Articles | Volume 2, issue 3
Research article
06 Aug 2021
Research article |  | 06 Aug 2021

Subtle influence of the Atlantic Meridional Overturning Circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic

Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr

Related authors

Causal associations and predictability of the summer East Atlantic teleconnection
Julianna Carvalho-Oliveira, Giorgia di Capua, Leonard Borchert, Reik Donner, and Johanna Baehr
EGUsphere,,, 2023
Short summary

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
WCD Ideas: Teleconnections through weather rather than stationary waves
Clemens Spensberger
Weather Clim. Dynam., 5, 659–669,,, 2024
Short summary
Development of Indian summer monsoon precipitation biases in two seasonal forecasting systems and their response to large-scale drivers
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702,,, 2024
Short summary
Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham
Weather Clim. Dynam., 5, 511–536,,, 2024
Short summary
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356,,, 2024
Short summary
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367,,, 2024
Short summary

Cited articles

Alessandri, A., Borrelli, A., Masina, S., Cherchi, A., Gualdi, S., Navarra, A., Di Pietro, P., and Carril, A. F.: The INGV–CMCC seasonal prediction system: improved ocean initial conditions, Mon. Weather Rev., 138, 2930–2952, 2010. a
Alexander-Turner, R., Ortega, P., and Robson, J.: How Robust Are the Surface Temperature Fingerprints of the Atlantic Overturning Meridional Circulation on Monthly Time Scales?, Geophys. Res. Lett., 45, 3559–3567, 2018. a, b, c, d, e, f, g
Arora, K. and Dash, P.: Towards dependence of tropical cyclone intensity on sea surface temperature and its response in a warming world, Climate, 4, 30,, 2016. a, b
Ba, J., Keenlyside, N. S., Latif, M., Park, W., Ding, H., Lohmann, K., Mignot, J., Menary, M., Otterå, O. H., Wouters, B., Salas y Melia, D., Oka, A., Bellucci, A., and Volodin, E.: A multi-model comparison of Atlantic multidecadal variability, Clim. Dynam., 43, 2333,, 2014. a
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.