Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-251-2022
https://doi.org/10.5194/wcd-3-251-2022
Research article
 | 
10 Mar 2022
Research article |  | 10 Mar 2022

Characteristics of long-track tropopause polar vortices

Matthew T. Bray and Steven M. Cavallo

Related authors

Sea Ice Albedo Bounded Data Assimilation and Its Impact on Modeling: A Regional Approach
Joseph Fortunato Rotondo, Molly Michael Wieringa, Cecilia Marie Bitz, Robin Clancy, and Steven Cavallo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2540,https://doi.org/10.5194/egusphere-2025-2540, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
TPVTrack v1.0: a watershed segmentation and overlap correspondence method for tracking tropopause polar vortices
Nicholas Szapiro and Steven Cavallo
Geosci. Model Dev., 11, 5173–5187, https://doi.org/10.5194/gmd-11-5173-2018,https://doi.org/10.5194/gmd-11-5173-2018, 2018
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Concurrent Bering Sea and Labrador Sea ice melt extremes in March 2023: a confluence of meteorological events aligned with stratosphere–troposphere interactions
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024,https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024,https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024,https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Circulation responses to surface heating and implications for polar amplification
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024,https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
The study of the impact of polar warming on global atmospheric circulation and mid-latitude baroclinic waves using a laboratory analog
Andrei Sukhanovskii, Andrei Gavrilov, Elena Popova, and Andrei Vasiliev
Weather Clim. Dynam., 5, 863–880, https://doi.org/10.5194/wcd-5-863-2024,https://doi.org/10.5194/wcd-5-863-2024, 2024
Short summary

Cited articles

Appenzeller, C. and Davies, H.: Structure of stratospheric intrusions into the troposphere, Nature, 358, 570–572, https://doi.org/10.1038/358570a0, 1992. a, b
Biernat, K. A., Bosart, L. F., and Keyser, D.: A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States, Mon. Weather Rev., 149, 189–206, https://doi.org/10.1175/MWR-D-20-0191.1, 2021. a
Bray, M. T., Cavallo, S. M., and Bluestein, H. B.: Examining the Relationship between Tropopause Polar Vortices and Tornado Outbreaks, Weather Forecast., 36, 1799–1814, https://doi.org/10.1175/WAF-D-21-0058.1, 2021. a
Cavallo, S. M. and Hakim, G. J.: Potential Vorticity Diagnosis of a Tropopause Polar Cyclone, Mon. Weather Rev., 137, 1358–1371, https://doi.org/10.1175/2008MWR2670.1, 2009. a, b, c, d, e
Cavallo, S. M. and Hakim, G. J.: Composite Structure of Tropopause Polar Cyclones, Mon. Weather Rev., 138, 3840–3857, https://doi.org/10.1175/2010MWR3371.1, 2010. a, b, c, d
Download
Short summary
Tropopause polar vortices (TPVs) are a high-latitude atmospheric phenomenon that impact weather inside and outside of polar regions. Using a set of long-lived TPVs to gain insight into the conditions that are most supportive of TPV survival, we describe patterns of vortex formation and movement. In addition, we analyze the characteristics of these TPVs and how they vary by season. These results help us to better understand TPVs which, in turn, may improve forecasts of related weather events.
Share