Articles | Volume 5, issue 4
https://doi.org/10.5194/wcd-5-1489-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-1489-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of the quasi-biennial oscillation in alleviating biases in the semi-annual oscillation
Aleena M. Jaison
CORRESPONDING AUTHOR
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
now at: Department of Physics, Imperial College London, London, United Kingdom
Lesley J. Gray
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
National Centre for Atmospheric Science, Oxford, United Kingdom
Scott M. Osprey
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
National Centre for Atmospheric Science, Oxford, United Kingdom
Jeff R. Knight
Met Office Hadley Centre, Exeter, United Kingdom
Martin B. Andrews
Met Office Hadley Centre, Exeter, United Kingdom
Related authors
No articles found.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, Masakazu Taguchi, Federico Serva, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmeiro, Mijeong Park, Stefan Versick, and Kohei Yoshida
Weather Clim. Dynam., 6, 1045–1073, https://doi.org/10.5194/wcd-6-1045-2025, https://doi.org/10.5194/wcd-6-1045-2025, 2025
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Mark D. Rhodes-Smith, Victoria A. Bell, Nicky Stringer, Helen Baron, Helen Davies, and Jeff Knight
EGUsphere, https://doi.org/10.5194/egusphere-2025-2506, https://doi.org/10.5194/egusphere-2025-2506, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
River flow forecasts up to three months ahead can allow early preparations for future floods and droughts. We test a new forecasting system using weather forecasts made by selecting historical weather patterns that match current conditions and running them through a simulation of Great Britain's rivers. Our tests show that this system performs particularly well in the winter and spring, in northern Scotland and in southern England. We now use this system to produce forecasts regularly.
Wilson Chan, Katie Facer-Childs, Maliko Tanguy, Eugene Magee, Burak Bulut, Nicky Stringer, Jeff Knight, and Jamie Hannaford
EGUsphere, https://doi.org/10.5194/egusphere-2025-2369, https://doi.org/10.5194/egusphere-2025-2369, 2025
Short summary
Short summary
The UK Hydrological Outlook river flow forecasting system recently implemented the Historic Weather Analogues method. The method improves winter river flow forecast skill across the UK, especially in upland, fast-responding catchments with low catchment storage. Forecast skill is highest in winter due to accurate prediction of atmospheric circulation patterns like the North Atlantic Oscillation. The Ensemble Streamflow prediction method remains a robust benchmark, especially for other seasons.
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Paula L. M. Gonzalez, Lesley J. Gray, Stergios Misios, Scott Osprey, and Hedi Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2487, https://doi.org/10.5194/egusphere-2024-2487, 2024
Preprint archived
Short summary
Short summary
This study has examined a set of reanalyses, both modern and 20th Century, to evaluate the robustness of the signatures of the 11-yr solar cycle in the North Atlantic climate. We find a robust response to the 11-yr solar cycle over the North Atlantic sector with a positive SLP anomaly north of the Azores region at lags of +2–3 years following solar maximum. An ocean reanalysis dataset shows that thermal inertia of the ocean could explain the lag in the SC response.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Chapter 3 – Basic Dynamics, in: Middle Atmosphere Dynamics, vol. 40, edited by: Andrews, D. G., Holton, J. R., and Leovy, C. B., Academic Press, 113–149, https://doi.org/10.1016/B978-0-12-058575-5.50008-6, 1987.
Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. Roy. Meteor. Soc., 140, 1–21, https://doi.org/10.1002/qj.2132, 2014.
Anstey, J. A., Butchart, N., Hamilton, K., and Osprey, S. M.: The SPARC quasi-biennial oscillation initiative, Q. J. Roy. Meteor. Soc., 148, 1455–1458, https://doi.org/10.1002/qj.3820, 2020.
Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva, F., Gray, L. J., Butchart, N., Hamilton, K., Osprey, S., Bellprat, O., Braesicke, P., Bushell, A. C., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Garcia, R. R., Holt, L., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., Lott, F., McLandress, C., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Teleconnections of the Quasi-Biennial Oscillation in a multi-model ensemble of QBO-resolving models, Q. J. Roy. Meteor. Soc., 148, 1568–1592, https://doi.org/10.1002/qj.4048, 2022.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001.
Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia, R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I., Langematz, U., Robock, A., Sato, K., and Scaife, A. A.: 100 Years of Progress in Understanding the Stratosphere and Mesosphere, Meteor. Mon., 59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019.
Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603, 1949.
Burrage, M. D., Vincent, R. A., Mayr, H. G., Skinner, W. R., Arnold, N. F., and Hays, P. B.: Long-term variability in the equatorial middle atmosphere zonal wind, J. Geophys. Res.-Atmos., 101, 12847–12854, https://doi.org/10.1029/96JD00575, 1996.
Bushell, A. C., Butchart, N., Derbyshire, S. H., Jackson, D. R., Shutts, G. J., Vosper, S. B., and Webster, S.: Parameterized Gravity Wave Momentum Fluxes from Sources Related to Convection and Large-Scale Precipitation Processes in a Global Atmosphere Model, J. Atmos. Sci., 72, 4349–4371, https://doi.org/10.1175/JAS-D-15-0022.1, 2015.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014.
Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., Stockdale, T. N., Andrews, M., Bellprat, O., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Dobrynin, M., Garcia, R. R., Garcia-Serrano, J., Gray, L. J., Holt, L., Kerzenmacher, T., Naoe, H., Pohlmann, H., Richter, J. H., Scaife, A. A., Schenzinger, V., Serva, F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, 2018.
Butchart, N., Anstey, J. A., Kawatani, Y., Osprey, S. M., Richter, J. H., and Wu, T.: QBO Changes in CMIP6 Climate Projections, Geophys. Res. Lett., 47, e2019GL086903, https://doi.org/10.1029/2019GL086903, 2020.
Calvo, N., Giorgetta, M. A., and Peña-Ortiz, C.: Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations, J. Geophys. Res.-Atmos., 112, D10124, https://doi.org/10.1029/2006JD007844, 2007.
Delisi, D. P. and Dunkerton, T. J.: Seasonal Variation of the Semiannual Oscillation, J. Atmos. Sci., 45, 2772–2787, https://doi.org/10.1175/1520-0469(1988)045<2772:SVOTSO>2.0.CO;2, 1988.
Dobson, G. M. B., Harrison, D. N., and Lawrence, J.: Measurements of the amount of ozone in the Earth's atmosphere and its relation to other geophysical conditions. – Part III, P. R. Soc. Lond. A Mat., 122, 456–486, https://doi.org/10.1098/rspa.1929.0034, 1929.
Dunkerton, T. J. and Delisi, D. P.: Interaction of the quasi-biennial oscillation and stratopause semiannual oscillation, J. Geophys. Res.-Atmos., 102, 26107–26116, https://doi.org/10.1029/96JD03678, 1997.
Elsbury, D., Peings, Y., and Magnusdottir, G.: CMIP6 Models Underestimate the Holton-Tan Effect, Geophys. Res. Lett., 48, e2021GL094083, https://doi.org/10.1029/2021GL094083, 2021.
Ern, M. and Preusse, P.: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra, Atmos. Chem. Phys., 9, 3957–3986, https://doi.org/10.5194/acp-9-3957-2009, 2009.
Ern, M., Ploeger, F., Preusse, P., Gille, J. C., Gray, L. J., Kalisch, S., Mlynczak, M. G., Russell III, J. M., and Riese, M.: Interaction of gravity waves with the QBO: A satellite perspective, J. Geophys. Res.-Atmos., 119, 2329–2355, https://doi.org/10.1002/2013JD020731, 2014.
Ern, M., Preusse, P., and Riese, M.: Driving of the SAO by gravity waves as observed from satellite, Ann. Geophys., 33, 483–504, https://doi.org/10.5194/angeo-33-483-2015, 2015.
Ern, M., Diallo, M., Preusse, P., Mlynczak, M. G., Schwartz, M. J., Wu, Q., and Riese, M.: The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations, Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, 2021.
Ern, M., Diallo, M. A., Khordakova, D., Krisch, I., Preusse, P., Reitebuch, O., Ungermann, J., and Riese, M.: The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses, Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, 2023.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Garcia, R. R. and Sassi, F.: Modulation of the mesospheric semiannual oscillation by the quasibiennial oscillation, Earth, Planets and Space, 51, 563–569, https://doi.org/10.1186/BF03353215, 1999.
Garcia, R. R., Dunkerton, T. J., Lieberman, R. S., and Vincent, R. A.: Climatology of the semiannual oscillation of the tropical middle atmosphere, J. Geophys. Res.-Atmos., 102, 26019–26032, https://doi.org/10.1029/97JD00207, 1997.
Garfinkel, C. I., Gerber, E. P., Shamir, O., Rao, J., Jucker, M., White, I., and Paldor, N.: A QBO Cookbook: Sensitivity of the Quasi-Biennial Oscillation to Resolution, Resolved Waves, and Parameterized Gravity Waves, J. Adv. Model Earth Sy., 14, e2021MS002568, https://doi.org/10.1029/2021MS002568, 2022.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerber, E. P. and Manzini, E.: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system, Geosci. Model Dev., 9, 3413–3425, https://doi.org/10.5194/gmd-9-3413-2016, 2016.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg3_3d_asm_Nv: 3d,3-Hourly,Time-Averaged,Model-Level,Assimilation,Assimilated Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/SUOQESM06LPK, 2015
Gray, L. J., Crooks, S., Pascoe, C., Sparrow, S., and Palmer, M.: Solar and QBO Influences on the Timing of Stratospheric Sudden Warmings, J. Atmos. Sci., 61, 2777–2796, https://doi.org/10.1175/JAS-3297.1, 2004.
Gray, L. J., Brown, M. J., Knight, J., Andrews, M., Lu, H., O'Reilly, C., and Anstey, J.: Forecasting extreme stratospheric polar vortex events, Nat. Commun., 11, 4630, https://doi.org/10.1038/s41467-020-18299-7, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hirota, I.: Observational evidence of the semiannual oscillation in the tropical middle atmosphere – A review, Pure Appl. Geophys., 118, 217–238, https://doi.org/10.1007/BF01586452, 1980.
Hitchcock, P. and Haynes, P. H.: Zonally Symmetric Adjustment in the Presence of Artificial Relaxation, J. Atmos. Sci., 71, 4349–4368, https://doi.org/10.1175/JAS-D-14-0013.1, 2014.
Hitchcock, P. and Simpson, I. R.: The Downward Influence of Stratospheric Sudden Warmings, J. Atmos. Sci., 71, 3856–3876, https://doi.org/10.1175/JAS-D-14-0012.1, 2014.
Hitchcock, P., Butler, A., Charlton-Perez, A., Garfinkel, C. I., Stockdale, T., Anstey, J., Mitchell, D., Domeisen, D. I. V., Wu, T., Lu, Y., Mastrangelo, D., Malguzzi, P., Lin, H., Muncaster, R., Merryfield, B., Sigmond, M., Xiang, B., Jia, L., Hyun, Y.-K., Oh, J., Specq, D., Simpson, I. R., Richter, J. H., Barton, C., Knight, J., Lim, E.-P., and Hendon, H.: Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts, Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, 2022.
Holton, J. R. and Lindzen, R. S.: An Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere, J. Atmos. Sci., 29, 1076–1080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2, 1972.
Holton, J. R. and Tan, H.-C.: The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980.
Holton, J. R. and Wehrbein, W. M.: A numerical model of the zonal mean circulation of the middle atmosphere, Pure Appl. Geophys., 118, 284–306, https://doi.org/10.1007/BF01586455, 1980.
Jaison, A. M., Gray, L. J., Osprey, S., Smith, A. K., and Garcia, R. R.: A momentum budget study of the semi-annual oscillation in the Whole Atmosphere Community Climate Model, Q. J. Roy. Meteor. Soc., 1–22, https://doi.org/10.1002/qj.4782, 2024.
Knight, J., Scaife, A., Bett, P. E., Collier, T., Dunstone, N., Gordon, M., Hardiman, S., Hermanson, L., Ineson, S., Kay, G., McLean, P., Pilling, C., Smith, D., Stringer, N., Thornton, H., and Walker, B.: Predictability of European Winters 2017/2018 and 2018/2019: Contrasting influences from the Tropics and stratosphere, Atmos. Sci. Lett., 22, e1009, https://doi.org/10.1002/asl.1009, 2021.
Lindzen, R. S. and Holton, J. R.: A Theory of the Quasi-Biennial Oscillation, J. Atmos. Sci., 25, 1095–1107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2, 1968.
Lu, H., Hitchman, M. H., Gray, L. J., Anstey, J. A., and Osprey, S. M.: On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter, Q. J. Roy. Meteor. Soc., 146, 1939–1959, https://doi.org/10.1002/qj.3775, 2020.
Martin, Z., Orbe, C., Wang, S., and Sobel, A.: The MJO–QBO Relationship in a GCM with Stratospheric Nudging, J. Climate, 34, 4603–4624, https://doi.org/10.1175/JCLI-D-20-0636.1, 2021.
Meyer, W. D.: A Diagnostic Numerical Study of the Semiannual Variation of the Zonal Wind in the Tropical Stratosphere and Mesosphere, J. Atmos. Sci., 27, 820–830, https://doi.org/10.1175/1520-0469(1970)027<0820:ADNSOT>2.0.CO;2, 1970.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Pahlavan, H. A., Fu, Q., Wallace, J. M., and Kiladis, G. N.: Revisiting the Quasi-Biennial Oscillation as Seen in ERA5. Part I: Description and Momentum Budget, J. Atmos. Sci., 78, 673–691, https://doi.org/10.1175/JAS-D-20-0248.1, 2021.
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., and Baldwin, M. P.: The quasi-biennial oscillation: Analysis using ERA-40 data, J. Geophys. Res.-Atmos., 110, D08105, https://doi.org/10.1029/2004JD004941, 2005.
Pascoe, C. L., Gray, L. J., and Scaife, A. A.: A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings, Geophys. Res. Lett., 33, L06825, https://doi.org/10.1029/2005GL024715, 2006.
Peña-Ortiz, C., Ribera, P., García-Herrera, R., Giorgetta, M. A., and García, R. R.: Forcing mechanism of the seasonally asymmetric quasi-biennial oscillation secondary circulation in ERA-40 and MAECHAM5, J. Geophys. Res.-Atmos., 113, D16103, https://doi.org/10.1029/2007JD009288, 2008.
Peña-Ortiz, C., Schmidt, H., Giorgetta, M. A., and Keller, M.: QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA, J. Geophys. Res.-Atmos., 115, D21106, https://doi.org/10.1029/2010JD013898, 2010.
Plumb, R. A. and McEwan, A. D.: The Instability of a Forced Standing Wave in a Viscous Stratified Fluid: A Laboratory Analogue of the Quasi-Biennial Oscillation, J. Atmos. Sci., 35, 1827–1839, https://doi.org/10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2, 1978.
Quiroz, R. S. and Miller, A.: NOTE ON THE SEMI-ANNUAL WIND VARIATION IN THE EQUATORIAL STRATOSPHERE, Mon. Weather Rev., 95, 635–641, https://doi.org/10.1175/1520-0493(1967)095<0635:NOTSAW>2.3.CO;2, 1967.
Rao, J., Garfinkel, C. I., and White, I. P.: Impact of the Quasi-Biennial Oscillation on the Northern Winter Stratospheric Polar Vortex in CMIP5/6 Models, J. Climate, 33, 4787–4813, https://doi.org/10.1175/JCLI-D-19-0663.1, 2020.
Ray, E. A., Alexander, M. J., and Holton, J. R.: An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind, J. Geophys. Res.-Atmos., 103, 1759–1774, https://doi.org/10.1029/97JD02679, 1998.
Reed, R. J.: Zonal wind behavior in the equatorial stratosphere and lower mesosphere, J. Geophys. Res., 71, 4223–4233, https://doi.org/10.1029/JZ071i018p04223, 1966.
Richter, J. H. and Garcia, R. R.: On the forcing of the Mesospheric Semi-Annual Oscillation in the Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 33, L01806, https://doi.org/10.1029/2005GL024378, 2006.
Scaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and Austin, J.: Realistic quasi-biennial oscillations in a simulation of the global climate, Geophys. Res. Lett., 27, 3481–3484, https://doi.org/10.1029/2000GL011625, 2000.
Scaife, A. A., Butchart, N., Warner, C. D., and Swinbank, R.: Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model, J. Atmos. Sci., 59, 1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2, 2002.
Shepherd, T. G., Polichtchouk, I., Hogan, R., and Simmons, A. J.: Report on Stratosphere Task Force, ECMWF, https://doi.org/10.21957/0vkp0t1xx, 2018.
Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J.: The Semiannual Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from Satellite Geopotential Height Retrievals, J. Atmos. Sci., 74, 2413–2425, https://doi.org/10.1175/JAS-D-17-0067.1, 2017.
Smith, A. K., Holt, L. A., Garcia, R. R., Anstey, J. A., Serva, F., Butchart, N., Osprey, S., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Gray, L., Kerzenmacher, T., Naoe, H., Richter, J., Versick, S., Schenzinger, V., Watanabe, S., and Yoshida, K.: The equatorial stratospheric semiannual oscillation and time-mean winds in QBOi models, Q. J. Roy. Meteor. Soc., 148, 1593–1609, https://doi.org/10.1002/qj.3690, 2022.
Smith, A. K., Gray, L. J., and Garcia, R. R.: Evidence for the Influence of the Quasi-Biennial Oscillation on the Semiannual Oscillation in the Tropical Middle Atmosphere, J. Atmos. Sci., 80, 1755–1769, https://doi.org/10.1175/JAS-D-22-0255.1, 2023.
Warner, C. D. and McIntyre, M. E.: On the Propagation and Dissipation of Gravity Wave Spectra through a Realistic Middle Atmosphere, J. Atmos. Sci., 53, 3213–3235, https://doi.org/10.1175/1520-0469(1996)053<3213:OTPADO>2.0.CO;2, 1996.
Warner, C. D. and McIntyre, M. E.: Toward an ultra-simple spectral gravity wave parameterization for general circulation models, Earth, Planets and Space, 51, 475–484, https://doi.org/10.1186/BF03353209, 1999.
Warner, C. D. and McIntyre, M. E.: An Ultrasimple Spectral Parameterization for Nonorographic Gravity Waves, J. Atmos. Sci., 58, 1837–1857, https://doi.org/10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2, 2001.
Short summary
Models have biases in semi-annual oscillation (SAO) representation, mainly due to insufficient eastward wave forcing. We examined if the bias is from increased wave absorption due to circulation biases in the low–middle stratosphere. Alleviating biases at lower altitudes improves the SAO, but substantial bias remains. Alternative methods like gravity wave parameterization changes should be explored to enhance the modelled SAO, potentially improving sudden stratospheric warming predictability.
Models have biases in semi-annual oscillation (SAO) representation, mainly due to insufficient...