Articles | Volume 4, issue 3
https://doi.org/10.5194/wcd-4-773-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-4-773-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Classification of large-scale environments that drive the formation of mesoscale convective systems over southern West Africa
Francis Nkrumah
CORRESPONDING AUTHOR
Department of Physics, University of Cape Coast, Private Mail Bag,
Cape Coast, Ghana
African Institute for Mathematical Sciences (AIMS), Remera Sector,
Kigali 20093, Rwanda
Cornelia Klein
UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Kwesi Akumenyi Quagraine
Department of Physics, University of Cape Coast, Private Mail Bag,
Cape Coast, Ghana
Climate System Analysis Group (CSAG), ENGEO, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
Rebecca Berkoh-Oforiwaa
African Institute for Mathematical Sciences (AIMS), Remera Sector,
Kigali 20093, Rwanda
Department of Physics, University of Ghana, P.O. Box LG 63, Legon, Ghana
Nana Ama Browne Klutse
CORRESPONDING AUTHOR
African Institute for Mathematical Sciences (AIMS), Remera Sector,
Kigali 20093, Rwanda
Department of Physics, University of Ghana, P.O. Box LG 63, Legon, Ghana
Patrick Essien
Department of Physics, University of Cape Coast, Private Mail Bag,
Cape Coast, Ghana
African Institute for Mathematical Sciences (AIMS), Remera Sector,
Kigali 20093, Rwanda
Gandomè Mayeul Leger Davy Quenum
African Institute for Mathematical Sciences (AIMS), Remera Sector,
Kigali 20093, Rwanda
National Institute of Water (NIW), University of Abomey-Calavi,
Godomey, Cotonou 01 PB: 4521, Benin
Hubert Azoda Koffi
Department of Physics, University of Ghana, P.O. Box LG 63, Legon, Ghana
Related authors
No articles found.
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Mohamadou A. Diallo, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
Atmos. Chem. Phys., 25, 12357–12378, https://doi.org/10.5194/acp-25-12357-2025, https://doi.org/10.5194/acp-25-12357-2025, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with season but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
Hydrol. Earth Syst. Sci., 29, 2727–2747, https://doi.org/10.5194/hess-29-2727-2025, https://doi.org/10.5194/hess-29-2727-2025, 2025
Short summary
Short summary
In semi-arid regions, the timing and duration of the rainy season are crucial for agriculture. This study introduces a new framework for improving estimations of the onset and end of the rainy season by testing how well they fit local vegetation data. We improve the performance of existing methods and present a new one with higher performance. Our findings can help us to make informed decisions about water usage, and the framework can be applied to other regions as well.
Chris Huntingford, Andrew J. Nicoll, Cornelia Klein, and Jawairia A. Ahmad
Earth Syst. Dynam., 16, 475–495, https://doi.org/10.5194/esd-16-475-2025, https://doi.org/10.5194/esd-16-475-2025, 2025
Short summary
Short summary
AI is impacting science, providing key data insights, but most algorithms are statistical requiring cautious "out-of-sample" extrapolation. Yet climate research concerns predicting future climatic states. We consider a new method of AI-led equation discovery. Equations offer process interpretation and more robust predictions. We recommend this method for climate analysis, suggesting illustrative application to atmospheric convection, land–atmosphere CO2 flux, and global ocean circulation models.
Julia Crook, Cornelia Klein, Sonja Folwell, Christopher M. Taylor, Douglas J. Parker, Adama Bamba, and Kouakou Kouadio
Weather Clim. Dynam., 4, 229–248, https://doi.org/10.5194/wcd-4-229-2023, https://doi.org/10.5194/wcd-4-229-2023, 2023
Short summary
Short summary
We estimate recent deforestation in West Africa and use a climate model allowing explicit convection to determine impacts on early season rainfall. We find enhanced rainfall over deforestation, in line with recent observational results, due to changes in circulation rather than humidity, showing potential for future studies. Local changes depend on initial soil moisture, deforestation extent, and ocean proximity, with sea breezes shifting inland where surface friction decreased.
Cited articles
Alfaro, D. A.: Low-Tropospheric Shear in the Structure of Squall Lines:
Impacts on Latent Heating under Layer-Lifting Ascent, J. Atmos. Sci., 74,
229–248, https://doi.org/10.1175/JAS-D-16-0168.1, 2017.
Acheampong, P. K.: Rainfall anomaly along the coast of Ghana – Its nature and causes, Geogr. Ann. A, 64, 199–211, https://doi.org/10.1080/04353676.1982.11880066, 1982.
Augustin, D., Pascal, I. M., Jores, T. K., Elisabeth, F. D., Cesar, M. B., Michael, T. F., Roméo-Ledoux, D. T.,
Marceline, M., Gladys, K. N. F., and Firmin, B. A.: Impact Assessment of the West African Monsoon on Convective
Precipitations over the Far North Region of Cameroon, Adv. Space Res., 72, 666–676,
https://doi.org/10.1016/j.asr.2022.04.044, 2023.
Baidu, M., Schwendike, J., Marsham, J. H., and Bain, C.: Effects of Vertical
Wind Shear on Intensities of Mesoscale Convective Systems over West and
Central Africa, Atmos. Sci. Lett., 23, e1094, https://doi.org/10.1002/asl.1094, 2022.
Bayo Omotosho, J.: The separate contributions of line squalls, thunderstorms and the monsoon to the total rainfall in
Nigeria, J. Climatol., 5, 543–552, https://doi.org/10.1002/joc.3370050507, 1985.
Biasutti, M., Sobel, A. H., and Camargo, S. J.: The role of the Sahara low in summertime Sahel rainfall variability and change in the CMIP3 models, J. Climate, 22, 5755–5771, https://doi.org/10.1175/2009JCLI2969.1, 2009.
Cassano, E. N., Glisan, J. M., Cassano, J. J., Gutowski Jr., W. J., and Seefeldt, M. W.: Self-Organizing Map Analysis of Widespread Temperature Extremes in Alaska and Canada, Clim. Res., 62, 199–218, https://doi.org/10.3354/cr01274, 2015.
Chen, Y., Luo, Y., and Liu, B.: General Features and Synoptic-Scale Environments of Mesoscale Convective Systems over South China during the
2013–2017 Pre-Summer Rainy Seasons, Atmos. Res., 266,
105954, https://doi.org/10.1016/j.atmosres.2021.105954, 2022.
EUMETSAT: High Rate SEVIRI Level 1.5 Image Data – MSG – 0 degree, EUMETSAT [data set], https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI (last access: 25 August 2021), 2021.
Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze Jr., R. A., Li, J., Hardin,
J. C., Chen, D., and Guo, J. A.: Global High-Resolution Mesoscale Convective
System Database Using Satellite-Derived Cloud Tops, Surface Precipitation,
and Tracking, J. Geophys. Res.-Atmos. 126, e2020JD034202, https://doi.org/10.1029/2020JD034202, 2021.
Fink, A. H., Vincent, D. G., and Ermert, V.: Rainfall types in the West African Sudanian zone during the summer
monsoon 2002, Mon. Weather Rev., 134, 2143–2164, https://doi.org/10.1175/MWR3182.1, 2006.
Guo, Y., Du, Y., Lu, R., Feng, X., Li, J., Zhang, Y., and Mai, Z.: The characteristics of mesoscale convective systems
generated over the Yunnan-Guizhou Plateau during the warm seasons. Int. J. Climatol., 42,
7321–7341, https://doi.org/10.1002/joc.7647, 2022.
Guy, N., Rutledge, S. A., and Cifelli, R.: Radar Characteristics of Continental, Coastal, and Maritime Convection Observed during AMMA/NAMMA, Q. J. Roy. Meteorol. Soc., 137, 1241–1256, https://doi.org/10.1002/qj.839, 2011.
Hagos, S. M. and Cook, K. H.: Dynamics of the West African Monsoon Jump, J.
Climate, 20, 5264–5284, https://doi.org/10.1175/2007JCLI1533.1, 2007.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from
1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.bd0915c6, 2023.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hewitson, B. C. and Crane, R. G.: Climate Downscaling: Techniques and
Application, Clim. Res., 7, 85–95, https://doi.org/10.3354/cr007085, 1996.
Hewitson, B. C. and Crane, R. G.: Self-Organizing Maps: Applications to
Synoptic Climatology, Clim. Res., 22, 13–26, https://doi.org/10.3354/cr022013, 2002.
Hodges, K. I. and Thorncroft, C. D.: Distribution and Statistics of African
Mesoscale Convective Weather Systems Based on the ISCCP Meteosat Imagery,
Mon. Weather Rev., 125, 2821–2837, https://doi.org/10.1175/1520-0493(1997)125<2821:DASOAM>2.0.CO;2, 1997.
Houze Jr., R. A.: Mesoscale Convective Systems, Rev. Geophys., 42,
RG4003, https://doi.org/10.1029/2004RG000150, 2004.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM IMERG Final Precipitation L3 Half
Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, GES DISC [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019.
IPCC: Climate Change, 2014: Synthesis Report, in: Contribution of Working groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Working Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp. https://doi.org/10013/epic.45156.d001, 2014.
Janicot, S., Caniaux, G., Chauvin, F., De Coëtlogon, G., Fontaine, B.,
Hall, N., Kiladis, G., Lafore, J.-P., Lavaysse, C., Lavender, S. L., Leroux,
S., Marteau, R., Mounier, F., Philippon, N., Roehrig, R., Sultan, B., and
Taylor, C. M.: Intraseasonal variability of the West African monsoon, Atmos. Sci. Lett., 12, 58–66, https://doi.org/10.1002/asl.280, 2011.
Janiga, M. A. and Thorncroft, C. D.: The Influence of African Easterly Waves
on Convection over Tropical Africa and the East Atlantic, Mon. Weather Rev.,
144, 171–192, https://doi.org/10.1175/MWR-D-14-00419.1, 2016.
Kamara, S. I.: The Origins and Types of Rainfall in West Africa, Weather, 41,
48–56, https://doi.org/10.1002/j.1477-8696.1986.tb03787.x, 1986.
Kim, H. K. and Seo, K. H.: Cluster Analysis of Tropical Cyclone Tracks over
the Western North Pacific Using a Self-Organizing Map, J. Climate, 29, 3731–3751, https://doi.org/10.1175/JCLI-D-15-0380.1, 2016.
Klein, C., Belušić, D., and Taylor, C. M.: Wavelet scale analysis
of mesoscale convective systems for detecting deep convection from infrared
imagery, J. Geophys. Res.-Atmos., 123, 3035–3050, https://doi.org/10.1002/2017JD027432, 2018.
Klein, C., Nkrumah, F., Taylor, C. M., and Adefisan, E. A.: Seasonality and
Trends of Drivers of Mesoscale Convective Systems in Southern West Africa, J. Climate, 34, 71–87, https://doi.org/10.1175/JCLI-D-20-0194.1, 2021.
Kohonen, T.: Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 59–69,
https://doi.org/10.1007/BF00337288, 1982.
Kohonen, T.: Self-Organizing Maps.-Springer Series in Information Sciences,
in: V. 30, Springer Sci. Rev., https://doi.org/10.1007/978-3-642-56927-2, 2001.
Laing, A. G., Carbone, R., Levizzani, V., and Tuttle, J.: The Propagation and
Diurnal Cycles of Deep Convection in Northern Tropical Africa, Q. J. Roy.
Meteorol. Soc., 134, 93–109, https://doi.org/10.1002/qj.194, 2008.
Lavaysse, C., Flamant, C., Janicot, S., Parker, D. J., Lafore, J. P., Sultan,
B., and Pelon, J.: Seasonal Evolution of the West African Heat Low: A
Climatological Perspective, Clim. Dynam., 33, 313–330, https://doi.org/10.1007/s00382-009-0553-4, 2009.
Lavaysse, C., Chaboureau, J.-P., and Flamant, C.: Dust impact on the West
African heat low in summertime, Q. J. Roy. Meteorol. Soc., 137, 1227–1240,
https://doi.org/10.1002/qj.844, 2011.
Le Barbé, L., Lebel, T., and Tapsoba, D.: Rainfall variability in West
Africa during the years 1950–90, J. Climate, 15, 187–202,
https://doi.org/10.1175/1520-0442(2002)015<0187:RVIWAD>2.0.CO;2, 2002.
Lee, C. C.: Reanalysing the impacts of atmospheric teleconnections on cold‐season weather using multivariate
surface weather types and self‐organizing maps, Int. J. Climatol., 37, 3714–3730,
https://doi.org/10.1016/j.scitotenv.2018.02.163, 2017.
Lennard, C. and Hegerl, G.: Relating changes in synoptic circulation to the surface rainfall response using
self-organising maps, Clim. Dynam., 44, 861–879, https://doi.org/10.1007/s00382-014-2169-6, 2015.
Li, P., Moseley, C., Prein, A. F., Chen, H., Li, J., Furtado, K., and Zhou, T.: Mesoscale Convective System Precipitation Characteristics over East
Asia. Part I: Regional Differences and Seasonal Variations, J. Climate, 33,
9271–9286, https://doi.org/10.1175/JCLI-D-20-0072.1, 2020.
Maranan, M., Fink, A. H., and Knippertz, P.: Rainfall Types over Southern West Africa: Objective Identification, Climatology and Synoptic Environment, Q. J. Roy. Meteorol. Soc., 144, 1628–1648, https://doi.org/10.1002/qj.3345, 2018.
Mohr, K. I. and Thorncroft, C. D.: Intense Convective Systems in West Africa
and Their Relationship to the African Easterly Jet, Q. J. Roy. Meteorol. Soc., 132, 163–176, https://doi.org/10.1256/qj.05.55, 2006.
Mohr, K. I. and Zipser, E. J.: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents, Mon. Weather Rev., 124, 2417–2437,
https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2, 1996.
Nesbitt, S. W., Cifelli, R., and Rutledge, S. A.: Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features, Mon. Weather Rev., 134, 2702–2721, https://doi.org/10.1175/MWR3200.1, 2006.
Nkrumah, F.: Materials for Nkrumah et al. 2023 “Classification of large-scale environments that drive the formation
of mesoscale convective systems over southern West Africa”, Zenodo [data set],
https://doi.org/10.5281/zenodo.8192395, 2023.
Nicholson, S. E. and Webster, P. J.: A physical basis for the interannual
variability of rainfall in the Sahel, Q. J. Roy. Meteorol. Soc., 133, 2065–2084, https://doi.org/10.1002/qj.104.
Quagraine, K. A., Hewitson, B., Jack, C., Pinto, I., and Lennard, C.: A methodological approach to assess the
co-behavior of climate processes over southern Africa, J. Clim., 32, 2483–2495, https://doi.org/10.1175/JCLI-D-18-0689.1, 2019.
Reusch, D. B., Alley, R. B., and Hewitson, B. C.: Relative performance of self-organizing maps and principal
component analysis in pattern extraction from synthetic climatological data, Polar Geography, 29, 188–212,
https://doi.org/10.1080/789610199, 2005.
Rousi, E., Anagnostopoulou, C., Tolika, K., and Maheras, P.: Representing teleconnection patterns over
Europe: A comparison of SOM and PCA methods, Atmos. Res., 152, 123–137,
https://doi.org/10.1016/j.atmosres.2013.11.010, 2015.
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and Ratier, A.: An Introduction to Meteosat Second Generation (MSG), B. Am.
Meteorol. Soc., 83, 977–992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.
Schrage, J. M., Fink, A. H., Ermert, V., and Ahlonsou, E. D.: Three MCS Cases
Occurring in Different Synoptic Environments in the Sub-Sahelian Wet Zone
during the 2002 West African Monsoon, J. Atmos. Sci., 63, 2369–2382,
https://doi.org/10.1175/JAS3757.1, 2006.
Sheridan, S. and Lee, C. C.: Synoptic Climatology and the Analysis of Atmospheric Teleconnections, Prog. Phys. Geogr., 36, 548–557,
https://doi.org/10.1177/0309133312447935, 2012.
Song, F., Feng, Z., Leung, L. R., Houze Jr., R. A., Wang, J., Hardin, J., and Homeyer, C. R.: Contrasting spring and
summer large-scale environments associated with mesoscale convective systems over the US Great Plains, J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1, 2019.
Sultan, B., and Janicot, S.: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon, J. Climate, 16, 3407–3427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2, 2003.
Talib, J., Taylor, C. M., Klein, C., Harris, B. L., Anderson, S. R., and
Semeena, V. S.: The sensitivity of the West African monsoon circulation to
intraseasonal soil moisture feedbacks, Q. J. Roy. Meteorol. Soc., 148,
1709–1730, https://doi.org/10.1002/qj.4274, 2022.
Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T.,
Bock, O., Harris, P. P., Janicot, S., Klein, C., and Panthou, G.: Frequency of Extreme Sahelian Storms Tripled since 1982 in Satellite Observations, Nature, 544, 475–478, https://doi.org/10.1038/nature22069, 2017.
Thorncroft, C. D., Nguyen, H., Zhang, C., and Peyrille, P.: Annual cycle of
the West African monsoon: Regional circulations and associated water vapour
transport, Q. J. Roy. Meteorol. Soc., 137, 129–147, https://doi.org/10.1002/qj.728, 2011.
Vizy, E. K. and Cook, K. H.: Mesoscale Convective Systems and Nocturnal Rainfall over the West African Sahel: Role of the Inter-Tropical Front, Clim. Dynam., 50, 587–614, https://doi.org/10.1007/s00382-009-0553-4, 2018.
Vollmert, P., Fink, A. H., and Besler, H.: “Ghana Dry Zone” und “Dahomey Gap”: Ursachen für eine
Niederschlagsanomalie im tropischen Westafrika, Erde, 134, 375–393, 2003.
Wolski, P., Jack, C., Tadross, M., van Aardenne, L., and Lennard, C.:
Interannual Rainfall Variability and SOM-Based Circulation Classification,
Clim. Dynam., 50, 479–492, https://doi.org/10.1007/s00382-017-3621-1, 2018.
Short summary
It is not yet clear which variations in broader atmospheric conditions of the West African monsoon may lead to mesoscale convective system (MCS) occurrences in southern West Africa (SWA). In this study, we identified nine different weather patterns and categorized them as dry-, transition-, or monsoon-season types using a method called self-organizing maps (SOMs). It was revealed that a warmer Sahel region can create favourable conditions for MCS formation in SWA.
It is not yet clear which variations in broader atmospheric conditions of the West African...