Articles | Volume 2, issue 2
Weather Clim. Dynam., 2, 395–412, 2021
Weather Clim. Dynam., 2, 395–412, 2021

Research article 28 Apr 2021

Research article | 28 Apr 2021

Influence of ENSO on North American subseasonal surface air temperature variability

Patrick Martineau et al.

Related authors

Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472,,, 2021
Short summary
Oceanic origins for wintertime Euro-Atlantic blocking
Ayako Yamamoto, Masami Nonaka, Patrick Martineau, Akira Yamazaki, Young-Oh Kwon, Hisashi Nakamura, and Bunmei Taguchi
Weather Clim. Dynam. Discuss.,,, 2020
Preprint under review for WCD
Short summary
Surface temperature response to the major volcanic eruptions in multiple reanalysis data sets
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374,,, 2020
Short summary
Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty
Edwin P. Gerber and Patrick Martineau
Atmos. Chem. Phys., 18, 17099–17117,,, 2018
Short summary
Zonal-mean data set of global atmospheric reanalyses on pressure levels
Patrick Martineau, Jonathon S. Wright, Nuanliang Zhu, and Masatomo Fujiwara
Earth Syst. Sci. Data, 10, 1925–1941,,, 2018
Short summary

Related subject area

Dynamical processes in midlatitudes
A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279,,, 2021
Short summary
Representation by two climate models of the dynamical and diabatic processes involved in the development of an explosively deepening cyclone during NAWDEX
David L. A. Flack, Gwendal Rivière, Ionela Musat, Romain Roehrig, Sandrine Bony, Julien Delanoë, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 233–253,,, 2021
Short summary
A regime view of future atmospheric circulation changes in northern mid-latitudes
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180,,, 2021
Short summary
A global climatological perspective on the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events
Andries Jan de Vries
Weather Clim. Dynam., 2, 129–161,,, 2021
Short summary
Observations and simulation of intense convection embedded in a warm conveyor belt – how ambient vertical wind shear determines the dynamical impact
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110,,, 2021
Short summary

Cited articles

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., and Scott, J. D.: The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air–Sea Interaction over the Global Oceans, J. Climate, 15, 2205–2231,<2205:TABTIO>2.0.CO;2, 2002. 
Bamston, A. G., Chelliah, M., and Goldenberg, S. B.: Documentation of a highly ENSO-related sst region in the equatorial pacific: Research note, Atmos.-Ocean, 35, 367–383,, 1997. 
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126,<1083:CSAPOL>2.0.CO;2, 1987. 
Barriopedro, D. and Calvo, N.: On the Relationship between ENSO, Stratospheric Sudden Warmings, and Blocking, J. Climate, 27, 4704–4720,, 2014. 
Bjornsson, H. and Venegas, S. A.: A Manual for EOF and SVD Analyses of Climatic Data, Department of Atmospheric and Oceanic Sciences and Centre for Climate and Global Change Research: McGill University, Montreal, Quebec, 1997. 
Short summary
To better understand the factors that impact the weather in North America, this study explores the influence of the El Niño–Southern Oscillation on wintertime surface air temperature variability using reanalysis data. Results show that La Niña enhances subseasonal variability over western North America by amplifying the baroclinic conversion of energy from the winter-mean circulation to subseasonal eddies. Changes in the structural properties of eddies are crucial for this amplification.