Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-951-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-951-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation
Kristian Strommen
CORRESPONDING AUTHOR
Department of Physics, University of Oxford, Oxford, United Kingdom
Stephan Juricke
Mathematics and Logistics, Jacobs University, Bremen, Germany
Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
Fenwick Cooper
Department of Physics, University of Oxford, Oxford, United Kingdom
Related authors
Ting-Chen Chen, Hugues Goosse, Matthias Aengenheyster, Kristian Strommen, Christopher Roberts, Malcolm Roberts, Rohit Ghosh, Jin-Song von Storch, and Stephy Libera
EGUsphere, https://doi.org/10.5194/egusphere-2025-666, https://doi.org/10.5194/egusphere-2025-666, 2025
Short summary
Short summary
The Southern Annular Mode (SAM) is a key driver of Southern Hemisphere climate variability, but global models often overestimate its persistence in summer. Using high-resolution models, we show this bias can be reduced, along with some improvements in jet latitude and likely a better-resolved eddy-mean flow feedback. Controlled experiments reveal the potential roles of sea surface temperature biases and ocean mesoscales, underscoring the complex mechanisms shaping SAM persistence.
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
Weather Clim. Dynam., 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023, https://doi.org/10.5194/wcd-4-853-2023, 2023
Short summary
Short summary
We present evidence which strongly suggests that decadal variations in the intensity of the North Atlantic winter jet stream can be predicted by current forecast models but that decadal variations in its position appear to be unpredictable. It is argued that this skill at predicting jet intensity originates from the slow, predictable variability in sea surface temperatures in the sub-polar North Atlantic.
Joshua Dorrington, Kristian Strommen, and Federico Fabiano
Weather Clim. Dynam., 3, 505–533, https://doi.org/10.5194/wcd-3-505-2022, https://doi.org/10.5194/wcd-3-505-2022, 2022
Short summary
Short summary
We investigate how well current state-of-the-art climate models reproduce the wintertime weather of the North Atlantic and western Europe by studying how well different "regimes" of weather are captured. Historically, models have struggled to capture these regimes, making it hard to predict future changes in wintertime extreme weather. We show models can capture regimes if the right method is used, but they show biases, partially as a result of biases in jet speed and eddy strength.
Ting-Chen Chen, Hugues Goosse, Matthias Aengenheyster, Kristian Strommen, Christopher Roberts, Malcolm Roberts, Rohit Ghosh, Jin-Song von Storch, and Stephy Libera
EGUsphere, https://doi.org/10.5194/egusphere-2025-666, https://doi.org/10.5194/egusphere-2025-666, 2025
Short summary
Short summary
The Southern Annular Mode (SAM) is a key driver of Southern Hemisphere climate variability, but global models often overestimate its persistence in summer. Using high-resolution models, we show this bias can be reduced, along with some improvements in jet latitude and likely a better-resolved eddy-mean flow feedback. Controlled experiments reveal the potential roles of sea surface temperature biases and ocean mesoscales, underscoring the complex mechanisms shaping SAM persistence.
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
Weather Clim. Dynam., 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023, https://doi.org/10.5194/wcd-4-853-2023, 2023
Short summary
Short summary
We present evidence which strongly suggests that decadal variations in the intensity of the North Atlantic winter jet stream can be predicted by current forecast models but that decadal variations in its position appear to be unpredictable. It is argued that this skill at predicting jet intensity originates from the slow, predictable variability in sea surface temperatures in the sub-polar North Atlantic.
Nicolas Stoll, Matthias Wietz, Stephan Juricke, Franziska Pausch, Corina Peter, Miriam Seifert, Jana C. Massing, Moritz Zeising, Rebecca A. McPherson, Melissa Käß, and Björn Suckow
Polarforschung, 91, 31–43, https://doi.org/10.5194/polf-91-31-2023, https://doi.org/10.5194/polf-91-31-2023, 2023
Short summary
Short summary
Global crises, such as climate change and the COVID-19 pandemic, show the importance of communicating science to the public. We introduce the YouTube channel "Wissenschaft fürs Wohnzimmer", which livestreams presentations on climate-related topics weekly and is accessible to all. The project encourages interaction between scientists and the public and has been running successfully for over 2 years. We present the concept, what we have learnt, and the challenges after 100 streamed episodes.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Joshua Dorrington, Kristian Strommen, and Federico Fabiano
Weather Clim. Dynam., 3, 505–533, https://doi.org/10.5194/wcd-3-505-2022, https://doi.org/10.5194/wcd-3-505-2022, 2022
Short summary
Short summary
We investigate how well current state-of-the-art climate models reproduce the wintertime weather of the North Atlantic and western Europe by studying how well different "regimes" of weather are captured. Historically, models have struggled to capture these regimes, making it hard to predict future changes in wintertime extreme weather. We show models can capture regimes if the right method is used, but they show biases, partially as a result of biases in jet speed and eddy strength.
Cited articles
Alexander, M. A., Matrosova, L., Penland, C., Scott, J. D., and Chang, P.:
Forecasting Pacific SSTs: Linear inverse model predictions of the PDO,
J. Climate, 21, 385–402, 2008. a
Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., and Scaife,
A. A.: An Intercomparison of Skill and Overconfidence/Underconfidence of the
Wintertime North Atlantic Oscillation in Multimodel Seasonal Forecasts,
Geophys. Res. Lett., 45, 7808–7817, https://doi.org/10.1029/2018GL078838, 2018. a
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi,
M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification
from Field Site to Terrestrial Water Storage and Impact in the Integrated
Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009. a
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the
midlatitude jet-stream: Can it? Has it? Will it?, WIREs Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. a
Berner, J., Achatz, U., Batté, L., Bengtsson, L., De La Cámara,
A., Weisheimer, A., Weniger, M., Williams, P. D., and Yano, J.-I.:
Stochastic parameterizations: Toward a New View of Weather and Climate
Models, B. Am. Meteorol. Soc., 98, 565–588,
https://doi.org/10.1175/BAMS-D-15-00268.1, 2017. a, b, c
Blackport, R. and Screen, J. A.: Observed Statistical Connections Overestimate
the Causal Effects of Arctic Sea Ice Changes on Midlatitude Winter Climate,
J. Climate, 34, 3021–3038, https://doi.org/10.1175/JCLI-D-20-0293.1, 2021. a, b, c, d
Brankart, J.-M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.-A., Brasseur, P., and Verron, J.: A generic approach to explicit simulation of uncertainty in the NEMO ocean model, Geosci. Model Dev., 8, 1285–1297, https://doi.org/10.5194/gmd-8-1285-2015, 2015. a
Brayshaw, D. J., Hoskins, B., and Blackburn, M.: The Basic Ingredients of the
North Atlantic Storm Track. Part II: Sea Surface Temperatures, J.
Atmos. Sci., 68, 1784–1805, https://doi.org/10.1175/2011JAS3674.1, 2011. a
Caian, M., Koenigk, T., Döscher, R., and Devasthale, A.: An interannual
link between Arctic sea-ice cover and the North Atlantic Oscillation, Clim.
Dynam., 50, 423–441, https://doi.org/10.1007/s00382-017-3618-9, 2018. a, b, c
Chapman, W. and National Center for Atmospheric Research Staff (Eds.):
MS Windows NT Kernel Description,
https://climatedataguide.ucar.edu/climate-data/walsh-and-chapman-northern-hemisphere-sea-ice (last access: 8 August 2022),
2013. a
Christensen, H. M., Berner, J., Coleman, D. R., and Palmer, T. N.: Stochastic
parameterization and El Niño-southern oscillation, J. Climate,
30, 17–38, https://doi.org/10.1175/JCLI-D-16-0122.1, 2017. a, b
Davini, P., von Hardenberg, J., Corti, S., Christensen, H. M., Juricke, S., Subramanian, A., Watson, P. A. G., Weisheimer, A., and Palmer, T. N.: Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model, Geosci. Model Dev., 10, 1383–1402, https://doi.org/10.5194/gmd-10-1383-2017, 2017. a
Dawson, A. and Palmer, T. N.: Simulating weather regimes: impact of model
resolution and stochastic parameterization, Clim. Dynam., 44,
2177–2193, https://doi.org/10.1007/s00382-014-2238-x, 2015. a
Deser, C., Walsh, J. E., and Timlin, M. S.: Arctic sea ice variability in the
context of recent atmospheric circulation trends, J. Climate, 13, 617–633,
https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2, 2000. a
Deser, C., Tomas, R. A., and Peng, S.: The Transient Atmospheric Circulation
Response to North Atlantic SST and Sea Ice Anomalies, J. Climate, 20,
4751–4767, https://doi.org/10.1175/JCLI4278.1, 2007. a, b, c, d
Deser, C., Sun, L., Tomas, R. A., and Screen, J.: Does ocean coupling matter
for the northern extratropical response to projected Arctic sea ice loss?,
Geophys. Res. Lett., 43, 2149–2157,
https://doi.org/10.1002/2016GL067792, 2016. a, b
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M., and Knight, J.: Skilful predictions of the winter North
Atlantic Oscillation one year ahead, Nat. Geosci., 9, 809–814,
https://doi.org/10.1038/ngeo2824, 2016. a, b
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., and
Robinson, N.: Do seasonal-to-decadal climate predictions underestimate the
predictability of the real world?, Geophys. Res. Lett., 41,
5620–5628, https://doi.org/10.1002/2014GL061146, 2014. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Frankignoul, C., Czaja, A., and L’Heveder, B.: Air–Sea Feedback in the
North Atlantic and Surface Boundary Conditions for Ocean Models, J.
Climate, 11, 2310–2324,
https://doi.org/10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2, 1998. a
García-Serrano, J., Frankignoul, C., Gastineau, G., and de la Cámara, A.: On
the Predictability of the Winter Euro-Atlantic Climate: Lagged Influence of
Autumn Arctic Sea Ice, J. Climate, 28, 5195–5216,
https://doi.org/10.1175/JCLI-D-14-00472.1, 2015. a, b
Gent, P. R. and Mcwilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020. a, b, c, d
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a, b
Hawkins, E. and Sutton, R.: Decadal predictability of the Atlantic Ocean in a
coupled GCM: Forecast skill and optimal perturbations using linear inverse
modeling, J. Climate, 22, 3960–3978, 2009. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hoskins, B. J. and Karoly, D. J.: The Steady Linear Response of a Spherical
Atmosphere to Thermal and Orographic Forcing, J. Atmos.
Sci., 38, 1179–1196,
https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2, 1981. a
Hurrell, J. W., Kushnir, Y., Otterson, G., and Visbeck, M.: An Overview of the
North Atlantic Oscillation, in: The North Atlantic Oscillation: Climatic
Significance and Environmental Impact, 1st edn., volume 134, ISBN 9780875909943, https://doi.org/10.1029/GM134, 2003. a
Juricke, S., Goessling, H. F., and Jung, T.: Potential sea ice predictability
and the role of stochastic sea ice strength perturbations, Geophys.
Res. Lett., 41, 8396–8403, https://doi.org/10.1002/2014GL062081,
2014. a, b, c
Juricke, S., MacLeod, D., Weisheimer, A., Zanna, L., and Palmer, T. N.:
Seasonal to annual ocean forecasting skill and the role of model and
observational uncertainty, Q. J. Roy. Meteor.
Soc., 144, 1947–1964, https://doi.org/10.1002/qj.3394, 2018. a, b, c
Keeley, S. P., Sutton, R. T., and Shaffrey, L. C.: The impact of North
Atlantic sea surface temperature errors on the simulation of North Atlantic
European region climate, Q. J. Roy. Meteor.
Soc., 138, 1774–1783, https://doi.org/10.1002/qj.1912, 2012. a
Kelleher, M. and Screen, J.: Atmospheric precursors of and response to
anomalous Arctic sea ice in CMIP5 models, Adv. Atmos. Sci.,
35, 27–37, 2018. a
Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim,
T., and Yoon, J.-H.: Weakening of the stratospheric polar vortex by Arctic
sea-ice loss, Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646, 2014. a
Kolstad, E. W. and Screen, J. A.: Nonstationary Relationship Between Autumn
Arctic Sea Ice and the Winter North Atlantic Oscillation, Geophys.
Res. Lett., 46, 7583–7591, https://doi.org/10.1029/2019GL083059,
2019. a
Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J.: Using Causal Effect
Networks to Analyze Different Arctic Drivers of Midlatitude Winter
Circulation, J. Climate, 29, 4069–4081,
https://doi.org/10.1175/JCLI-D-15-0654.1, 2016. a, b
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019. a
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN 1288-1619, 2008. a
Magnusdottir, G., Deser, C., and Saravanan, R.: The Effects of North Atlantic
SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part I: Main
Features and Storm Track Characteristics of the Response, J. Climate,
17, 857–876, https://doi.org/10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2, 2004. a
Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H., and Kimoto, M.: A reconciled
estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling,
Nat. Clim. Change, 9, 123–129, https://doi.org/10.1038/s41558-018-0379-3,
2019a. a, b, c
Mori, M., Kosaka, Y., Watanabe, M., Taguchi, B., Nakamura, H., and Kimoto, M.:
Reply to: Is sea-ice-driven Eurasian cooling too weak in models?, Nat.
Clim. Change, 9, 937–939, https://doi.org/10.1038/s41558-019-0636-0,
2019b. a, b, c
Newman, M., Sardeshmukh, P. D., and Penland, C.: How Important Is Air–Sea
Coupling in ENSO and MJO Evolution?, J. Climate, 22, 2958–2977,
https://doi.org/10.1175/2008JCLI2659.1, 2009. a
Notz, D. and SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res.
Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020. a
Palmer, T. N.: Towards the probabilistic Earth-system simulator: A vision for
the future of climate and weather prediction, Q. J. Roy.
Meteor. Soc., 138, 841–861, https://doi.org/10.1002/qj.1923, 2012. a
Peings, Y.: Ural Blocking as a Driver of Early-Winter Stratospheric Warmings,
Geophys. Res. Lett., 46, 5460–5468,
https://doi.org/10.1029/2019GL082097, 2019. a
Peings, Y. and Magnusdottir, G.: Response of the Wintertime Northern Hemisphere
Atmospheric Circulation to Current and Projected Arctic Sea Ice Decline: A
Numerical Study with CAM5, J. Climate, 27, 244–264,
https://doi.org/10.1175/JCLI-D-13-00272.1, 2014. a
Sanchez, C., Williams, K. D., and Collins, M.: Improved stochastic physics
schemes for global weather and climate models, Q. J. Roy.
Meteor. Soc., 142, 147–159, https://doi.org/10.1002/qj.2640,
2016. a
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science, npj
Climate and Atmospheric Science, 1, 28, https://doi.org/10.1038/s41612-018-0038-4, 2018. a
Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner,
P. J., Oudar, T., McCusker, K. E., and Sun, L.: Consistency and discrepancy
in the atmospheric response to Arctic sea-ice loss across climate models,
Nat. Geosci., 11, 155–163, 2018. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate
change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253,
2014. a
Siegert, S., Stephenson, D. B., Sansom, P. G., Scaife, A. A., Eade, R., and
Arribas, A.: A Bayesian framework for verification and recalibration of
ensemble forecasts: How uncertain is NAO predictability?, J.
Climate, 29, 995–1012, https://doi.org/10.1175/JCLI-D-15-0196.1, 2016. a
Siew, P. Y. F., Li, C., Sobolowski, S. P., and King, M. P.: Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation, Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, 2020. a
Siew, P. Y. F., Li, C., Ting, M., Sobolowski, S. P., Wu, Y., and Chen, X.:
North Atlantic Oscillation in winter is largely insensitive to autumn
Barents-Kara sea ice variability, Science Advances, 7, eabg4893,
https://doi.org/10.1126/sciadv.abg4893, 2021. a, b, c, d
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018. a
Strommen, K.: PRIMAVERA_UOXF_Stochastic_Experiments, Zenodo [data set], https://doi.org/10.5281/zenodo.5256102, 2021. a
Strommen, K. and Palmer, T. N.: Signal and noise in regime systems: A
hypothesis on the predictability of the North Atlantic Oscillation, Q.
J. Roy. Meteor. Soc., 145, 147–163,
https://doi.org/10.1002/qj.3414, 2019. a, b
Strommen, K., Christensen, H. M., Berner, J., and Palmer, T. N.: The impact of
stochastic parametrisations on the representation of the Asian summer
monsoon, Clim. Dynam., 50, 2269–2282, https://doi.org/10.1007/s00382-017-3749-z, 2017. a, b
Strommen, K., Christensen, H. M., MacLeod, D., Juricke, S., and Palmer, T. N.: Progress towards a probabilistic Earth system model: examining the impact of stochasticity in the atmosphere and land component of EC-Earth v3.2, Geosci. Model Dev., 12, 3099–3118, https://doi.org/10.5194/gmd-12-3099-2019, 2019. a, b, c
Strong, C. and Magnusdottir, G.: The Role of Rossby Wave Breaking in Shaping
the Equilibrium Atmospheric Circulation Response to North Atlantic Boundary
Forcing, J. Climate, 23, 1269–1276, https://doi.org/10.1175/2009JCLI2676.1,
2010.
a
Sun, L., Deser, C., and Tomas, R. A.: Mechanisms of Stratospheric and
Tropospheric Circulation Response to Projected Arctic Sea Ice Loss, J. Climate, 28, 7824–7845, https://doi.org/10.1175/JCLI-D-15-0169.1, 2015. a
Vancoppenolle, M., Bouillon, S., Fichefet, T., Goosse, H., Lecomte, O., Morales Maqueda, M. A., and Madec, G.: The Louvain-la-Neuve sea ice model, Notes du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Paris, France, no. 31, ISSN No 1288-1619, 2012. a
Vidale, P. L., Hodges, K., Vannière, B., Davini, P., Roberts, M. J., Strommen,
K., Weisheimer, A., Plesca, E., and Corti, S.: Impact of Stochastic Physics
and Model Resolution on the Simulation of Tropical Cyclones in Climate GCMs,
J. Climate, 34, 4315–4341, https://doi.org/10.1175/JCLI-D-20-0507.1, 2021. a
Vinje, T.: Anomalies and Trends of Sea-Ice Extent and Atmospheric Circulation
in the Nordic Seas during the Period 1864–1998, J. Climate, 14, 255–267, https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2, 2001. a
von Storch, J.-S.: Signatures of Air–Sea Interactions in a Coupled
Atmosphere–Ocean GCM, J. Climate, 13, 3361–3379,
https://doi.org/10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2, 2000. a
Wang, C., Zhang, L., Lee, S.-K., Wu, L., and Mechoso, C. R.: A global
perspective on CMIP5 climate model biases, Nat. Clim. Change, 4,
201–205, 2014. a
Wang, L., Ting, M., and Kushner, P. J.: A robust empirical seasonal prediction
of winter NAO and surface climate, Scientific Reports, 7, 279,
https://doi.org/10.1038/s41598-017-00353-y, 2017. a, b
Warner, J. L., Screen, J. A., and Scaife, A. A.: Links Between Barents-Kara Sea
Ice and the Extratropical Atmospheric Circulation Explained by Internal
Variability and Tropical Forcing, Geophys. Res. Lett., 47,
e2019GL085679, https://doi.org/10.1029/2019GL085679, 2020. a
Watson, P. A. G., Berner, J., Corti, S., Davini, P., von Hardenberg, J.,
Sanchez, C., Weisheimer, A., and Palmer, T. N.: The impact of stochastic
physics on tropical rainfall variability in global climate models on daily to
weekly timescales, J. Geophys. Res.-Atmos., 122,
5738–5762, https://doi.org/10.1002/2016JD026386, 2017. a
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North
Atlantic eddy-driven jet stream, Q. J. Roy.
Meteor. Soc., 136, 856–868, https://doi.org/10.1002/qj.625, 2010. a
Short summary
Observational data suggest that the extent of Arctic sea ice influences mid-latitude winter weather. However, climate models generally fail to reproduce this link, making it unclear if models are missing something or if the observed link is just a coincidence. We show that if one explicitly represents the effect of unresolved sea ice variability in a climate model, then it is able to reproduce this link. This implies that the link may be real but that many models simply fail to simulate it.
Observational data suggest that the extent of Arctic sea ice influences mid-latitude winter...