Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-1097-2022
https://doi.org/10.5194/wcd-3-1097-2022
Research article
 | 
22 Sep 2022
Research article |  | 22 Sep 2022

The composite development and structure of intense synoptic-scale Arctic cyclones

Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day

Related authors

The risk of synoptic-scale Arctic cyclones to shipping
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024,https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Circulation responses to surface heating and implications for polar amplification
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024,https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024,https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary
A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024,https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
European summer weather linked to North Atlantic freshwater anomalies in preceding years
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024,https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Arctic Climate Response to European Radiative Forcing: A Deep Learning Approach
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2023-3033,https://doi.org/10.5194/egusphere-2023-3033, 2024
Short summary

Cited articles

Aizawa, T. and Tanaka, H.: Axisymmetric structure of the long lasting summer Arctic cyclones, Polar Sci., 10, 192–198, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Aizawa, T., Tanaka, H., and Satoh, M.: Rapid development of Arctic cyclone in June 2008 simulated by the cloud resolving global model NICAM, Meteorol. Atmos. Phys., 126, 105–117, 2014. a, b, c, d, e
Årthun, M., Onarheim, I. H., Dörr, J., and Eldevik, T.: The seasonal and regional transition to an ice-free Arctic, Geophys. Res. Lett., 48, e2020GL090825, https://doi.org/10.1029/2020GL090825, 2021. a
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res.-Oceans, 117, C06025, https://doi.org/10.1029/2011JC007221, 2012. a, b
Babin, J., Lasserre, F., and Pic, P.: Arctic shipping and polar seaways, Encyclopedia of water: science, technology, and society, John Wiley & Sons, https://doi.org/10.1002/9781119300762.wsts0098, 2020. a
Download
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.