Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows
Marcel Meyer
CORRESPONDING AUTHOR
Regional Computing Centre, Visual Data Analysis Group, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Iuliia Polkova
Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Kameswar Rao Modali
Regional Computing Centre, Visual Data Analysis Group, Universität Hamburg, Hamburg, Germany
Laura Schaffer
Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Johanna Baehr
Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Stephan Olbrich
Regional Computing Centre, Visual Data Analysis Group, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Marc Rautenhaus
Regional Computing Centre, Visual Data Analysis Group, Universität Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Related authors
No articles found.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025, https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Short summary
We developed a simple and effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Wolfgang A. Müller, Stephan Lorenz, Trang V. Pham, Andrea Schneidereit, Renate Brokopf, Victor Brovkin, Nils Brüggemann, Fatemeh Chegini, Dietmar Dommenget, Kristina Fröhlich, Barbara Früh, Veronika Gayler, Helmuth Haak, Stefan Hagemann, Moritz Hanke, Tatiana Ilyina, Johann Jungclaus, Martin Köhler, Peter Korn, Luis Kornblüh, Clarissa Kroll, Julian Krüger, Karel Castro-Morales, Ulrike Niemeier, Holger Pohlmann, Iuliia Polkova, Roland Potthast, Thomas Riddick, Manuel Schlund, Tobias Stacke, Roland Wirth, Dakuan Yu, and Jochem Marotzke
EGUsphere, https://doi.org/10.5194/egusphere-2025-2473, https://doi.org/10.5194/egusphere-2025-2473, 2025
Short summary
Short summary
ICON XPP is a newly developed Earth System model configuration based on the ICON modeling framework. It merges accomplishments from the recent operational numerical weather prediction model with well-established climate components for the ocean, land and ocean-biogeochemistry. ICON XPP reaches typical targets of a coupled climate simulation, and is able to run long integrations and large-ensemble experiments, making it suitable for climate predictions and projections, and for climate research.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Short summary
We demonstrate with a causal analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, was influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024, https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
Short summary
Advanced compression techniques can drastically reduce the size of meteorological datasets (by 5 to 150 times) without compromising the data's scientific value. We developed a user-friendly tool called
enstools-compressionthat makes this compression simple for Earth scientists. This tool works seamlessly with common weather and climate data formats. Our work shows that lossy compression can significantly improve how researchers store and analyze large meteorological datasets.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 17, 4213–4228, https://doi.org/10.5194/gmd-17-4213-2024, https://doi.org/10.5194/gmd-17-4213-2024, 2024
Short summary
Short summary
This study presents a method for identifying and tracking 3-D potential vorticity structures within African easterly waves (AEWs). Each identified structure is characterized by descriptors, including its 3-D position and orientation, which have been validated through composite comparisons. A trough-centric perspective on the descriptors reveals the evolution and distinct characteristics of AEWs. These descriptors serve as valuable statistical inputs for the study of AEW-related phenomena.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023, https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid-scale processes, which are a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories regarding similarities in temporal development and spatiotemporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023, https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
Short summary
We investigate the benefit of objective 3-D front detection with modern interactive visual analysis techniques for case studies of extra-tropical cyclones and comparisons of frontal structures between different numerical weather prediction models. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment them in the vertical dimension. We see great potential for more complex studies of atmospheric dynamics and for operational weather forecasting.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Yiyu Zheng, Maria Rugenstein, Patrick Pieper, Goratz Beobide-Arsuaga, and Johanna Baehr
Earth Syst. Dynam., 13, 1611–1623, https://doi.org/10.5194/esd-13-1611-2022, https://doi.org/10.5194/esd-13-1611-2022, 2022
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is one of the dominant climatic phenomena in the equatorial Pacific. Understanding and predicting how ENSO might change in a warmer climate is both societally and scientifically important. We use 1000-year-long simulations from seven climate models to analyze ENSO in an idealized stable climate. We show that ENSO will be weaker and last shorter under the warming, while the skill of ENSO prediction will unlikely change.
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36, https://doi.org/10.5194/wcd-2022-36, 2022
Preprint withdrawn
Short summary
Short summary
This study revises and extends a previously presented 3-D objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we demonstrate the evaluation of conceptual models from dynamic meteorology, illustrate the benefits of our interactive analysis approach by comparing fronts in data with different model resolutions, and study the impact of convection on fronts.
Tim Rohrschneider, Johanna Baehr, Veit Lüschow, Dian Putrasahan, and Jochem Marotzke
Ocean Sci., 18, 979–996, https://doi.org/10.5194/os-18-979-2022, https://doi.org/10.5194/os-18-979-2022, 2022
Short summary
Short summary
This paper presents an analysis of wind sensitivity experiments in order to provide insight into the wind forcing dependence of the AMOC by understanding the behavior of its depth scale(s).
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020, https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Short summary
A new method for weather and climate forecast model evaluation with respect to observations is proposed. Individually added values are estimated for each model, together with shared information both models provide equally on the observations. Finally, shared model information, which is not present in the observations, is calculated. The method is applied to two examples from climate and weather forecasting, showing new perspectives for model evaluation.
Patrick Pieper, André Düsterhus, and Johanna Baehr
Hydrol. Earth Syst. Sci., 24, 4541–4565, https://doi.org/10.5194/hess-24-4541-2020, https://doi.org/10.5194/hess-24-4541-2020, 2020
Short summary
Short summary
The Standardized Precipitation Index (SPI) is a widely accepted drought index. SPI normalizes the precipitation distribution via a probability density function (PDF). However, which PDF properly normalizes SPI is still disputed. We suggest using a previously mostly overlooked PDF, namely the exponentiated Weibull distribution. The proposed PDF ensures the normality of the index. We demonstrate this – for the first time – for all common accumulation periods in both observations and simulations.
Cited articles
Aarnes, O., Kazuyoshi, M., and Morten Mejlaender, L.: End-user Requirements Specification Report Blue-Action Case Study Nr. 3 (D5.11), Zenodo, https://doi.org/10.5281/zenodo.1164217, 2018. a
Afargan-Gerstman, H., Polkova, I., Papritz, L., Ruggieri, P., King, M. P., Athanasiadis, P. J., Baehr, J., and Domeisen, D. I. V.: Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events, Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, 2020. a
Ayachit, U.: The ParaView Guide: A Parallel Visualization Application, Kitware, Inc., New York, 2015. a
Claud, C., Duchiron, B., and Terray, P.: Associations between large-scale atmospheric circulation and polar low developments over the North Atlantic during winter, J. Geophys. Res., 112, D12101, https://doi.org/10.1029/2006JD008251, 2007. a
DKRZ: Deutsches Klimarechenzentrum, User Portal, ERA Data from the ECMWF,
available at:
https://www.dkrz.de/up/services/data-management/projects-and-cooperations/era,
last access: 1 December 2020. a
Ese, T., Kanestrøm, I., and Pedersen, K.: Climatology of polar lows over the Norwegian and Barents Seas, Tellus A, 40, 248–255, https://doi.org/10.3402/tellusa.v40i3.11798, 1988. a, b
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006. a, b
Føre, I., Kristjánsson, J. E., Kolstad, E. W., Bracegirdle, T. J., Saetra, Ø., and Røsting, B.: A “hurricane-like” polar low fuelled by sensible heat flux: high-resolution numerical simulations, Q. J. Roy. Meteor. Soc., 138, 1308–1324, https://doi.org/10.1002/qj.1876, 2012. a, b, c
Grønås, S. and Kvamstø, N. G.: Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows, Tellus A, 47, 797–814, https://doi.org/10.3402/tellusa.v47i5.11576, 1995. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and significance of isentropic potential vorticity maps, Q. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002, 2007. a
Kern, M., Hewson, T., Sadlo, F., Westermann, R., and Rautenhaus, M.: Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow, IEEE T. Vis. Comput. Gr., 24, 893–902, https://doi.org/10.1109/tvcg.2017.2743989, 2018. a, b
Kern, M., Hewson, T., Schäfler, A., Westermann, R., and Rautenhaus, M.: Interactive 3D Visual Analysis of Atmospheric Fronts, IEEE T. Vis. Comput. Gr., 25, 1080–1090, https://doi.org/10.1109/TVCG.2018.2864806, 2019. a, b
Kolstad, E. W. and Bracegirdle, T. J.: Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere, Clim. Dynam., 30, 871–885, https://doi.org/10.1007/s00382-007-0331-0, 2008. a, b, c
Kolstad, E. W., Bracegirdle, T. J., and Seierstad, I. A.: Marine cold-air outbreaks in the North Atlantic: temporal distribution and associations with large-scale atmospheric circulation, Clim. Dynam., 33, 187–197, https://doi.org/10.1007/s00382-008-0431-5, 2009. a, b, c, d
Li, S., Jaroszynski, S., Pearse, S., Orf, L., and Clyne, J.: VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science, Atmosphere, 10, 488, https://doi.org/10.3390/atmos10090488, 2019. a
Mallet, P.-E., Claud, C., Cassou, C., Noer, G., and Kodera, K.: Polar lows over the Nordic and Labrador Seas: Synoptic circulation patterns and associations with North Atlantic-Europe wintertime weather regimes, J. Geophys. Res.-Atmos., 118, 2455–2472, https://doi.org/10.1002/jgrd.50246, 2013. a
Met.3D – Code Repository: available at: https://gitlab.com/wxmetvis/met.3d, last access: 1 September 2021. a
Met.3D – Homepage: Interactive 3D visualization of meteorological
(ensemble) simulations, available at: https://met3d.wavestoweather.de, last access: 4 March 2021. a
Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M.: Interactive visual data analysis of a Marine Cold Air Outbreak in ERA5 data, TIB AV Portal [video supplement], https://doi.org/10.5446/52263, 2021a. a
Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M.: Interactive visual data analysis of a Polar Low in ERA5 data, TIB AV Portal [video supplement], https://doi.org/10.5446/52264, 2021b. a
Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M.: Interactive visual data analysis of the characteristic pressure level in the conventional MCAO index, TIB AV Portal [video supplement], https://doi.org/10.5446/52265, 2021c. a
Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M.: Dynamics of the upper boundary of a MCAO (time of MCAO: March, 2011), TIB AV Portal [video supplement], https://doi.org/10.5446/52266, 2021d. a
Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M.: Dynamics of the upper boundary of a MCAO and the dynamical tropopause (time of MCAO: March, 2011), TIB AV Portal [video supplement],
https://doi.org/10.5446/52267, 2021e. a
Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M. Dynamics of the upper boundary of a MCAO (time of MCAO: December, 2002), TIB AV Portal [video supplement],
https://doi.org/10.5446/52268, 2021f. a
Michel, C., Terpstra, A., and Spengler, T.: Polar Mesoscale Cyclone Climatology for the Nordic Seas Based on ERA-Interim, J. Climate, 31, 2511–2532, https://doi.org/10.1175/JCLI-D-16-0890.1, 2018. a, b, c, d
Nordeng, T. E.: A most beautiful polar low. A case study of a polar low development in the Bear Island region, Tellus A, 44, 81–89, https://doi.org/10.1034/j.1600-0870.1992.00001.x, 1992. a
Orf, L., Wilhelmson, R., Lee, B., Finley, C., and Houston, A.: Evolution of a Long-Track Violent Tornado within a Simulated Supercell, B. Am. Meteorol. Soc., 98, 45–68, https://doi.org/10.1175/BAMS-D-15-00073.1, 2017. a
Papritz, L. and Sodemann, H.: Characterizing the Local and Intense Water Cycle during a Cold Air Outbreak in the Nordic Seas, Mon. Weather Rev., 146, 3567–3588, https://doi.org/10.1175/MWR-D-18-0172.1, 2018. a, b, c, d
Papritz, L. and Spengler, T.: A Lagrangian Climatology of Wintertime Cold Air Outbreaks in the Irminger and Nordic Seas and Their Role in Shaping Air–Sea Heat Fluxes, J. Climate, 30, 2717–2737, https://doi.org/10.1175/JCLI-D-16-0605.1, 2017. a
Polkova, I., Afargan-Gerstman, H., Domeisen, D., Ruggieri, P.,
Athanasiadis, P., King, M., and Baehr, J.: Marine Cold Air Outbreaks:
Prediction Skill and Preconditions, in: Proceedings of the 9th International
Workshop on Climate Informatics, 2–4 October 2019, Paris, France, 27–30, https://doi.org/10.5065/y82j-f154, 2019. a, b
Polkova, I., Afargan-Gerstman, H., Domeisen, D., King, M., Ruggieri, P. Athanasiadis, P., Dobrynin, M., Aarnes, O., Kretschmer, M., and Baehr, J.: Predictors and prediction skill for marine cold air outbreaks over the Barents Sea, Q. J. Roy. Meteor. Soc., 147, 2638–2656, https://doi.org/10.1002/qj.4038, 2021. a, b, c
Rasmussen, E.: A Review of Meso-Scale Disturbances in Cold Air Masses, in: Mesoscale Meteorology – Theories, Observations and Models. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 114, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-2241-4_13, 1983. a, b, c
Rautenhaus, M., Grams, C. M., Schäfler, A., and Westermann, R.: Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns, Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, 2015a. a, b, c
Rautenhaus, M., Kern, M., Schäfler, A., and Westermann, R.: Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0), Geosci. Model Dev., 8, 2329–2353, https://doi.org/10.5194/gmd-8-2329-2015, 2015b. a, b, c
Rautenhaus, M., Böttinger, M., Siemen, S., Hoffman, R., Kirby, R. M., Mirzargar, M., Röber, N., and Westermann, R.: Visualization in Meteorology – A Survey of Techniques and Tools for Data Analysis Tasks, IEEE T. Vis. Comput. Gr., 24, 3268–3296, https://doi.org/10.1109/TVCG.2017.2779501, 2018.
a, b, c
Rojo, M., Claud, C., Noer, G., and Carleton, A. M.: In Situ Measurements of Surface Winds, Waves, and Sea State in Polar Lows Over the North Atlantic, J. Geophys. Res.-Atmos., 124, 700–718, https://doi.org/10.1029/2017JD028079, 2019. a
Schulzweida, U.: CDO User Guide (Version 1.9.9), Climate Data Operators, https://doi.org/10.5281/zenodo.4246983, 2020. a
Stoll, P. J., Spengler, T., Terpstra, A., and Graversen, R. G.: Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments, Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, 2021. a, b
Terpstra, A., Michel, C., and Spengler, T.: Forward and Reverse Shear Environments during Polar Low Genesis over the Northeast Atlantic, Mon. Weather Rev., 144, 1341–1354, https://doi.org/10.1175/MWR-D-15-0314.1, 2016. a, b, c, d
Terpstra, A., Renfrew, I., and Sergeev, D.: Characteristics of Cold Air Outbreaks and associated Polar Mesoscale Cyclones in the North-Atlantic region, EGU General Assembly 2020, https://doi.org/10.5194/egusphere-egu2020-22220, 2020. a
Terpstra, A., Renfrew, I. A., and Sergeev, D. E.: Characteristics of Cold Air Outbreak events and associated Polar Mesoscale Cyclogenesis over the North Atlantic region, J. Climate, 34, 4567–4584, https://doi.org/10.1175/JCLI-D-20-0595.1, 2021. a
Tharwat, A.: Classification assessment methods, Applied Computing and Informatics, 17, 168–192, https://doi.org/10.1016/j.aci.2018.08.003, 2021. a, b
Uccellini, L. W.: Processes contributing to the rapid development of extratropical cyclones, in: The Erik Palmen Memorial Volume, edited by: Newton, C. W. and Holopainen, E. O., American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-944970-33-8_6, 1990. a
Wulff, C. O. and Domeisen, D. I. V.: Higher Subseasonal Predictability of Extreme Hot European Summer Temperatures as Compared to Average Summers, Geophys. Res. Lett., 46, 11520–11529, https://doi.org/10.1029/2019GL084314, 2019. a
Youden, W. J.: Index for rating diagnostic tests, Cancer, 3, 32–35,
https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3, 1950. a, b
Zappa, G., Shaffrey, L., and Hodges, K.: Can Polar Lows be Objectively Identified and Tracked in the ECMWF Operational Analysis and the ERA-Interim Reanalysis?, Mon. Weather Rev., 142, 2596–2608, https://doi.org/10.1175/MWR-D-14-00064.1, 2014. a
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Novel techniques from computer science are used to study extreme weather events. Inspired by the...