Articles | Volume 6, issue 1
https://doi.org/10.5194/wcd-6-131-2025
https://doi.org/10.5194/wcd-6-131-2025
Research article
 | 
29 Jan 2025
Research article |  | 29 Jan 2025

Two different perspectives on heatwaves within the Lagrangian framework

Amelie Mayer and Volkmar Wirth

Related authors

Comparative study on immersion freezing utilizing single-droplet levitation methods
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021,https://doi.org/10.5194/acp-21-3289-2021, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
Minimal influence of future Arctic sea ice loss on North Atlantic jet stream morphology
Yvonne Anderson, Jacob Perez, and Amanda C. Maycock
Weather Clim. Dynam., 6, 595–608, https://doi.org/10.5194/wcd-6-595-2025,https://doi.org/10.5194/wcd-6-595-2025, 2025
Short summary
Weather type reconstruction using machine learning approaches
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025,https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Temporally and zonally varying atmospheric waveguides – climatologies and connections to quasi-stationary waves
Rachel H. White and Lualawi Mareshet Admasu
Weather Clim. Dynam., 6, 549–570, https://doi.org/10.5194/wcd-6-549-2025,https://doi.org/10.5194/wcd-6-549-2025, 2025
Short summary
Moisture transport axes: a unifying definition for tropical moisture exports, atmospheric rivers, and warm moist intrusions
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
Weather Clim. Dynam., 6, 431–446, https://doi.org/10.5194/wcd-6-431-2025,https://doi.org/10.5194/wcd-6-431-2025, 2025
Short summary
On the movement of atmospheric blocking systems and the associated temperature responses
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
Weather Clim. Dynam., 6, 413–429, https://doi.org/10.5194/wcd-6-413-2025,https://doi.org/10.5194/wcd-6-413-2025, 2025
Short summary

Cited articles

Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G., and Salcedo-Sanz, S.: Heat waves: Physical understanding and scientific challenges, Rev. Geophys., 61, e2022RG000780, https://doi.org/10.1029/2022RG000780, 2023. a
Bieli, M., Pfahl, S., and Wernli, H.: A Lagrangian investigation of hot and cold temperature extremes in Europe: Lagrangian Investigation of Hot and Cold Extremes, Q. J. Roy. Meteor. Soc., 141, 98–108, https://doi.org/10.1002/qj.2339, 2015. a, b, c, d, e
Catalano, A. J., Loikith, P. C., and Neelin, J. D.: Diagnosing Non‐Gaussian Temperature Distribution Tails Using Back‐Trajectory Analysis, J. Geophys. Res.-Atmos., 126, e2020JD033726, https://doi.org/10.1029/2020JD033726, 2021. a
Eichner, J. F., Koscielny-Bunde, E., Bunde, A., Havlin, S., and Schellnhuber, H. J.: Power-law persistence and trends in the atmosphere: A detailed study of long temperature records, Phys. Rev. E, 68, 046133, https://doi.org/10.1103/PhysRevE.68.046133, 2003. a
Garfinkel, C. I. and Harnik, N.: The Non-Gaussianity and Spatial Asymmetry of Temperature Extremes Relative to the Storm Track: The Role of Horizontal Advection, J. Climate, 30, 445–464, https://doi.org/10.1175/JCLI-D-15-0806.1, 2017. a
Download
Short summary
Although heatwaves are among the most dangerous weather-related hazards, their underlying mechanisms are not fully understood. Here, we investigate the formation of heatwaves in an air-parcel-based framework and distinguish the contributions from horizontal transport, vertical transport, and diabatic heating. We show that the results obtained depend profoundly on whether one compares the absolute contributions of the individual terms or, instead, their anomalies relative to climatology.
Share