Articles | Volume 5, issue 3
https://doi.org/10.5194/wcd-5-997-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-997-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A linear assessment of barotropic Rossby wave propagation in different background flow configurations
Antonio Segalini
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Jacopo Riboldi
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Volkmar Wirth
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Becherweg 21, 55128 Mainz, Germany
Gabriele Messori
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Swedish Centre for Impacts of Climate Extremes (climes), Uppsala University, 752 36 Uppsala, Sweden
Department of Meteorology, Stockholm University, Svante Arrhenius väg 16c, 114 18 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Related authors
Derek Micheletto, Jens Fransson, and Antonio Segalini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-135, https://doi.org/10.5194/wes-2025-135, 2025
Preprint under review for WES
Short summary
Short summary
We conducted wind-tunnel experiments on 9 wind turbine models and measured their power while intentionally yawing them away from the wind direction. By testing a broad range of yaw-angle combinations, we found that this method can increase the total power output by up to 5.3 %. We also observed how different columns of turbines respond uniquely to these changes and how wind speed affects the overall improvement. Our findings could be useful in developing more accurate wind-farm control models.
Davide Medici, Arianna Tonna, and Antonio Segalini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-176, https://doi.org/10.5194/wes-2024-176, 2025
Revised manuscript under review for WES
Short summary
Short summary
Starting from existing offshore projects in the Mediterranean Sea, we utilized the CERRA dataset to analyze historical wind data and applied a genetic algorithm to propose a preliminary layout for a large number of farms. A significant part of our study involves the use of Monte Carlo simulations to project future energy scenarios. These simulations consider various factors, including technical challenges, wind patterns, turbine characteristics, and array efficiency affected by wake effects.
Gabriele Messori, Antonio Segalini, and Alexandre M. Ramos
Earth Syst. Dynam., 15, 1207–1225, https://doi.org/10.5194/esd-15-1207-2024, https://doi.org/10.5194/esd-15-1207-2024, 2024
Short summary
Short summary
Simultaneous heatwaves or cold spells in remote geographical regions have potentially far-reaching impacts on society and the environment. Despite this, we have little knowledge of when and where these extreme events have occurred in the past decades. In this paper, we present a summary of past simultaneous heatwaves or cold spells and provide a computer program to enable other researchers to study them.
Derek Micheletto, Jens Fransson, and Antonio Segalini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-135, https://doi.org/10.5194/wes-2025-135, 2025
Preprint under review for WES
Short summary
Short summary
We conducted wind-tunnel experiments on 9 wind turbine models and measured their power while intentionally yawing them away from the wind direction. By testing a broad range of yaw-angle combinations, we found that this method can increase the total power output by up to 5.3 %. We also observed how different columns of turbines respond uniquely to these changes and how wind speed affects the overall improvement. Our findings could be useful in developing more accurate wind-farm control models.
Jacopo Riboldi, Robin Noyelle, Ellina Agayar, Hanin Binder, Marc Federer, Katharina Hartmuth, Michael Sprenger, Iris Thurnherr, and Selvakumar Vishnupriya
EGUsphere, https://doi.org/10.5194/egusphere-2025-3599, https://doi.org/10.5194/egusphere-2025-3599, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Boris hit central Europe in September 2024 with extreme precipitation and impacts: this work introduces a methodology to strengthen our comprehension of how global warming affects similar events, based on the incorporation of event-specific meteorological information. Furthermore, it contextualizes how the answer to the question "How will Boris-like storms change in a warmer climate?" depends on explicit and implicit methodological choices, with the aim to inform future research.
Gabriele Messori, Emily Boyd, Joakim Nivre, and Elena Raffetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3451, https://doi.org/10.5194/egusphere-2025-3451, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Understanding impacts of climate extremes is very important for society and the economy. We identify three challenges restricting this understanding: limited availability and quality of impact data, difficulties in understanding why given impacts occur and lack of reliable projections of future impacts. We also identify key opportunities, including newly released datasets, recent methodological and technical advances and interdisciplinary collaborations between the social and natural sciences.
Volkmar Wirth and Nili Harnik
EGUsphere, https://doi.org/10.5194/egusphere-2025-2508, https://doi.org/10.5194/egusphere-2025-2508, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
It has been suggested that resonant amplification of Rossby waves may be responsible for the occurrence of extreme weather. Given that the recent literature has produced some conflicting results in this regard, the current paper clarifies some fundamental aspects of Rossby wave resonance in an idealized framework.
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189, https://doi.org/10.5194/egusphere-2025-2189, 2025
Short summary
Short summary
Hemispheric heatwaves have fundamental implications for ecosystems and societies. They are studied together with the large-scale atmospheric dynamics, through the lens of the poleward heat transports by planetary-scale waves. Extremely weak transports of heat towards the Poles are found to be associated with hemispheric heatwaves in the Northern Hemisphere mid-latitudes. Therefore, we conclude that heat transports are a clear indicator, and possibly a precursor of hemispehric heatwaves.
Michael K. Schutte, Alice Portal, Simon H. Lee, and Gabriele Messori
Weather Clim. Dynam., 6, 521–548, https://doi.org/10.5194/wcd-6-521-2025, https://doi.org/10.5194/wcd-6-521-2025, 2025
Short summary
Short summary
Large-scale motions in the atmosphere, namely atmospheric waves, greatly impact the weather that we experience at the Earth's surface. Here we investigate how waves in the troposphere (the lower 10 km of the atmosphere) and the stratosphere (above the troposphere) interact to affect surface weather. We find that tropospheric waves that are reflected back down by the stratosphere change weather patterns and temperatures in North America. These changes can indirectly affect the weather in Europe.
Sara Lindersson and Gabriele Messori
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-128, https://doi.org/10.5194/essd-2025-128, 2025
Preprint under review for ESSD
Short summary
Short summary
The study of past temperature-related disasters requires information on socioeconomic impacts, hazard intensity and human exposure. This is often lacking in current disaster databases. SHEDIS-Temperature fills this gap by integrating impact records with information on disaster locations, high-resolution meteorological data, and population estimates. Covering 382 disasters in 71 countries (1979–2018), this dataset enables deeper analyses of heat-related risk and vulnerabilities.
Amelie Mayer and Volkmar Wirth
Weather Clim. Dynam., 6, 131–150, https://doi.org/10.5194/wcd-6-131-2025, https://doi.org/10.5194/wcd-6-131-2025, 2025
Short summary
Short summary
Although heatwaves are among the most dangerous weather-related hazards, their underlying mechanisms are not fully understood. Here, we investigate the formation of heatwaves in an air-parcel-based framework and distinguish the contributions from horizontal transport, vertical transport, and diabatic heating. We show that the results obtained depend profoundly on whether one compares the absolute contributions of the individual terms or, instead, their anomalies relative to climatology.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
Earth Syst. Dynam., 16, 169–187, https://doi.org/10.5194/esd-16-169-2025, https://doi.org/10.5194/esd-16-169-2025, 2025
Short summary
Short summary
Explosive cyclones and atmospheric rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers last longer and are deeper than those without atmospheric rivers.
Davide Medici, Arianna Tonna, and Antonio Segalini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-176, https://doi.org/10.5194/wes-2024-176, 2025
Revised manuscript under review for WES
Short summary
Short summary
Starting from existing offshore projects in the Mediterranean Sea, we utilized the CERRA dataset to analyze historical wind data and applied a genetic algorithm to propose a preliminary layout for a large number of farms. A significant part of our study involves the use of Monte Carlo simulations to project future energy scenarios. These simulations consider various factors, including technical challenges, wind patterns, turbine characteristics, and array efficiency affected by wake effects.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
Clare Marie Flynn, Julia Moemken, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-298, https://doi.org/10.5194/essd-2024-298, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We created a new, publicly available database of the Top 50 most extreme European winter windstorms from each of four different meteorological input data sets covering the years 1995–2015. We found variability in all aspects of our database, from which storms were included in the Top 50 storms for each input to their spatial variability. We urge users of our database to consider the storms as identified from two or more input sources within our database, where possible.
Gabriele Messori, Antonio Segalini, and Alexandre M. Ramos
Earth Syst. Dynam., 15, 1207–1225, https://doi.org/10.5194/esd-15-1207-2024, https://doi.org/10.5194/esd-15-1207-2024, 2024
Short summary
Short summary
Simultaneous heatwaves or cold spells in remote geographical regions have potentially far-reaching impacts on society and the environment. Despite this, we have little knowledge of when and where these extreme events have occurred in the past decades. In this paper, we present a summary of past simultaneous heatwaves or cold spells and provide a computer program to enable other researchers to study them.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Derrick Muheki, Axel A. J. Deijns, Emanuele Bevacqua, Gabriele Messori, Jakob Zscheischler, and Wim Thiery
Earth Syst. Dynam., 15, 429–466, https://doi.org/10.5194/esd-15-429-2024, https://doi.org/10.5194/esd-15-429-2024, 2024
Short summary
Short summary
Climate change affects the interaction, dependence, and joint occurrence of climate extremes. Here we investigate the joint occurrence of pairs of river floods, droughts, heatwaves, crop failures, wildfires, and tropical cyclones in East Africa under past and future climate conditions. Our results show that, across all future warming scenarios, the frequency and spatial extent of these co-occurring extremes will increase in this region, particularly in areas close to the Nile and Congo rivers.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024, https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary
Short summary
In the last decades, weather forecasting up to 15 d into the future has been dominated by physics-based numerical models. Recently, deep learning models have challenged this paradigm. However, the latter models may struggle when forecasting weather extremes. In this article, we argue for deep learning models specifically designed to handle extreme events, and we propose a foundational framework to develop such models.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
Short summary
Short summary
Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Davide Faranda, Stella Bourdin, Mireia Ginesta, Meriem Krouma, Robin Noyelle, Flavio Pons, Pascal Yiou, and Gabriele Messori
Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, https://doi.org/10.5194/wcd-3-1311-2022, 2022
Short summary
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Grand Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam., 3, 1037–1062, https://doi.org/10.5194/wcd-3-1037-2022, https://doi.org/10.5194/wcd-3-1037-2022, 2022
Short summary
Short summary
Eddies in mid-latitudes characterize the exchange of heat between the tropics and the poles. This exchange is largely uneven, with a few extreme events bearing most of the heat transported across latitudes in a season. It is thus important to understand what the dynamical mechanisms are behind these events. Here, we identify recurrent weather regime patterns associated with extreme transports, and we identify scales of mid-latitudinal eddies that are mostly responsible for the transport.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Jacopo Riboldi, Efi Rousi, Fabio D'Andrea, Gwendal Rivière, and François Lott
Weather Clim. Dynam., 3, 449–469, https://doi.org/10.5194/wcd-3-449-2022, https://doi.org/10.5194/wcd-3-449-2022, 2022
Short summary
Short summary
A revisited space and time spectral decomposition allows us to determine which harmonics dominate the upper-tropospheric flow evolution over a given time period as well as their propagation. This approach is used to identify Rossby wave patterns with a circumglobal extent, affecting weather evolution over different Northern Hemisphere regions. The results cast light on the processes originating and supporting these wave patterns, advocating at the same time for the usefulness of the technique.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021, https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Short summary
Skillful forecasts of extreme weather events have a major socioeconomic relevance. Here, we compare two approaches to diagnose the predictability of eastern Mediterranean heat waves: one based on recent developments in dynamical systems theory and one leveraging numerical ensemble weather forecasts. We conclude that the former can be a useful and cost-efficient complement to conventional numerical forecasts for understanding the dynamics of eastern Mediterranean heat waves.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Cited articles
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby Wave Propagation and Teleconnection Patterns in the Austral Winter, J. Atmos. Sci., 52, 3661–3672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2, 1995. a
Baldauf, M. and Brdar, S.: An analytic solution for linear gravity waves in a channel as a test for numerical models using the non-hydrostatic, compressible Euler equations, Q. J. Roy. Meteor. Soc., 139, 1977–1989, https://doi.org/10.1002/qj.2105, 2013. a
Bayliss, A., Class, A., and Matkowsky, B. J.: Roundoff error in computing derivatives using the Chebyshev differentiation matrix, J. Comput. Phys., 116, 380–383, 1995. a
Boyd, J. P.: The Effects of Latitudinal Shear on Equatorial Waves. Past I: Theory and Methods, J. Atmos. Sci., 35, 2236–2258, https://doi.org/10.1175/1520-0469(1978)035<2236:TEOLSO>2.0.CO;2, 1978. a
Branstator, G.: Circumglobal teleconnections, the jet stream Waveguide, and the North Atlantic Oscillation, J. Climate, 15, 1893–1910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2, 2002. a
Brayshaw, D. J., Hoskins, B., and Blackburn, M.: The basic ingredients of the North Atlantic Storm Track. Part I: Land–Sea contrast and orography, J. Atmos. Sci., 66, 2539–2558, https://doi.org/10.1175/2009JAS3078.1, 2009. a
Campbell, L. and Maslowe, S.: Forced Rossby wave packets in barotropic shear flows with critical layers, Dynam. Atmos. Oceans, 28, 9–37, https://doi.org/10.1016/S0377-0265(98)00044-X, 1998. a
Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A.: Spectral methods. Fundamentals in single domains, Sci. Comput., Berlin, Springer, ISBN 3-540-30725-7, https://doi.org/10.1007/978-3-540-30726-6, 2006. a, b
Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer, P. Nat. Acad. Sci. USA, 111, 12331–12336, https://doi.org/10.1073/pnas.1412797111, 2014. a, b, c
Davies, H.: Weather chains during the 2013/2014 winter and their significance for seasonal prediction, Nat. Geosci., 8, 833–837, https://doi.org/10.1038/ngeo2561, 2015. a
Di Capua, G., Sparrow, S., Kornhuber, K., Rousi, E., Osprey, S., Wallom, D., van den Hurk, B., and Coumou, D.: Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding, npj Climate and Atmospheric Science, 4, 1–14, 2021. a
Garcia, R. R. and Salby, M. L.: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior, J. Atmos. Sci., 44, 499–532, 1987. a
Garfinkel, C. I., White, I., Gerber, E. P., Jucker, M., and Erez, M.: The building blocks of Northern Hemisphere wintertime stationary waves, J. Climate, 33, 5611–5633, https://doi.org/10.1175/JCLI-D-19-0181.1, 2020. a
Gill, A. E.: Atmosphere-ocean dynamics, vol. 30, Academic Press, ISBN-13 978-0-12-283520-9, 1982. a
Harnik, N., Messori, G., Caballero, R., and Feldstein, S. B.: The Circumglobal North American wave pattern and its relation to cold events in eastern North America, Geophys. Res. Lett., 43, 11015–11023, https://doi.org/10.1002/2016GL070760, 2016. a
Haurwitz, B.: The motion of atmospheric disturbances on the spherical earth, J. Mar. Res., 3, 254–267, 1940. a
Held, I. M.: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory, in: Large-Scale Dynamical Processes in the Atmosphere, edited by: Hoskins, B. J. and Pearce, R. P., Academic Press, 127–168, ISBN-13 978-0123566805, 1983. a
Held, I. M., Ting, M., and Wang, H.: Northern Winter Stationary Waves: Theory and Modeling, J. Climate, 15, 2125–2144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2, 2002. a
Holmes, P., Lumley, J. L., Berkooz, G., and Rowley, C. W.: Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, ISBN-13 978-1107008250, 2012. a
Hoskins, B. J. and Ambrizzi, T.: Rossby Wave Propagation on a realistic longitudinally varying flow, J. Atmos. Sci., 50, 1661–1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2, 1993. a, b
Hoskins, B. J. and Karoly, D. J.: The steady linear response of a spherical atmosphere to thermal and orographic Forcing, J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2, 1981. a, b, c, d
Hoskins, B. J. and Valdes, P. J.: On the existence of Storm-Tracks, J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2, 1990. a
Hou, A. Y. and Farrell, B. F.: Excitation of nearly steady finite-amplitude barotropic waves, J. Atmos. Sci., 43, 720–728, 1986. a
Jiménez-Esteve, B., Kornhuber, K., and Domeisen, D. I. V.: Heat Extremes Driven by Amplification of Phase-Locked Circumglobal Waves Forced by Topography in an Idealized Atmospheric Model, Geophys. Res. Lett., 49, e2021GL096337, https://doi.org/10.1029/2021GL096337, 2022. a, b
Joly, A. and Thorpe, A. J.: Frontal instability generated by tropospheric potential vorticity anomalies, Q. J. Roy. Meteor. Soc., 116, 525–560, https://doi.org/10.1002/qj.49711649302, 1990. a
Kalnay, E.: Atmospheric modeling, data assimilation and predictability, Cambridge University Press, ISBN-13 978-0521796293, 2003. a
Kornhuber, K. and Messori, G.: Recent increase in a recurrent pan-Atlantic wave pattern driving concurrent wintertime extremes, B. Am. Meteorol. Soc., 104, E1694–E1708, 2023. a
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S., and Gray, L.: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf, 2019. a
Krishnamurti, T. N., Bedi, H., Hardiker, V., and Watson-Ramaswamy, L.: An introduction to global spectral modeling, vol. 35, Springer Science and Business Media, ISBN-13 978-0195094732, 2006. a
Kuo, H.-l.: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere, J. Atmos. Sci., 6, 105–122, 1949. a
Lachmy, O. and Harnik, N.: Wave and jet maintenance in different flow regimes, J. Atmos. Sci., 73, 2465–2484, 2016. a
Leutwyler, D. and Schär, C.: Barotropic Instability of a Cyclone Core at Kilometer-Scale Resolution, J. Adv. Model. Earth Sy., 11, 3390–3402, https://doi.org/10.1029/2019MS001847, 2019. a
Manola, I., Selten, F., de Vries, H., and Hazeleger, W.: “Waveguidability” of idealized jets, J. Geophys. Res.-Atmos., 118, 10432–10440, https://doi.org/10.1002/jgrd.50758, 2013. a
Martius, O., Schwierz, C., and Davies, H. C.: Tropopause-Level Waveguides, J. Atmos. Sci., 67, 866–879, https://doi.org/10.1175/2009JAS2995.1, 2010. a
Martius, O., Wehrli, K., and Rohrer, M.: Local and remote atmospheric Responses to Soil Moisture Anomalies in Australia, J. Climate, 34, 9115–9131, https://doi.org/10.1175/JCLI-D-21-0130.1, 2021. a
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes, P. Natl. Acad. Sci. USA, 110, 5336–5341, https://doi.org/10.1073/pnas.1222000110, 2013. a
Rhines, P. B.: Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417–443, 1975. a
Rossby, C.-G.: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action, J. Mar. Res., 2, 38–55, 1939. a
Rossby, C.-G.: Planetary flow patterns in the atmosphere, Q. J. Roy. Meteor. Soc., 66, 68–87, 1940. a
Schaeffer, N.: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochem. Geophy. Geosy., 14, 751–758, https://doi.org/10.1002/ggge.20071, 2013. a
Segalini, A.: AntSegalini/barotropic_instability_Chebyshev: Barotropic stability code (v0.0), Zenodo [code], https://doi.org/10.5281/zenodo.13215495, 2024. a
Teng, H. and Branstator, G.: Amplification of waveguide teleconnections in the Boreal summer, Curr. Clim. Change Rep., 5, 421–432, https://doi.org/10.1007/s40641-019-00150-x, 2019. a
White, R. H., Kornhuber, K., Martius, O., and Wirth, V.: From atmospheric waves to heatwaves: A waveguide perspective for understanding and predicting concurrent, persistent and extreme extratropical weather, B. Am. Meteorol. Soc., 103, E923–E935, https://doi.org/10.1175/BAMS-D-21-0170.1, 2022. a, b
Wirth, V. and Polster, C.: The problem of diagnosing jet waveguidability in the presence of large-amplitude eddies, J. Atmos. Sci., 78, 3137–3151, https://doi.org/10.1175/JAS-D-20-0292.1, 2021. a, b
Wirth, V., Riemer, M., Chang, E. K. M., and Martius, O.: Rossby wave packets on the midlatitude waveguide – A review, Mon. Weather Rev., 146, 1965–2001, https://doi.org/10.1175/MWR-D-16-0483.1, 2018. a, b
Yang, G.-Y. and Hoskins, B. J.: Propagation of Rossby waves of nonzero frequency, J. Atmos. Sci., 53, 2365–2378, 1996. a
Short summary
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical...