summary
Observational data suggest that the extent of Arctic sea ice influences mid-latitude winter weather. However, climate models generally fail to reproduce this link, making it unclear if models are missing something or if the observed link is just a coincidence. We show that if one explicitly represents the effect of unresolved sea ice variability in a climate model, then it is able to reproduce this link. This implies that the link may be real but that many models simply fail to simulate it.
Costanza Rodda, Uwe Harlander, and Miklos Vincze
Weather Clim. Dynam., 3, 937–950, https://doi.org/10.5194/wcd-3-937-2022, https://doi.org/10.5194/wcd-3-937-2022, 2022
Short summary
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Patrick Johannes Stoll
Weather Clim. Dynam., 3, 483–504, https://doi.org/10.5194/wcd-3-483-2022, https://doi.org/10.5194/wcd-3-483-2022, 2022
Short summary
Short summary
Polar lows are small but intense cyclones and constitute one of the major natural hazards in the polar regions. To be aware of when and where polar lows occur, this study maps polar lows globally by utilizing new atmospheric datasets. Polar lows develop in all marine areas adjacent to sea ice or cold landmasses, mainly in the winter half year. The highest frequency appears in the Nordic Seas. Further, it is found that polar lows are rather similar in the different ocean sub-basins.
Matthew T. Bray and Steven M. Cavallo
Weather Clim. Dynam., 3, 251–278, https://doi.org/10.5194/wcd-3-251-2022, https://doi.org/10.5194/wcd-3-251-2022, 2022
Short summary
Short summary
Tropopause polar vortices (TPVs) are a high-latitude atmospheric phenomenon that impact weather inside and outside of polar regions. Using a set of long-lived TPVs to gain insight into the conditions that are most supportive of TPV survival, we describe patterns of vortex formation and movement. In addition, we analyze the characteristics of these TPVs and how they vary by season. These results help us to better understand TPVs which, in turn, may improve forecasts of related weather events.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022, https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary
Short summary
Water vapor profoundly impacts the Arctic, for example by contributing to sea ice melt. A substantial portion of water vapor in the Arctic originates at mid-latitudes and is transported poleward in a few episodic and intense events. This transport is accomplished by low- and high-pressure systems occurring in specific regions or following particular tracks. Here, we explore how the type of weather system impacts where the water vapor is coming from and how it is transported poleward.
Suzanne L. Gray, Kevin I. Hodges, Jonathan L. Vautrey, and John Methven
Weather Clim. Dynam., 2, 1303–1324, https://doi.org/10.5194/wcd-2-1303-2021, https://doi.org/10.5194/wcd-2-1303-2021, 2021
Short summary
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
Corwin J. Wright, Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour
Weather Clim. Dynam., 2, 1283–1301, https://doi.org/10.5194/wcd-2-1283-2021, https://doi.org/10.5194/wcd-2-1283-2021, 2021
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) are some of the most dramatic events in the atmosphere and are believed to help cause extreme winter weather events such as the 2018 Beast from the East in Europe and North America. Here, we use unique data from the European Space Agency's new Aeolus satellite to make the first-ever measurements at a global scale of wind changes due to an SSW in the lower part of the atmosphere to help us understand how SSWs affect the atmosphere and surface weather.
Clio Michel, Erica Madonna, Clemens Spensberger, Camille Li, and Stephen Outten
Weather Clim. Dynam., 2, 1131–1148, https://doi.org/10.5194/wcd-2-1131-2021, https://doi.org/10.5194/wcd-2-1131-2021, 2021
Short summary
Short summary
Climate models still struggle to correctly represent blocking frequency over the North Atlantic–European domain. This study makes use of five large ensembles of climate simulations and the ERA-Interim reanalyses to investigate the Greenland blocking frequency and one of its drivers, namely cyclonic Rossby wave breaking. We particularly try to understand the discrepancies between two specific models, out of the five, that behave differently.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
Short summary
Arctic sea ice loss has been linked to changes in mid-latitude weather and climate. However, the literature offers differing views on the strength, robustness, and even existence of these linkages. We use a statistical tool (Causal Effect Networks) to show that one proposed pathway linking Barents–Kara ice and mid-latitude circulation is intermittent in observations and likely only active under certain conditions. This result may help explain apparent inconsistencies across previous studies.
Erik A. Lindgren and Aditi Sheshadri
Weather Clim. Dynam., 1, 93–109, https://doi.org/10.5194/wcd-1-93-2020, https://doi.org/10.5194/wcd-1-93-2020, 2020
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are extreme events that influence surface weather up to 2 months after onset. We remove wave–wave interactions (WWIs) in vertical sections of a general circulation model to investigate the role of WWIs in SSW formation. We show that the effects of WWIs depend strongly on the pressure levels where they occur and the zonal structure of the wave forcing in the troposphere. Our results highlight the importance of upper-level processes in stratospheric dynamics.
Cited articles
Balasubramanian, G. and Yau, M.: The life cycle of a simulated marine cyclone:
Energetics and PV diagnostics, J. Atmos. Sci., 53,
639–653, 1996. a
Blechschmidt, A.-M.: A 2-year climatology of polar low events over the Nordic
Seas from satellite remote sensing, Geophys. Res. Lett., 35, L09815, https://doi.org/10.1029/2008GL033706, 2008. a
Businger, S. and Reed, R. J.: Cyclogenesis in cold air masses, Weather
Forecast., 4, 133–156, 1989. a
Charney, J. G. and Eliassen, A.: On the growth of the hurricane depression,
J. Atmos. Sci., 21, 68–75, 1964. a
Claud, C., Heinemann, G., Raustein, E., and McMurdie, L.: Polar low le Cygne:
satellite observations and numerical simulations, Q. J.
Roy. Meteor. Soc., 130, 1075–1102, 2004. a
Claud, C., Duchiron, B., and Terray, P.: Associations between large-scale
atmospheric circulation and polar low developments over the North Atlantic
during winter, J. Geophys. Res.-Atmos., 112, D12101, https://doi.org/10.1029/2006JD008251, 2007. a
Copernicus Arctic Regional Reanalysis Service: CARA, availabe at:
https://climate.copernicus.eu/copernicus-arctic-regional-reanalysis-service, last access: 11 June 2020. a
Dacre, H., Hawcroft, M., Stringer, M., and Hodges, K.: An extratropical cyclone
atlas: A tool for illustrating cyclone structure and evolution
characteristics, B. Am. Meteorol. Soc., 93,
1497–1502, 2012. a
Davis, C. A. and Emanuel, K. A.: Potential vorticity diagnostics of
cyclogenesis, Mon. Weather Rev., 119, 1929–1953, 1991. a
De Boor, C.: A practical guide to splines, Springer, New York, USA, 1978. a
Emanuel, K. A.: An air-sea interaction theory for tropical cyclones. Part I:
Steady-state maintenance, J. Atmos. Sci., 43, 585–605,
1986. a
Emanuel, K. A. and Rotunno, R.: Polar lows as arctic hurricanes, Tellus A, 41,
1–17, 1989. a
Føre, I., Kristjánsson, J. E., Saetra, Ø., Breivik, Ø.,
Røsting, B., and Shapiro, M.: The full life cycle of a polar low over the
Norwegian Sea observed by three research aircraft flights, Q. J.
Roy. Meteor. Soc., 137, 1659–1673, 2011. a
Furevik, B. R., Schyberg, H., Noer, G., Tveter, F., and Röhrs, J.: ASAR and
ASCAT in polar low situations, J. Atmos. Ocean. Tech.,
32, 783–792, 2015. a
Harrold, T. and Browning, K.: The polar low as a baroclinic disturbance,
Q. J. Roy. Meteor. Soc., 95, 710–723, 1969. a
Haualand, K. F. and Spengler, T.: Direct and Indirect Effects of Surface Fluxes
on Moist Baroclinic Development in an Idealized Framework, J.
Atmos. Sci., 77, 3211–3225, https://doi.org/10.1175/JAS-D-19-0328.1, 2020. a, b, c
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter,
147, 5–6, 2016. a
Holton, J. and Hakim, G.: An Introduction to Dynamic Meteorology, vol. 5, Elsevier Science, Academic Press, New York, USA, 2013. a
Jonassen, M. O., Chechin, D., Karpechko, A., Lüpkes, C., Spengler, T.,
Tepstra, A., Vihma, T., and Zhang, X.: Dynamical processes in the Arctic
atmosphere, in: Physics and Chemistry of the Arctic Atmosphere,
Springer, Cham, Switzerland, 1–51, https://doi.org/10.1007/978-3-030-33566-3_1,
2020. a
Kolstad, E. W. and Bracegirdle, T.: Sensitivity of an apparently hurricane-like
polar low to sea-surface temperature, Q. J. Roy. Meteor. Soc., 143, 966–973, 2017. a
Kolstad, E. W., Bracegirdle, T. J., and Zahn, M.: Re-examining the roles of
surface heat flux and latent heat release in a “hurricane-like” polar low
over the Barents Sea, J. Geophys. Res.-Atmos., 121,
7853–7867, 2016. a
Kristjánsson, J. E., Barstad, I., Aspelien, T., Føre, I., Godøy, Ø., Hov, Ø., Irvine, E., Iversen, T., Kolstad, E., Nordeng, T. E., McInnes, H., Randriamampianina, R., Reuder, J., Saetra, Ø., Shapiro, M., Spengler, T., and Ólafsson, H.: The Norwegian IPY-THORPEX: Polar lows and Arctic fronts during the 2008
Andøya campaign, B. Am. Meteorol. Soc., 92,
1443–1466, 2011. a
Kuo, Y.-H., Low-Nam, S., and Reed, R. J.: Effects of surface energy fluxes
during the early development and rapid intensification stages of seven
explosive cyclones in the western Atlantic, Mon. Weather Rev., 119,
457–476, 1991a. a
Laffineur, T., Claud, C., Chaboureau, J.-P., and Noer, G.: Polar lows over the
Nordic Seas: Improved representation in ERA-Interim compared to ERA-40 and
the impact on downscaled simulations, Mon. Weather Rev., 142,
2271–2289, 2014. a
Mansfield, D.: Polar lows: The development of baroclinic disturbances in cold
air outbreaks, Q. J. Roy. Meteorol. Soc., 100,
541–554, 1974. a
Markowski, P. and Richardson, Y.: Mesoscale meteorology in midlatitudes,
John Wiley & Sons, Chichester, UK, https://doi.org/10.1002/9780470682104, 2011. a, b
Noer, G. and Lien, T.: Dates and Positions of Polar lows over the Nordic Seas
between 2000 and 2010, Norwegian Meteorological Institute, Oslo, Norway, report, 16, 1–7, 2010. a
Nordeng, T. E. and Rasmussen, E. A.: A most beautiful polar low. A case study
of a polar low development in the Bear Island region, Tellus A, 44, 81–99, https://doi.org/10.1034/j.1600-0870.1992.00001.x, 1992. a, b, c
Nygård, T., Graversen, R. G., Uotila, P., Naakka, T., and Vihma, T.: Strong
dependence of wintertime Arctic moisture and cloud distributions on
atmospheric large-scale circulation, J. Climate, 32, 8771–8790,
2019. a
Ooyama, K.: A dynamical model for the study of tropical cyclone development,
Geofis. Int., 4, 187–198, 1964. a
Rasmussen, E.: The polar low as an extratropical CISK disturbance, Q.
J. Roy. Meteor. Soc., 105, 531–549, 1979. a
Reed, R. J. and Blier, W.: A Case Study of Comma Cloud Development in the
Eastern Pacific, Mon. Weather Rev., 114, 1681–1695, 1986. a
Reed, R. J. and Duncan, C. N.: Baroclinic instability as a mechanism for the
serial development of polar lows: a case study, Tellus A, 39, 376–384, 1987. a
Renfrew, I.: SYNOPTIC METEOROLOGY, Polar Lows, in: Encyclopedia of Atmospheric
Sciences, edited by: North, G. R., Pyle, J., and Zhang, F.,
Academic Press, Oxford, UK, 379–385, 2015. a
Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by
simplified least squares procedures, Anal. Chem., 36, 1627–1639,
1964. a
Shapiro, M. A. and Keyser, D.: Fronts, jet streams and the tropopause, in:
Extratropical cyclones, Springer, Boston, USA, 167–191, https://doi.org/10.1007/978-1-944970-33-8_10, 1990. a, b
Stoelinga, M. T.: A potential vorticity-based study of the role of diabatic
heating and friction in a numerically simulated baroclinic cyclone, Mon. Weather Rev., 124, 849–874, 1996. a
Wehrens, R. and Buydens, L. M.: Self-and super-organizing maps in R: the
Kohonen package, J. Stat. Softw., 21, 1–19, 2007. a
Yanase, W., Fu, G., Niino, H., and Kato, T.: A polar low over the Japan Sea on
21 January 1997. Part II: A numerical study, Mon. Weather Rev., 132,
1552–1574, 2004. a
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community...