Articles | Volume 4, issue 4
Research article
07 Dec 2023
Research article |  | 07 Dec 2023

Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific

Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside

Related authors

Metrics of the Hadley circulation strength and associated circulation trends
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644,,, 2022
Short summary
Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling
Lina Boljka and Thomas Birner
Weather Clim. Dynam., 1, 555–575,,, 2020
Short summary

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
WCD Ideas: Teleconnections through weather rather than stationary waves
Clemens Spensberger
Weather Clim. Dynam., 5, 659–669,,, 2024
Short summary
Development of Indian summer monsoon precipitation biases in two seasonal forecasting systems and their response to large-scale drivers
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702,,, 2024
Short summary
Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham
Weather Clim. Dynam., 5, 511–536,,, 2024
Short summary
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356,,, 2024
Short summary
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367,,, 2024
Short summary

Cited articles

Alberti, T., Donner, R. V., and Vannitsem, S.: Multiscale fractal dimension analysis of a reduced order model of coupled ocean–atmosphere dynamics, Earth Syst. Dynam., 12, 837–855,, 2021. a, b
Allan, R. J.: ENSO and Climatic Variability in the Past 150 Years, 3–56, Cambridge University Press,, 2000. a, b
An, S.-I., Tziperman, E., Okumura, Y. M., and Li, T.: ENSO Irregularity and Asymmetry, Chap. 7, American Geophysical Union (AGU), 153–172,, 2020. a
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and its possible teleconnection, J. Geophys. Res.-Oceans, 112, C11007,, 2007. a
Baede, A., Ahlonsou, E., Ding, Y., and Schimel, D.: The Climate System: an Overview, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1–881, (last access: 4 December 2023), 2001. a
Short summary
This study examines quasi-periodic variability in the tropical Pacific on interannual timescales and related physics using a recently developed time series analysis tool. We find that wind stress in the west Pacific and recharge–discharge of ocean heat content are likely related to each other on ~1.5–4.5-year timescales (but not on others) and dominate variability in sea surface temperatures on those timescales. This may have further implications for climate models and long-term prediction.