Articles | Volume 6, issue 1 
            
                
                    
            
            
            https://doi.org/10.5194/wcd-6-131-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-131-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Two different perspectives on heatwaves within the Lagrangian framework
                                            Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Becherweg 21, 55126 Mainz, Germany
                                        
                                    Volkmar Wirth
                                            Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Becherweg 21, 55126 Mainz, Germany
                                        
                                    Related authors
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
                                    Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021, https://doi.org/10.5194/acp-21-3289-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The freezing of cloud drops is promoted by ice-nucleating particles immersed in the drops. This process is essential to understand ice and subsequent precipitation formation in clouds. We investigated the efficiency of several particle types to trigger immersion freezing with two single-drop levitation techniques: a wind tunnel and an acoustic levitator. The evaluation accounted for different conditions during our two series of experiments, which is also applicable to future comparison studies.
                                            
                                            
                                        Volkmar Wirth and Nili Harnik
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-2508, https://doi.org/10.5194/egusphere-2025-2508, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                It has been suggested that resonant amplification of Rossby waves may be responsible for the occurrence of extreme weather. Given that the recent literature has produced some conflicting results in this regard, the current paper clarifies some fundamental aspects of Rossby wave resonance in an idealized framework.
                                            
                                            
                                        Antonio Segalini, Jacopo Riboldi, Volkmar Wirth, and Gabriele Messori
                                    Weather Clim. Dynam., 5, 997–1012, https://doi.org/10.5194/wcd-5-997-2024, https://doi.org/10.5194/wcd-5-997-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
                                            
                                            
                                        Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
                                    Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
                                            
                                            
                                        Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
                                    Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021, https://doi.org/10.5194/acp-21-3289-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The freezing of cloud drops is promoted by ice-nucleating particles immersed in the drops. This process is essential to understand ice and subsequent precipitation formation in clouds. We investigated the efficiency of several particle types to trigger immersion freezing with two single-drop levitation techniques: a wind tunnel and an acoustic levitator. The evaluation accounted for different conditions during our two series of experiments, which is also applicable to future comparison studies.
                                            
                                            
                                        Cited articles
                        
                        Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G., and Salcedo-Sanz, S.: Heat waves: Physical understanding and scientific challenges, Rev. Geophys., 61, e2022RG000780, https://doi.org/10.1029/2022RG000780, 2023. a
                    
                
                        
                        Catalano, A. J., Loikith, P. C., and Neelin, J. D.: Diagnosing Non‐Gaussian Temperature Distribution Tails Using Back‐Trajectory Analysis, J. Geophys. Res.-Atmos., 126, e2020JD033726, https://doi.org/10.1029/2020JD033726, 2021. a
                    
                
                        
                        Eichner, J. F., Koscielny-Bunde, E., Bunde, A., Havlin, S., and Schellnhuber, H. J.: Power-law persistence and trends in the atmosphere: A detailed study of long temperature records, Phys. Rev. E, 68, 046133, https://doi.org/10.1103/PhysRevE.68.046133, 2003. a
                    
                
                        
                        Garfinkel, C. I. and Harnik, N.: The Non-Gaussianity and Spatial Asymmetry of Temperature Extremes Relative to the Storm Track: The Role of Horizontal Advection, J. Climate, 30, 445–464, https://doi.org/10.1175/JCLI-D-15-0806.1, 2017. a
                    
                
                        
                        Garfinkel, C. I., Rostkier‐Edelstein, D., Morin, E., Hochman, A., Schwartz, C., and Nirel, R.: Precursors of summer heat waves in the Eastern Mediterranean, Q. J. Roy. Meteor. Soc., 150, qj.4795, https://doi.org/10.1002/qj.4795, 2024. a
                    
                
                        
                        Harpaz, T., Ziv, B., Saaroni, H., and Beja, E.: Extreme summer temperatures in the East Mediterranean-dynamical analysis, Int. J. Climatol., 34, 849–862, https://doi.org/10.1002/joc.3727, 2014. a, b, c
                    
                
                        
                        Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://doi.org/10.24381/cds.143582cf, 2017. a
                    
                
                        
                        Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
                    
                
                        
                        Hochman, A., Scher, S., Quinting, J., Pinto, J. G., and Messori, G.: A new view of heat wave dynamics and predictability over the eastern Mediterranean, Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021, 2021. a, b
                    
                
                        
                        Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E., and Raymond, C.: A Review of Recent Advances in Research on Extreme Heat Events, Current Climate Change Reports, 2, 242–259, https://doi.org/10.1007/s40641-016-0042-x, 2016. a
                    
                
                        
                        IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021. a
                    
                
                        
                        Iwasaki, T.: A Diagnostic Formulation for Wave-Mean Flow Interactions and Lagrangian-Mean Circulation with a Hybrid Vertical Coordinate of Pressure and Isentropes, J. Meteorol. Soc. Jpn., 67, 293–312, https://doi.org/10.2151/jmsj1965.67.2_293, 1989. a
                    
                
                        
                        Juckes, M.: A generalization of the transformed Eulerian‐mean meridional circulation, Q. J. Roy. Meteor. Soc., 127, 147–160, https://doi.org/10.1002/qj.49712757109, 2001. a
                    
                
                        
                        Koscielny-Bunde, E., Bunde, A., Havlin, S., Roman, H. E., Goldreich, Y., and Schellnhuber, H.-J.: Indication of a Universal Persistence Law Governing Atmospheric Variability, Phys. Rev. Lett., 81, 729–732, https://doi.org/10.1103/PhysRevLett.81.729, 1998. a
                    
                
                        
                        Li, X., Mann, M. E., Wehner, M. F., Rahmstorf, S., Petri, S., Christiansen, S., and Carrillo, J.: Role of atmospheric resonance and land–atmosphere feedbacks as a precursor to the June 2021 Pacific Northwest Heat Dome event, P. Natl. Acad. Sci. USA, 121, e2315330121, https://doi.org/10.1073/pnas.2315330121, 2024. a
                    
                
                        
                        Mayer, A.: Two different perspectives on heatwaves within the Lagrangian framework: Dataset (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.14679142, 2025a. 
                    
                
                        
                        Mayer, A.: The Tracer Method by Mayer and Wirth (v2.1), Zenodo [code], https://doi.org/10.5281/zenodo.14697529, 2025b. 
                    
                
                        
                        Mayer, A.: Two different perspectives on heatwaves within the Lagrangian framework: Code for figures, Zenodo [code], https://doi.org/10.5281/zenodo.14717758, 2025c. 
                    
                
                        
                        Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and Vilà-Guerau de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nat. Geosci., 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014. a
                    
                
                        
                        Neal, E., Huang, C. S. Y., and Nakamura, N.: The 2021 Pacific Northwest Heat Wave and Associated Blocking: Meteorology and the Role of an Upstream Cyclone as a Diabatic Source of Wave Activity, Geophys. Res. Lett., 49, e2021GL097699, https://doi.org/10.1029/2021GL097699, 2022. a, b, c, d
                    
                
                        
                        Oertel, A., Pickl, M., Quinting, J. F., Hauser, S., Wandel, J., Magnusson, L., Balmaseda, M., Vitart, F., and Grams, C. M.: Everything Hits at Once: How Remote Rainfall Matters for the Prediction of the 2021 North American Heat Wave, Geophys. Res. Lett., 50, e2022GL100958, https://doi.org/10.1029/2022GL100958, 2023. a
                    
                
                        
                        Papritz, L. and Röthlisberger, M.: A Novel Temperature Anomaly Source Diagnostic: Method and Application to the 2021 Heatwave in the Pacific Northwest, Geophys. Res. Lett., 50, e2023GL105641, https://doi.org/10.1029/2023GL105641, 2023. a, b
                    
                
                        
                        Pelletier, J. D.: Analysis and Modeling of the Natural Variability of Climate, J. Climate, 10, 1331–1342, https://doi.org/10.1175/1520-0442(1997)010<1331:AAMOTN>2.0.CO;2, 1997. a
                    
                
                        
                        Pelletier, J. D. and Turcotte, D. L.: Long-range persistence in climatological and hydrological time series: analysis, modeling and application to drought hazard assessment, J. Hydrol., 203, 198–208, https://doi.org/10.1016/S0022-1694(97)00102-9, 1997. a
                    
                
                        
                        Perkins, S. E.: A review on the scientific understanding of heatwaves – Their measurement, driving mechanisms, and changes at the global scale, Atmos. Res., 164–165, 242–267, https://doi.org/10.1016/j.atmosres.2015.05.014, 2015. a
                    
                
                        
                        Pfahl, S. and Wernli, H.: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales, Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261, 2012. a
                    
                
                        
                        Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Anslow, F. S., Seneviratne, S. I., Vautard, R., Coumou, D., Ebi, K. L., Arrighi, J., Singh, R., van Aalst, M., Pereira Marghidan, C., Wehner, M., Yang, W., Li, S., Schumacher, D. L., Hauser, M., Bonnet, R., Luu, L. N., Lehner, F., Gillett, N., Tradowsky, J. S., Vecchi, G. A., Rodell, C., Stull, R. B., Howard, R., and Otto, F. E. L.: Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021, Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, 2022. a, b
                    
                
                        
                        Quinting, J. F. and Reeder, M. J.: Southeastern Australian Heat Waves from a Trajectory Viewpoint, Mon. Weather Rev., 145, 4109–4125, https://doi.org/10.1175/MWR-D-17-0165.1, 2017. a
                    
                
                        
                        Schielicke, L. and Pfahl, S.: European heatwaves in present and future climate simulations: a Lagrangian analysis, Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, 2022. a, b, c, d
                    
                
                        
                        Schumacher, D. L., Keune, J., Van Heerwaarden, C. C., Vilà-Guerau De Arellano, J., Teuling, A. J., and Miralles, D. G.: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought, Nat. Geosci., 12, 712–717, https://doi.org/10.1038/s41561-019-0431-6, 2019. a
                    
                
                        
                        Schumacher, D. L., Hauser, M., and Seneviratne, S. I.: Drivers and Mechanisms of the 2021 Pacific Northwest Heatwave, Earth's Future, 10, e2022EF002967, https://doi.org/10.1029/2022EF002967, 2022. a, b
                    
                
                        
                        Screen, J.: Arctic amplification decreases temperature variance in northern mid- to high- latitudes, Nat. Clim. Change, 4, 577–582, https://doi.org/10.1038/nclimate2268, 2014. a
                    
                
                        
                        Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M. M., and Santos, J. A.: European temperature responses to blocking and ridge regional patterns, Clim. Dynam., 50, 457–477, https://doi.org/10.1007/s00382-017-3620-2, 2018. a
                    
                
                        
                        Sousa, P. M., Barriopedro, D., Ramos, A. M., García-Herrera, R., Espírito-Santo, F., and Trigo, R. M.: Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019, Weather and Climate Extremes, 26, 100224, https://doi.org/10.1016/j.wace.2019.100224, 2019. a
                    
                
                        
                        Spensberger, C., Madonna, E., Boettcher, M., Grams, C. M., Papritz, L., Quinting, J. F., Röthlisberger, M., Sprenger, M., and Zschenderlein, P.: Dynamics of concurrent and sequential Central European and Scandinavian heatwaves, Q. J. Roy. Meteor. Soc., 146, 2998–3013, https://doi.org/10.1002/qj.3822, 2020. a
                    
                
                        
                        Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, 2015. a
                    
                
                        
                        Stefanon, M., D’Andrea, F., and Drobinski, P.: Heatwave classification over Europe and the Mediterranean region, Environ. Res. Lett., 7, 014023, https://doi.org/10.1088/1748-9326/7/1/014023, 2012. a
                    
                
                        
                        Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, 2015. a
                    
                
                        
                        Stohl, A.: Computation, accuracy and applications of trajectories – A review and bibliography, Atmos. Environ., 32, 947–966, https://doi.org/10.1016/S1352-2310(97)00457-3, 1998. a
                    
                
                        
                        Stohl, A., Eckhardt, S., Forster, C., James, P., Spichtinger, N., and Seibert, P.: A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements, Atmos. Environ., 36, 4635–4648, https://doi.org/10.1016/S1352-2310(02)00416-8, 2002. a
                    
                
                        
                        Talkner, P. and Weber, R. O.: Power spectrum and detrended fluctuation analysis: Application to daily temperatures, Phys. Rev. E, 62, 150–160, https://doi.org/10.1103/PhysRevE.62.150, 2000. a
                    
                
                        
                        Townsend, R. D. and Johnson, D. R.: A diagnostic study of the isentropic zonally averaged mass circulation during the first GARP global experiment, J. Atmos. Sci., 42, 1565–1579, https://doi.org/10.1175/1520-0469(1985)042<1565:ADSOTI>2.0.CO;2, 1985. a
                    
                
                        
                        White, R. H., Anderson, S., Booth, J. F., Braich, G., Draeger, C., Fei, C., Harley, C. D. G., Henderson, S. B., Jakob, M., Lau, C.-A., Mareshet Admasu, L., Narinesingh, V., Rodell, C., Roocroft, E., Weinberger, K. R., and West, G.: The unprecedented Pacific Northwest heatwave of June 2021, Nat. Commun., 14, 727, https://doi.org/10.1038/s41467-023-36289-3, 2023. a, b
                    
                Short summary
            Although heatwaves are among the most dangerous weather-related hazards, their underlying mechanisms are not fully understood. Here, we investigate the formation of heatwaves in an air-parcel-based framework and distinguish the contributions from horizontal transport, vertical transport, and diabatic heating. We show that the results obtained depend profoundly on whether one compares the absolute contributions of the individual terms or, instead, their anomalies relative to climatology.
            Although heatwaves are among the most dangerous weather-related hazards, their underlying...
            
         
 
                        
                                         
                        
                                         
                        
                                         
             
             
            