Articles | Volume 2, issue 4
Weather Clim. Dynam., 2, 1245–1261, 2021
https://doi.org/10.5194/wcd-2-1245-2021
Weather Clim. Dynam., 2, 1245–1261, 2021
https://doi.org/10.5194/wcd-2-1245-2021
Research article
16 Dec 2021
Research article | 16 Dec 2021

Impact of Eurasian autumn snow on the winter North Atlantic Oscillation in seasonal forecasts of the 20th century

Martin Wegmann et al.

Related authors

Large-scale climate signals of a European oxygen isotope network from tree rings
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021,https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods
Martin Wegmann, Marco Rohrer, María Santolaria-Otín, and Gerrit Lohmann
Earth Syst. Dynam., 11, 509–524, https://doi.org/10.5194/esd-11-509-2020,https://doi.org/10.5194/esd-11-509-2020, 2020
Short summary
Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019,https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products
Martin Wegmann, Emanuel Dutra, Hans-Werner Jacobi, and Olga Zolina
The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018,https://doi.org/10.5194/tc-12-1887-2018, 2018
Short summary
Eurasian snow depth in long-term climate reanalyses
Martin Wegmann, Yvan Orsolini, Emanuel Dutra, Olga Bulygina, Alexander Sterin, and Stefan Brönnimann
The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017,https://doi.org/10.5194/tc-11-923-2017, 2017
Short summary

Related subject area

Atmospheric predictability
Differences in the sub-seasonal predictability of extreme stratospheric events
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022,https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Bimodality in ensemble forecasts of 2 m temperature: identification
Cameron Bertossa, Peter Hitchcock, Arthur DeGaetano, and Riwal Plougonven
Weather Clim. Dynam., 2, 1209–1224, https://doi.org/10.5194/wcd-2-1209-2021,https://doi.org/10.5194/wcd-2-1209-2021, 2021
Short summary
Flow dependence of wintertime subseasonal prediction skill over Europe
Constantin Ardilouze, Damien Specq, Lauriane Batté, and Christophe Cassou
Weather Clim. Dynam., 2, 1033–1049, https://doi.org/10.5194/wcd-2-1033-2021,https://doi.org/10.5194/wcd-2-1033-2021, 2021
Short summary
Seasonal forecasts of the Saharan heat low characteristics: a multi-model assessment
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021,https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Emergence of representative signals for sudden stratospheric warmings beyond current predictable lead times
Zheng Wu, Bernat Jiménez-Esteve, Raphaël de Fondeville, Enikő Székely, Guillaume Obozinski, William T. Ball, and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 841–865, https://doi.org/10.5194/wcd-2-841-2021,https://doi.org/10.5194/wcd-2-841-2021, 2021
Short summary

Cited articles

Athanasiadis, P. J., Bellucci, A., Scaife, A. A., Hermanson, L., Materia, S., Sanna, A., Borrelli, A., MacLachlan, C., and Gualdi, S.: A multisystem view of wintertime nao seasonal predictions, J. Climate, 30, 1461–1475, https://doi.org/10.1175/JCLI-D-16-0153.1, 2017. 
Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., and Scaife, A. A.: An intercomparison of skill and overconfidence/underconfidence of the wintertime north atlantic oscillation in multimodel seasonal forecasts, Geophys. Res. Lett., 45, 7808–7817, https://doi.org/10.1029/2018GL078838, 2018. 
Blunden, J. and Boyer, T.: State of the Climate in 2020, B. Am. Meteorol. Soc., 102, S1-S475, 2021. 
Centre for Environmental Data Analysis: Initialised seasonal forecast of the 20th Century, Centre for Environmental Data Analysis [data set], https://catalogue.ceda.ac.uk/uuid/6e1c3df49f644a0f812818080bed5e45, last access: 7 December 2020. 
Climatic Research Unit: North Atlantic Oscillation, Climatic Research Unit [data set], https://crudata.uea.ac.uk/cru/data/nao/, last access: 7 December 2020. 
Download
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.