Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-561-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-561-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of GPS and high-resolution radiosonde nudging on the simulation of heavy precipitation during HyMeX IOP6
Alberto Caldas-Alvarez
CORRESPONDING AUTHOR
Department Troposphere Research, Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe
Institute of Technology, Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
Samiro Khodayar
Department Troposphere Research, Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe
Institute of Technology, Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
Meteorology and Pollutant Dynamics Area, Mediterranean Centre for Environmental Studies (CEAM), Valencia,
46980, Spain
Peter Knippertz
Department Troposphere Research, Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe
Institute of Technology, Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
Related authors
Alberto Caldas-Alvarez, Hendrik Feldmann, Etor Lucio-Eceiza, and Joaquim G. Pinto
Weather Clim. Dynam., 4, 543–565, https://doi.org/10.5194/wcd-4-543-2023, https://doi.org/10.5194/wcd-4-543-2023, 2023
Short summary
Short summary
We evaluate convection-permitting modelling (CPM) simulations for the greater Alpine area to assess its added value compared to a 25 km resolution. A new method for severe precipitation detection is used, and the associated synoptic weather types are considered. Our results document the added value of CPM for precipitation representation with higher intensities, better rank correlation, better hit rates, and an improved amount and structure, but with an overestimation of the rates.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Alberto Caldas-Alvarez and Samiro Khodayar
Nat. Hazards Earth Syst. Sci., 20, 2753–2776, https://doi.org/10.5194/nhess-20-2753-2020, https://doi.org/10.5194/nhess-20-2753-2020, 2020
Short summary
Short summary
Heavy precipitation causes serious losses and several casualties in the western Mediterranean every year. To predict this phenomenon better, we aim at understanding how the models represent the interaction between atmospheric moisture and precipitation by nudging a 10 min, state-of-the-art GPS data set. We found, for the selected case in autumn 2012, that the improvement in the modelling of precipitation stems from relevant variations of atmospheric instability and humidity above 1.5 km.
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz
Atmos. Chem. Phys., 25, 9765–9786, https://doi.org/10.5194/acp-25-9765-2025, https://doi.org/10.5194/acp-25-9765-2025, 2025
Short summary
Short summary
Tropical waves structure the atmosphere. Four types of tropical waves (equatorial Rossby – ER, Kelvin, MRG-TD1, and MRG-TD2 – mixed Rossby gravity–tropical depressions) are studied using filters, satellite measurements, and in situ data from the Clouds–Atmosphere Dynamics–Dust Interaction in West Africa (CADDIWA) campaign held in September 2021 in Cabo Verde. ER waves impact temperature and humidity above 2500 m, MRG-TD1 around 3500 m, and MRG-TD2 around 2000 m. Interactions between these waves favor tropical cyclone formation.
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069, https://doi.org/10.5194/egusphere-2025-3069, 2025
Short summary
Short summary
We studied how climate change and cleaner air could affect severe storms in Central Europe. Using high-resolution weather simulations of past supercell storms under warmer and less polluted conditions, we found that storms may become more intense, with heavier rainfall and larger hailstones. These changes suggest an increased risk of damage in the future. Our findings help improve understanding of how extreme storms may evolve in a changing climate.
Christopher Johannes Diekmann, Matthias Schneider, Peter Knippertz, Tim Trent, Hartmut Boesch, Amelie Ninja Roehling, John Worden, Benjamin Ertl, Farahnaz Khosrawi, and Frank Hase
Atmos. Chem. Phys., 25, 5409–5431, https://doi.org/10.5194/acp-25-5409-2025, https://doi.org/10.5194/acp-25-5409-2025, 2025
Short summary
Short summary
The West African Monsoon is the main source of rainfall over West Africa, and understanding the development of the monsoon remains challenging due to complex interactions of atmospheric processes. We make use of new satellite datasets of isotopes in tropospheric water vapour to characterize processes controlling the monsoon convection. We find that comparing different water vapour isotopes reveals effects of rain–vapour interactions and air mass transport.
Hannah Meyer, Konrad Kandler, Sylvain Dupont, Jerónimo Escribano, Jessica Girdwood, George Nikolich, Andrés Alastuey, Vicken Etyemezian, Cristina González Flórez, Adolfo González-Romero, Tareq Hussein, Mark Irvine, Peter Knippertz, Ottmar Möhler, Xavier Querol, Chris Stopford, Franziska Vogel, Frederik Weis, Andreas Wieser, Carlos Pérez García-Pando, and Martina Klose
EGUsphere, https://doi.org/10.5194/egusphere-2025-1531, https://doi.org/10.5194/egusphere-2025-1531, 2025
Short summary
Short summary
Mineral dust particles emitted from dry soils are of various sizes, yet the abundance of very large particles is not well understood. Here we measured the dust size distribution from fine to giant particles at an emission source during a field campaign in Jordan (J-WADI) using multiple instruments. Our findings show that large particles make up a significant part of the total dust mass. This knowledge is essential to improve climate models and to predict dust impacts on climate and environment.
Matthias Fischer, Peter Knippertz, and Carsten Proppe
Weather Clim. Dynam., 6, 113–130, https://doi.org/10.5194/wcd-6-113-2025, https://doi.org/10.5194/wcd-6-113-2025, 2025
Short summary
Short summary
The West African monsoon is vital for millions but difficult to represent with numerical models. Our research aims at improving monsoon simulations by optimizing three model parameters – entrainment rate, ice fall speed, and soil moisture evaporation – using an advanced surrogate-based multi-objective optimization framework. Results show that tuning these parameters can sometimes improve certain monsoon characteristics, however at the expense of others, highlighting the power of our approach.
Selina M. Kiefer, Patrick Ludwig, Sebastian Lerch, Peter Knippertz, and Joaquim G. Pinto
EGUsphere, https://doi.org/10.5194/egusphere-2024-2955, https://doi.org/10.5194/egusphere-2024-2955, 2024
Preprint withdrawn
Short summary
Short summary
Weather forecasts 14 days in advance generally have a low skill but not always. We identify reasons thereof depending on the atmospheric flow, shown by Weather Regimes (WRs). If the WRs during the forecasts follow climatological patterns, forecast skill is increased. The forecast of a cold-wave day is better when the European Blocking WR (high pressure around the British Isles) is present a few days before a cold-wave day. These results can be used to assess the reliability of predictions.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024, https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Short summary
Blocking over Greenland has substantial impacts on the weather and climate in mid- and high latitudes. This study applies a quasi-Lagrangian thinking on the dynamics of Greenland blocking and reveals two pathways of anticyclonic anomalies linked to the block. Moist processes were found to play a dominant role in the formation and maintenance of blocking. This emphasizes the necessity of the correct representation of moist processes in weather and climate models to realistically depict blocking.
Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham
Weather Clim. Dynam., 5, 511–536, https://doi.org/10.5194/wcd-5-511-2024, https://doi.org/10.5194/wcd-5-511-2024, 2024
Short summary
Short summary
Our research enhances the understanding of the complex dynamics within the West African monsoon system by analyzing the impact of specific model parameters on its characteristics. Employing surrogate models, we identified critical factors such as the entrainment rate and the fall velocity of ice. Precise definition of these parameters in weather models could improve forecast accuracy, thus enabling better strategies to manage and reduce the impact of weather events.
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Short summary
This study assesses the quality of Aeolus wind measurements over the tropical Atlantic. The results identified the accuracy and precision of the Aeolus wind measurements and the potential source of errors. For instance, the study revealed atmospheric conditions that can deteriorate the measurement quality, such as weaker laser signal in cloudy or dusty conditions, and confirmed the presence of an orbital-dependant bias. These results can help to improve the Aeolus wind measurement algorithm.
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023, https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary
Short summary
A narrow rainfall belt in the tropics is an important feature for large-scale circulations and the global water cycle. The accurate simulation of this rainfall feature has been a long-standing problem, with the reasons behind that unclear. We present a novel diagnostic tool that allows us to disentangle processes important for rainfall, which changes due to modifications in model. Using our diagnostic tool, one can potentially identify sources of uncertainty in weather and climate models.
Lea Eisenstein, Benedikt Schulz, Joaquim G. Pinto, and Peter Knippertz
Weather Clim. Dynam., 4, 981–999, https://doi.org/10.5194/wcd-4-981-2023, https://doi.org/10.5194/wcd-4-981-2023, 2023
Short summary
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. In Part 1 of this work, we introduced RAMEFI (RAndom-forest-based MEsoscale wind Feature Identification), an objective, flexible identification tool for these wind features based on a probabilistic random forest. Here, we use RAMEFI to compile a climatology of the features over 19 extended winter seasons over western and central Europe, focusing on relative occurrence, affected areas and further characteristics.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Alberto Caldas-Alvarez, Hendrik Feldmann, Etor Lucio-Eceiza, and Joaquim G. Pinto
Weather Clim. Dynam., 4, 543–565, https://doi.org/10.5194/wcd-4-543-2023, https://doi.org/10.5194/wcd-4-543-2023, 2023
Short summary
Short summary
We evaluate convection-permitting modelling (CPM) simulations for the greater Alpine area to assess its added value compared to a 25 km resolution. A new method for severe precipitation detection is used, and the associated synoptic weather types are considered. Our results document the added value of CPM for precipitation representation with higher intensities, better rank correlation, better hit rates, and an improved amount and structure, but with an overestimation of the rates.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023, https://doi.org/10.5194/wcd-4-399-2023, 2023
Short summary
Short summary
Blocking describes a flow configuration in the midlatitudes where stationary high-pressure systems block the propagation of weather systems. This study combines three individual perspectives that capture the dynamics and importance of various processes in the formation of a major blocking in 2016 from a weather regime perspective. In future work, this framework will enable a holistic view of the dynamics and the role of moist processes in different life cycle stages of blocked weather regimes.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Lea Eisenstein, Benedikt Schulz, Ghulam A. Qadir, Joaquim G. Pinto, and Peter Knippertz
Weather Clim. Dynam., 3, 1157–1182, https://doi.org/10.5194/wcd-3-1157-2022, https://doi.org/10.5194/wcd-3-1157-2022, 2022
Short summary
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. Here, we present RAMEFI, a novel approach to objectively identify the wind features based on a probabilistic random forest. RAMEFI enables a wide range of applications such as probabilistic predictions for the occurrence or a multi-decadal climatology of these features, which will be the focus of Part 2 of the study, with the goal of improving wind and, specifically, wind gust forecasts in the long run.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Christopher J. Diekmann, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira García, Farahnaz Khosrawi, Eliezer Sepúlveda, Peter Knippertz, and Peter Braesicke
Earth Syst. Sci. Data, 13, 5273–5292, https://doi.org/10.5194/essd-13-5273-2021, https://doi.org/10.5194/essd-13-5273-2021, 2021
Short summary
Short summary
The joint analysis of different stable water isotopes in water vapour is a powerful tool for investigating atmospheric moisture pathways. This paper presents a novel global and multi-annual dataset of H2O and HDO in mid-tropospheric water vapour by using data from the satellite sensor Metop/IASI. Due to its unique combination of coverage and resolution in space and time, this dataset is highly promising for studying the hydrological cycle and its representation in weather and climate models.
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021, https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Short summary
We use high-resolution numerical isotope modelling and Lagrangian backward trajectories to identify moisture transport pathways and governing physical and dynamical processes that affect the free-tropospheric humidity and isotopic variability over the eastern subtropical North Atlantic. Furthermore, we conduct a thorough isotope modelling validation with aircraft and remote-sensing observations of water vapour isotopes.
Gregor Pante, Peter Knippertz, Andreas H. Fink, and Anke Kniffka
Atmos. Chem. Phys., 21, 35–55, https://doi.org/10.5194/acp-21-35-2021, https://doi.org/10.5194/acp-21-35-2021, 2021
Short summary
Short summary
Seasonal rainfall amounts along the densely populated West African Guinea coast have been decreasing during the past 35 years, with recently accelerating trends. We find strong indications that this is in part related to increasing human air pollution in the region. Given the fast increase in emissions, the political implications of this work are significant. Reducing air pollution locally and regionally would mitigate an imminent health crisis and socio-economic damage from reduced rainfall.
Alberto Caldas-Alvarez and Samiro Khodayar
Nat. Hazards Earth Syst. Sci., 20, 2753–2776, https://doi.org/10.5194/nhess-20-2753-2020, https://doi.org/10.5194/nhess-20-2753-2020, 2020
Short summary
Short summary
Heavy precipitation causes serious losses and several casualties in the western Mediterranean every year. To predict this phenomenon better, we aim at understanding how the models represent the interaction between atmospheric moisture and precipitation by nudging a 10 min, state-of-the-art GPS data set. We found, for the selected case in autumn 2012, that the improvement in the modelling of precipitation stems from relevant variations of atmospheric instability and humidity above 1.5 km.
Cited articles
Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.: Thermodynamic
indices for forecasting thunderstorms in southern Sweden, Meteorol.
Mag., 118, 141–146, 1989.
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction
with the COSMO Model: Description and Sensitivities, Mon. Weather Rev.,
139, 3887–3905, https://doi.org/10.1175/mwr-d-10-05013.1, 2011.
Barthlott, C. and Hoose, C.: Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the “gray zone”, Atmos. Chem. Phys., 15, 12361–12384, https://doi.org/10.5194/acp-15-12361-2015, 2015.
Bastin, S., Drobinski, P., Chiriaco, M., Bock, O., Roehrig, R., Gallardo, C., Conte, D., Domínguez Alonso, M., Li, L., Lionello, P., and Parracho, A. C.: Impact of humidity biases on light precipitation occurrence: observations versus simulations, Atmos. Chem. Phys., 19, 1471–1490, https://doi.org/10.5194/acp-19-1471-2019, 2019.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956,
2015.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017.
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B.
E., and Schlatter, T. W.: Relative Short-Range Forecast Impact from Aircraft,
Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the
RUC Hourly Assimilation Cycle, Mon. Weather Rev., 138, 1319–1343,
https://doi.org/10.1175/2009mwr3097.1, 2010.
Bernstein, D. N. and Neelin, J. D.: Identifying sensitive ranges in global
warming precipitation change dependence on convective parameters,
Geophys. Res. Lett., 43, 5841–5850, https://doi.org/10.1002/2016gl069022,
2016.
Bock, O., Bosser, P., Pacione, R., Nuret, M., Fourrié, N., and Parracho,
A.: A high-quality reprocessed ground-based GPS dataset for atmospheric
process studies, radiosonde and model evaluation, and reanalysis of HyMeX
Special Observing Period, Q. J. Roy. Meteor.
Soc., 142, 56–71, https://doi.org/10.1002/qj.2701, 2016.
Bock, O. and Parracho, A. C.: Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis, Atmos. Chem. Phys., 19, 9453–9468, https://doi.org/10.5194/acp-19-9453-2019, 2019.
Bonekamp, P. N. J., Collier, E., and Immerzeel, W. W.: The Impact of Spatial
Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation
Patterns in the Himalayas, J. Hydrometeorol., 19, 1565–1581,
https://doi.org/10.1175/jhm-d-17-0212.1, 2018.
Borderies, M., Caumont, O., Delanoë, J., Ducrocq, V., Fourrié, N., and Marquet, P.: Impact of airborne cloud radar reflectivity data assimilation on kilometre-scale numerical weather prediction analyses and forecasts of heavy precipitation events, Nat. Hazards Earth Syst. Sci., 19, 907–926, https://doi.org/10.5194/nhess-19-907-2019, 2019.
Businger, S., Chiswell, S. R., Bevis, M., Duan, J., Anthes, R. A., Rocken,
C., Ware, R. H., Exner, M., VanHove, T., and Solheim, F. S.: The Promise of
GPS in Atmospheric Monitoring, B. Am. Meteor.
Soc., 77, 5–18, https://doi.org/10.1175/1520-0477(1996)077<0005:tpogia>2.0.co;2, 1996.
Caldas-Alvarez, A.: The impact of GPS and high-resolution radiosonde nudging on the simulation of heavy precipitation during HyMeX IOP6, KITOpen, Karlsruhe Institute of Technology, https://doi.org/10.5445/IR/1000127550, 2021.
Caldas-Alvarez, A. and Khodayar, S.: Assessing atmospheric moisture effects on heavy precipitation during HyMeX IOP16 using GPS nudging and dynamical downscaling, Nat. Hazards Earth Syst. Sci., 20, 2753–2776, https://doi.org/10.5194/nhess-20-2753-2020, 2020.
Campins, J., Navascués, B., Santos, C., and Amo-Baladrón, A.: Influence of targeted observations on short-term forecasts of high-impact weather events in the Mediterranean, Nat. Hazards Earth Syst. Sci., 13, 2891–2910, https://doi.org/10.5194/nhess-13-2891-2013, 2013.
Carlin, J. T., Gao, J., Snyder, J. C., and Ryzhkov, A. V.: Assimilation of
ZDR Columns for Improving the Spinup and Forecast of Convective Storms in
Storm-Scale Models: Proof-of-Concept Experiments, Mon. Weather Rev.,
145, 5033–5057, https://doi.org/10.1175/mwr-d-17-0103.1, 2017.
Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Ferro, C. A. T.,
and Stephenson, D. B.: Does increasing the spatial resolution of a regional
climate model improve the simulated daily precipitation?, Clim. Dynam.,
41, 1475–1495, https://doi.org/10.1007/s00382-012-1568-9, 2012.
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders,
I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-Alvarez, A.,
Cardoso, R. M., Davolio, S., Dobler, A., Fernandez, J., Fita, L., Fumiere,
Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T., Heinzeller, D.,
Hodnebrog, Ø., Jacob, D., Kartsios, S., Katragkou, E., Kendon, E.,
Khodayar, S., Kunstmann, H., Knist, S., Lavıìn-Gullón, A., Lind, P.,
Lorenz, T., Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre,
G., Panitz, H.-J., Piazza, M., Raffa, M., Raub, T., Rockel, B., Schär,
C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Stocchi, P.,
Tölle, M. H., Truhetz, H., Vautard, R., de Vries, H., and Warrach-Sagi,
K.: A first-of-its-kind multi-model convection permitting ensemble for
investigating convective phenomena over Europe and the Mediterranean,
Clim. Dynam., 5, 3–34, https://doi.org/10.1007/s00382-018-4521-8, 2018.
COSMO: Consortium for Small-scale Modeling, available at: http://www.cosmo-model.org/, last access: 25 June 2021.
Davolio, S., Silvestro, F., and Gastaldo, T.: Impact of Rainfall Assimilation
on High-Resolution Hydrometeorological Forecasts over Liguria, Italy,
J. Hydrometeorol., 18, 2659–2680,
https://doi.org/10.1175/jhm-d-17-0073.1, 2017.
Dayan, U., Nissen, K., and Ulbrich, U.: Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean, Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, 2015.
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D.,
Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P.,
and Vogel, G.: A Description of the Nonhydrostatic Regional COSMO Model Part
II: Physical Parameterization, Deutscher Wetterdienst (DWD), P.O. Box
100465, 63004, Offenbach, Germany, 2011.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A.,
Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S.,
Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin,
M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U.,
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Girolamo, P. D.,
Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J.
J., Labatut, L., Lambert, D., Coz, J. L., Marzano, F. S., Molinié, G.,
Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said,
F., Schwarzenboeck, A., Testor, P., Baelen, J. V., Vincendon, B., Aran, M.,
and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy
Precipitation and Flash Flooding in the Northwestern Mediterranean, B.
Am. Meteorol. Soc., 95, 1083–1100,
https://doi.org/10.1175/bams-d-12-00244.1, 2014.
Federico, S., Petracca, M., Panegrossi, G., Transerici, C., and Dietrich, S.: Impact of the assimilation of lightning data on the precipitation forecast at different forecast ranges, Adv. Sci. Res., 14, 187–194, https://doi.org/10.5194/asr-14-187-2017, 2017.
Federico, S., Torcasio, R. C., Avolio, E., Caumont, O., Montopoli, M., Baldini, L., Vulpiani, G., and Dietrich, S.: The impact of lightning and radar reflectivity factor data assimilation on the very short-term rainfall forecasts of RAMS@ISAC: application to two case studies in Italy, Nat. Hazards Earth Syst. Sci., 19, 1839–1864, https://doi.org/10.5194/nhess-19-1839-2019, 2019.
Ferretti, R., Pichelli, E., Gentile, S., Maiello, I., Cimini, D., Davolio, S., Miglietta, M. M., Panegrossi, G., Baldini, L., Pasi, F., Marzano, F. S., Zinzi, A., Mariani, S., Casaioli, M., Bartolini, G., Loglisci, N., Montani, A., Marsigli, C., Manzato, A., Pucillo, A., Ferrario, M. E., Colaiuda, V., and Rotunno, R.: Overview of the first HyMeX Special Observation Period over Italy: observations and model results, Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, 2014.
Fourrié, N., Nuret, M., Brousseau, P., and Caumont, O.: Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment, Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, 2021.
Gilabert, J. and Llasat, M. C.: Circulation weather types associated with
extreme flood events in Northwestern Mediterranean, Int. J.
Climatol., 38, 1864–1876, https://doi.org/10.1002/joc.5301, 2017.
Goger, B., Rotach, M. W., Gohm, A., Fuhrer, O., Stiperski, I., and Holtslag,
A. A. M.: The Impact of Three-Dimensional Effects on the Simulation of
Turbulence Kinetic Energy in a Major Alpine Valley, Bound.-Lay.
Meteorol., 168, 1–27, https://doi.org/10.1007/s10546-018-0341-y, 2018.
Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., and Bender, M.: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe, Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016, 2016.
Hally, A., Richard, E., and Ducrocq, V.: An ensemble study of HyMeX IOP6 and IOP7a: sensitivity to physical and initial and boundary condition uncertainties, Nat. Hazards Earth Syst. Sci., 14, 1071–1084, https://doi.org/10.5194/nhess-14-1071-2014, 2014.
Hastings, D. A., Dunbar, P. K., and Hittelman, A. M.: Assessing the global land one-km base elsevation DEM, in: Geodesy Beyond 2000, edited by: Schwarz, K. P., International Association of Geodesy Symposia, 121, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-59742-8_16, 2000.
Hdidou, F. Z., Mordane, S., Moll, P., Mahfouf, J.-F., Erraji, H., and
Dahmane, Z.: Impact of the variational assimilation of ground-based GNSS
zenith total delay into AROME-Morocco model, Tellus A, 72, 1–13, https://doi.org/10.1080/16000870.2019.1707854, 2020.
Honda, T. and Kawano, T.: How does mid-tropospheric dry air affect the
evolution of supercellular convection?, Atmos. Res., 157, 1–16,
https://doi.org/10.1016/j.atmosres.2015.01.015, 2015.
Jacobsen, I. and Heise, E.: A new economic method for the computation of the surface temperature in numerical models, Contr. Atmos. Phys., 55, 128–141, 1982.
Jacques, D., Michelson, D., Caron, J.-F., and Fillion, L.: Latent Heat
Nudging in the Canadian Regional Deterministic Prediction System, Mon.
Weather Rev., 146, 3995–4014, https://doi.org/10.1175/mwr-d-18-0118.1, 2018.
Jolliffe, I. T. and Stephenson, D. B.: Forecast Verification: A
Practitioner's Guide in Atmospheric Science, Wiley, New Jersey, USA, 2011.
Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., and van Malderen, R.: Advanced GNSS Tropospheric Products
for Monitoring Severe Weather Events and Climate, edited by: Jones, J.,
Springer-Verlag
GmbH, available at: https://www.ebook.de/de/product/37897541/advanced_gnss_tropospheric_ products_for_monitoring_severe_weather_events_and_climate.html (last access: 23 June 2021), 2019.
Keil, C., Röpnack, A., Craig, G. C., and Schumann, U.: Sensitivity of
quantitative precipitation forecast to height dependent changes in humidity,
Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008gl033657, 2008.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of
Rainfall in a Very High-Resolution Regional Climate Model, J.
Climate, 25, 5791–5806, https://doi.org/10.1175/jcli-d-11-00562.1, 2012.
Khodayar, S., Czajka, B., Caldas-Alvarez, A., Helgert, S., Flamant, C.,
Girolamo, P. D., Bock, O., and Chazette, P.: Multi-scale observations of
atmospheric moisture variability in relation to heavy precipitating systems
in the northwestern Mediterranean during HyMeX IOP12, Q. J.
Roy. Meteor. Soc., 144, 2761–2780, https://doi.org/10.1002/qj.3402,
2018.
Khodayar, S., Kalthoff, N., and Kottmeier, C.: Atmospheric conditions
associated with heavy precipitation events in comparison to seasonal means
in the western mediterranean region, Clim. Dynam., 51, 951–967,
https://doi.org/10.1007/s00382-016-3058-y, 2016.
Kwon, I.-H., English, S., Bell, W., Potthast, R., Collard, A., and Ruston,
B.: Assessment of Progress and Status of Data Assimilation in Numerical
Weather Prediction, B. Am. Meteorol. Soc., 99,
ES75–ES79, https://doi.org/10.1175/bams-d-17-0266.1, 2018.
Lee, E., Lee, E.-H., and Choi, I.-J.: Impact of Increased Vertical Resolution
on Medium-Range Forecasts in a Global Atmospheric Model, Mon. Weather
Rev., 147, 4091–4106, https://doi.org/10.1175/mwr-d-18-0387.1, 2019.
Lee, K.-O., Flamant, C., Duffourg, F., Ducrocq, V., and Chaboureau, J.-P.: Impact of upstream moisture structure on a back-building convective precipitation system in south-eastern France during HyMeX IOP13, Atmos. Chem. Phys., 18, 16845–16862, https://doi.org/10.5194/acp-18-16845-2018, 2018.
Lintner, B. R., Adams, D. K., Schiro, K. A., Stansfield, A. M., Rocha, A. A.
A., and Neelin, J. D.: Relationships among climatological vertical moisture
structure, column water vapor, and precipitation over the central Amazon in
observations and CMIP5 models, Geophys. Res. Lett., 44,
1981–1989, https://doi.org/10.1002/2016gl071923, 2017.
Lintner, B. R., Holloway, C. E., and Neelin, J. D.: Column Water Vapor
Statistics and Their Relationship to Deep Convection, Vertical and
Horizontal Circulation, and Moisture Structure at Nauru, J. Climate,
24, 5454–5466, https://doi.org/10.1175/jcli-d-10-05015.1, 2011.
Lovat, A., Vincendon, B., and Ducrocq, V.: Assessing the impact of resolution and soil datasets on flash-flood modelling, Hydrol. Earth Syst. Sci., 23, 1801–1818, https://doi.org/10.5194/hess-23-1801-2019, 2019.
Markowski, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes, chap. Part III
John Wiley & Sons, Ltd., 181-272, 2010.
Martinet, M., Nuissier, O., Duffourg, F., Ducrocq, V., and Ricard, D.:
Fine-scale numerical analysis of the sensitivity of the HyMeX IOP16a heavy
precipitating event to the turbulent mixing-length parametrization,
Q. J. Roy. Meteor. Soc., 143, 3122–3135,
https://doi.org/10.1002/qj.3167, 2017.
Mascitelli, A., Federico, S., Fortunato, M., Avolio, E., Torcasio, R. C.,
Realini, E., Mazzoni, A., Transerici, C., Crespi, M., and Dietrich, S.: Data
assimilation of GPS-ZTD into the RAMS model through 3D-Var: preliminary
results at the regional scale, Meas. Sci. Technol., 30,
55801, https://doi.org/10.1088/1361-6501/ab0b87, 2019.
Mazzarella, V., Maiello, I., Capozzi, V., Budillon, G., and Ferretti, R.: Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy, Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017, 2017.
Meredith, E. P., Ulbrich, U., and Rust, H. W.: Subhourly rainfall in a
convection-permitting model, Environ. Res. Lett., 15, 34031,
https://doi.org/10.1088/1748-9326/ab6787, 2020.
Mile, M., Benáček, P., and Rózsa, S.: The use of GNSS zenith total delays in operational AROME/Hungary 3D-Var over a central European domain, Atmos. Meas. Tech., 12, 1569–1579, https://doi.org/10.5194/amt-12-1569-2019, 2019.
Moncrieff, M. W. and Miller, M. J.: The dynamics and simulation of tropical
cumulonimbus and squall lines, Q. J. Roy. Meteor. Soc., 102, 373–394, 1976.
Neelin, J. D., Peters, O., and Hales, K.: The Transition to Strong
Convection, J. Atmos. Sci., 66, 2367–2384,
https://doi.org/10.1175/2009jas2962.1, 2009.
Panosetti, D., Böing, S., Schlemmer, L., and Schmidli, J.: Idealized
Large-Eddy and Convection-Resolving Simulations of Moist Convection over
Mountainous Terrain, J. Atmos. Sci., 73,
4021–4041, https://doi.org/10.1175/jas-d-15-0341.1, 2016.
Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V.,
Grimalt, M., Llasat, M. C., Llasat-Botija, M., Rosselló, J., Pasqua, A.
A., and Vinet, F.: MEFF: The database of MEditerranean Flood Fatalities (1980
to 2015), J Flood Risk Manag., 12, e12461,
https://doi.org/10.1111/jfr3.12461, 2018.
Pichelli, E., Rotunno, R., and Ferretti, R.: Effects of the Alps and
Apennines on forecasts for Po Valley convection in two HyMeX cases,
Q. J. Roy. Meteor. Soc., 143, 2420–2435,
https://doi.org/10.1002/qj.3096, 2017.
Pinto, J. G., Ulbrich, S., Parodi, A., Rudari, R., Boni, G., and Ulbrich, U.:
Identification and ranking of extraordinary rainfall events over Northwest
Italy: The role of Atlantic moisture, J. Geophys. Res.-Atmos., 118, 2085–2097, https://doi.org/10.1002/jgrd.50179, 2013.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361,
https://doi.org/10.1002/2014rg000475, 2015.
Ribaud, J.-F., Bousquet, O., and Coquillat, S.: Relationships between total
lightning activity, microphysics and kinematics during the 24 September 2012
HyMeX bow-echo system, Q. J. Roy. Meteor. Soc., 142, 298–309, https://doi.org/10.1002/qj.2756, 2016.
Ricard, D., Ducrocq, V., and Auger, L.: A Climatology of the Mesoscale
Environment Associated with Heavily Precipitating Events over a Northwestern
Mediterranean Area, J. Appl. Meteorol. Clim., 51,
468–488, https://doi.org/10.1175/jamc-d-11-017.1, 2012.
Ritter, B. and Geleyn, J.-F.: A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations, Mon. Weather Rev., 120, 303–325, https://doi.org/10.1175/1520-0493(1992)120<0303:acrsfn>2.0.co;2, 1992.
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall
Accumulations from High-Resolution Forecasts of Convective Events, Mon.
Weather Rev., 136, 78–97, https://doi.org/10.1175/2007mwr2123.1, 2008.
Rockel, B., Will, A., and Hense, A.: Hense The regional climate model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Schättler, U., Doms, G., and Schraff, C.: A Description of the Non-hydrostatic Regional COSMO-Model Part VII: User’s Guide, DeutscherWetterdienst, P.O. Box 100465, 63004 Offenbach, Germany, 2016.
Schlemmer, L. and Hohenegger, C.: Modifications of the atmospheric moisture
field as a result of cold-pool dynamics, Quarterly Journal of the Royal
Meteorological Society, 142(694), 30–42, https://doi.org/10.1002/qj.2625, 2015.
Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K.,
Periáñez, A., and Potthast, R.: Kilometre-scale ensemble data
assimilation for the COSMO model (KENDA), Q. J. Roy. Meteor. Soc., 142, 1453–1472, https://doi.org/10.1002/qj.2748, 2016.
Schraff, C. and Hess, R.: A Description of the Nonhydrostatic Regional
COSMO-Model Part III: Data Assimilation, German Weather Service (DWD), P.O. Box 100465, 63004 Offenbach, 2012.
Schumacher, R. S.: Sensitivity of Precipitation Accumulation in Elevated
Convective Systems to Small Changes in Low-Level Moisture, J.
Atmos. Sci., 72, 2507–2524, https://doi.org/10.1175/jas-d-14-0389.1, 2015.
Singh, R., Ojha, S. P., Puviarasan, N., and Singh, V.: Impact of GNSS Signal
Delay Assimilation on Short Range Weather Forecasts Over the Indian Region,
J. Geophys. Res.-Atmos., 124, 9855–9873,
https://doi.org/10.1029/2019jd030866, 2019.
Skamarock, W. and Klemp, J.: The stability of time-split numerical methods for the hydrostatic and nonhydrostatic elasic equations, Mon. Weather Rev., 120, 2109–2127, 1992.
Skok, G. and Roberts, N.: Analysis of Fractions Skill Score properties for
random precipitation fields and ECMWF forecasts, Q. J. Roy. Meteor. Soc., 142, 2599–2610, https://doi.org/10.1002/qj.2849,
2016.
Taufour, M., Vié, B., Augros, C., Boudevillain, B., Delanoë, J.,
Delautier, G., Ducrocq, V., Lac, C., Pinty, J.-P., and Schwarzenböck, A.:
Evaluation of the two-moment scheme LIMA based on microphysical observations
from the HyMeX campaign, Q. J. Roy. Meteor. Soc., 144, 1398–1414, https://doi.org/10.1002/qj.3283, 2018.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2, 1989
Toreti, A., Xoplaki, E., Maraun, D., Kuglitsch, F. G., Wanner, H., and Luterbacher, J.: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns, Nat. Hazards Earth Syst. Sci., 10, 1037–1050, https://doi.org/10.5194/nhess-10-1037-2010, 2010.
Verrelle, A., Ricard, D., and Lac, C.: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization, Q. J. Roy. Meteor. Soc., 141, 433–448, https://doi.org/10.1002/qj.2363, 2015.
Virman, M., Bister, M., Sinclair, V. A., Järvinen, H., and
Räisänen, J.: A New Mechanism for the Dependence of Tropical
Convection on Free-Tropospheric Humidity, Geophys. Res. Lett.,
45, 2516–2523, https://doi.org/10.1002/2018gl077032, 2018.
Zhuang, Y., Fu, R., and Wang, H.: How Do Environmental Conditions Influence
Vertical Buoyancy Structure and Shallow-to-Deep Convection Transition across
Different Climate Regimes?, J. Atmos. Sci., 75,
1909–1932, https://doi.org/10.1175/jas-d-17-0284.1, 2018.
Zuidema, P., Torri, G., Muller, C., and Chandra, A.: A Survey of
Precipitation-Induced Atmospheric Cold Pools over Oceans and Their
Interactions with the Larger-Scale Environment, Surv. Geophys.,
38, 1283–1305, https://doi.org/10.1007/s10712-017-9447-x, 2017.
Short summary
The prediction capabilities of GPS, operational (low-resolution) and targeted (high-resolution) radiosondes for data assimilation in a Mediterranean heavy precipitation event at different model resolutions are investigated. The results show that even if GPS provides accurate observations, their lack of vertical information hampers the improvement, demonstrating the need for assimilating radiosondes, where the location and timing of release was more determinant than the vertical resolution.
The prediction capabilities of GPS, operational (low-resolution) and targeted (high-resolution)...