Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-251-2022
https://doi.org/10.5194/wcd-3-251-2022
Research article
 | 
10 Mar 2022
Research article |  | 10 Mar 2022

Characteristics of long-track tropopause polar vortices

Matthew T. Bray and Steven M. Cavallo

Related authors

TPVTrack v1.0: a watershed segmentation and overlap correspondence method for tracking tropopause polar vortices
Nicholas Szapiro and Steven Cavallo
Geosci. Model Dev., 11, 5173–5187, https://doi.org/10.5194/gmd-11-5173-2018,https://doi.org/10.5194/gmd-11-5173-2018, 2018
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023,https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
The role of Rossby waves in polar weather and climate
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023,https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Reanalysis representation of low-level winds in the Antarctic near-coastal region
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022,https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
The composite development and structure of intense synoptic-scale Arctic cyclones
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022,https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation
Kristian Strommen, Stephan Juricke, and Fenwick Cooper
Weather Clim. Dynam., 3, 951–975, https://doi.org/10.5194/wcd-3-951-2022,https://doi.org/10.5194/wcd-3-951-2022, 2022
Short summary

Cited articles

Appenzeller, C. and Davies, H.: Structure of stratospheric intrusions into the troposphere, Nature, 358, 570–572, https://doi.org/10.1038/358570a0, 1992. a, b
Biernat, K. A., Bosart, L. F., and Keyser, D.: A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States, Mon. Weather Rev., 149, 189–206, https://doi.org/10.1175/MWR-D-20-0191.1, 2021. a
Bray, M. T., Cavallo, S. M., and Bluestein, H. B.: Examining the Relationship between Tropopause Polar Vortices and Tornado Outbreaks, Weather Forecast., 36, 1799–1814, https://doi.org/10.1175/WAF-D-21-0058.1, 2021. a
Cavallo, S. M. and Hakim, G. J.: Potential Vorticity Diagnosis of a Tropopause Polar Cyclone, Mon. Weather Rev., 137, 1358–1371, https://doi.org/10.1175/2008MWR2670.1, 2009. a, b, c, d, e
Cavallo, S. M. and Hakim, G. J.: Composite Structure of Tropopause Polar Cyclones, Mon. Weather Rev., 138, 3840–3857, https://doi.org/10.1175/2010MWR3371.1, 2010. a, b, c, d
Download
Short summary
Tropopause polar vortices (TPVs) are a high-latitude atmospheric phenomenon that impact weather inside and outside of polar regions. Using a set of long-lived TPVs to gain insight into the conditions that are most supportive of TPV survival, we describe patterns of vortex formation and movement. In addition, we analyze the characteristics of these TPVs and how they vary by season. These results help us to better understand TPVs which, in turn, may improve forecasts of related weather events.