Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Meteorologisches Observatorium Lindenberg – Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Lindenberg, Germany
Annette Müller
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Lisa Schielicke
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Peter Névir
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Henning W. Rust
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Related authors
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Bogdan Antonescu, Christoph Gatzen, and TIM Partners
Nat. Hazards Earth Syst. Sci., 25, 2629–2656, https://doi.org/10.5194/nhess-25-2629-2025, https://doi.org/10.5194/nhess-25-2629-2025, 2025
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain in the past. However, they are particularly frequent near European mountain ranges, so observations of such storms are needed. This article gives an overview of our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill the knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
Andreas Trojand, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 25, 2331–2350, https://doi.org/10.5194/nhess-25-2331-2025, https://doi.org/10.5194/nhess-25-2331-2025, 2025
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporally dynamic.
George Pacey, Stephan Pfahl, and Lisa Schielicke
Weather Clim. Dynam., 6, 695–713, https://doi.org/10.5194/wcd-6-695-2025, https://doi.org/10.5194/wcd-6-695-2025, 2025
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) in the warm season, but the drivers and environments of cells at different locations relative to the front are not well-understood. We show that cells ahead of the surface front have the highest amount of environmental instability and moisture. Also, low-level lifting is maximised ahead of the surface front and upper-level lifting is particularly important for cell initiation behind the front.
Elena Päffgen, Lisa Schielicke, and Leonie Esters
EGUsphere, https://doi.org/10.5194/egusphere-2025-1200, https://doi.org/10.5194/egusphere-2025-1200, 2025
Short summary
Short summary
Balancing academic careers and family responsibilities presents significant challenges, particularly for early-career researchers attending conferences. These events are essential for professional development but often create logistical difficulties for parents. Based on a survey of geoscientists, we show that parents require more support and non-parents largely approve of family-friendly measures. We provide practical guidelines to help conference organizers support researchers with families.
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025, https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Short summary
Deforestation has a significant impact on climate, yet its effects on drought remain less understood. This study investigates how deforestation affects drought across various climate zones and timescales. Findings indicate that deforestation leads to drier conditions in tropical regions and wetter conditions in arid areas, with minimal effects in temperate zones. Long-term drought is more affected than short-term drought, offering valuable insights into vegetation–climate interactions.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Lisa Schielicke, Yidan Li, Jerome Schyns, Aaron Sperschneider, Jose Pablo Solano Marchini, and Christoph Peter Gatzen
Weather Clim. Dynam., 5, 703–710, https://doi.org/10.5194/wcd-5-703-2024, https://doi.org/10.5194/wcd-5-703-2024, 2024
Short summary
Short summary
We present course contents and results of a 2-week educational block course with a focus on Cloud Model 1 (CM1) and 3D visualization. Through hands-on experience, students gained skills in setting up and customizing the model and visualizing its output in 3D. The research aimed to bridge the gap between classroom learning and practical applications, fostering a deeper understanding of convective processes and preparing students for future careers in the field.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Tarek Beutler, Annette Rudolph, Daniel Goehring, and Nikki Vercauteren
EGUsphere, https://doi.org/10.5194/egusphere-2022-440, https://doi.org/10.5194/egusphere-2022-440, 2022
Preprint withdrawn
Short summary
Short summary
Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. The positive effectiveness of finetuning and promising skill scores for a prediction time up to 100 minutes are shown.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021, https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary
Short summary
Decadal climate ensemble forecasts are increasingly being used to guide adaptation measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must be adjusted. Since it is not clear which statistical model is optimal for this purpose, we propose a recalibration strategy with a systematic model selection based on non-homogeneous boosting for identifying the most relevant features for both ensemble mean and ensemble spread.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Cited articles
Altenhoff, A. M., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies,
H. C.: Linkage of atmospheric blocks and synoptic-scale Rossby waves: a
climatological analysis, Tellus A, 60, 1053–1063,
https://doi.org/10.1111/j.1600-0870.2008.00354.x, 2008. a
Aref, H.: Motion of three vortices, Phys. Fluids, 22, p. 393,, 1979. a
Baclawski, K.: Introduction to probability with R, in: Texts in statistical science, Chapman & Hall/CRC, New York, https://doi.org/10.1201/9781420065220, 2008. a, b
Barnes, E. A., Slingo, J., and Woollings, T.: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios, Clim. Dynam., 38, 2467–2481, https://doi.org/10.1007/s00382-011-1243-6, 2011. a
Barriopedro, D., García-Herrera, R., Lupo, A. R., and Hernández, E.: A climatology of Northern Hemisphere blocking, J. Climate, 19, 1042–1063, https://doi.org/10.1175/JCLI3678.1, 2006. a
Barriopedro, D., García-Herrera, R., and Trigo, R.: Application of
blocking diagnosis methods to general circulation models. Part I: A novel
detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c
Berrisford, P., Hoskins, B. J., and Tyrlis, E.: Blocking and Rossby Wave
Breaking on the Dynamical Tropopause in the Southern Hemisphere, J. Atmos.
Sci., 64, 2881–2898, https://doi.org/10.1175/JAS3984.1, 2007. a
Bissolli, P., Deutschländer, T., Imbery, F., Haeseler, S., Lefebvre, C.,
Blahak, J., Fleckenstein, R., Breyer, J., Rocek, M., Kreienkamp, F.,
Rösner, S., and Schreiber, K.-J.: Hitzewelle Juli 2019 in Westeuropa –
neuer nationaler Rekord in Deutschland, Deutscher Wetterdienst, Abteilung Klimaüberwachung, available at:
https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20190801_hitzerekord_juli2019.pdf?__blob=publicationFile&v=3
(last access: 31 August 2020), 2019. a
Bott, A.: Synoptische Meteorologie, Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-25122-1, 2012. a
Brunner, L., Schaller, N., Anstey, J., Sillmann, J., and Steiner, A. K.:
Dependence of present and future European temperature extremes on the location of atmospheric blocking, Geophys. Res. Lett., 45, 6311–6320, 2018. a
Cheung, H. N., Zhou, W., Mok, H. Y., Wu, M. C., and Shao, Y.: Revisiting the
climatology of atmospheric blocking in the Northern Hemisphere, Adv. Atmos.
Sci., 30, 397–410, 2013. a
Davini, P. and D'Andrea, F.: From CMIP3 to CMIP6: Northern Hemisphere
atmospheric blocking simulation in present and future climate, J. Climate, 33, 10021–10038, 2020. a
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
diagnostics, variability, and trends of Northern Hemisphere blocking, J.
Climate, 25, 6496–6509, 2012. a
Deutscher Wetterdienst: The weather in Germany in July 2019,available at: https://www.dwd.de/EN/press/press_release/EN/2019/20190730_the_weather_in_germany_in_july_2019.pdf?__blob=publicationFile&v=2
(last access: 31 August 2020), 2019. a
Deutscher Wetterdienst: DWD-Stationen Duisburg-Baerl und Tönisvorst jetzt
Spitzenreiter mit 41,2 Grad Celsius, available at:
https://www.dwd.de/DE/presse/pressemitteilungen/DE/2020/20201217_annulierung_lingen_news.html
(last access: 11 February 2021), 2020. a
Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical
northern hemisphere wintertime circulation: Geographical distribution and
regional persistence characteristics, Mon. Weather Rev., 111, 1567–1586, 1983. a
Egger, J.: The blocking transition, in: Irreversible phenomena and dynamical
systems analysis in geosciences, edited by: Nicolis, C. and Nicolis, G.,
Springer Netherlands, Dordrecht, 181–197, https://doi.org/10.1007/978-94-009-4778-8_10, 1987. a
Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent verification of the
ECMWF ensemble over the Euro-Atlantic sector, Q. J. Roy. Meteorol. Soc., 141,
916–924, 2015. a
Freva: Freie Universität Berlin evaluation system (Freva), available at:
https://freva.met.fu-berlin.de/ (last access: 10 September 2020), 2017. a
Gottwald, G. A., Crommelin, D. T., and Franzke, C. L. E.: Stochastic climate
theory, Cambridge University Press, https://doi.org/10.1017/9781316339251.009, 2016. a
Grewal, J. K., Krzywinski, M., and Altman, N.: Markov models – Markov chains, Nat. Methods, 16, 663–664, https://doi.org/10.1038/s41592-019-0476-x, 2019. a
Henley, J., Chrisafis, A., and Jones, S.: France records all-time highest
temperature of 45.9 ∘C, The Guardian, 28 June 2019, available at: https://www.theguardian.com/world/2019/jun/28/france-on-red-alert-as-heatwave-forecast-to-reach-record-45c (last access: 31 August 2020), 2019. a
Hirt, M., Kröner, I., and Dioni, E.: Numerical simulaton of vortex flows
with a meteorological application – Report for the project “Vortex Flows”,
Tech. rep., Technische Universität Berlin, Berlin, 2015. a
Hong, C.-C., Hsu, H.-H., Lin, N.-H., and Chiu, H.: Roles of European blocking
and tropical-extratropical interaction in the 2010 Pakistan flooding, Geophys. Res. Lett., 38, L13806 https://doi.org/10.1029/2011gl047583, 2011. a
Kadow, C., Illing, S., Lucio-Eceiza, E. E., Bergemann, M., Ramadoss, M.,
Sommer, P. S., Kunst, O., Schartner, T., Pankatz, K., Grieger, J.,
Schuster, M., Richling, A., Thiemann, H., Kirchner, I., Rust, H. W.,
Ludwig, T., Cubasch, U., and Ulbrich, U.: Introduction to Freva – A
Free Evaluation System Framework for Earth System Modeling, J.
Open Res. Softw., 9, 13, https://doi.org/10.5334/jors.253, 2021. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino, M., and Potter, G.: Ncep–doe amip-ii reanalysis (r-2), B. Am. Meteorol. Soc., 83, 1631–1644, 2002. a
Kimoto, M. and Ghil, M.: Multiple flow regimes in the Northern Hemisphere
winter. Part II: Sectorial regimes and preferred transitions, J. Atmos. Sci.,
50, 2645–2673, 1993. a
Kuhlbrodt, T. and Névir, P.: Low-order point vortex models of atmospheric
blocking, Meteorol. Atmos. Phys., 73, 127–138, 2000. a
Lucarini, V., Freitas, A. C. M., Nicol, M., Freitas, J. M., Todd, M., Faranda, D., Kuna, T., Hollande, M., and Vaienti, S.: Extremes and recurrence in dynamical systems, Wiley, New York, https://doi.org/10.1002/9781118632321, 2016. a
Luo, D., Zhang, W., Zhong, L., and Dai, A.: A nonlinear theory of atmospheric
blocking: A potential vorticity gradient view, J. Atmos. Sci., 76, 2399–2427, 2019. a
Markov, A. A.: An Example of Statistical Investigation of the Text Eugene Onegin Concerning the Connection of Samples in Chains, Sci. Context, 19,
591–600, https://doi.org/10.1017/S0269889706001074, 2006. a
Matlab: MATLAB version 9.0.0.341360 (R2016a), The MathWorks Inc., Natick,
Massachusetts, 2016. a
McCullagh, P. and Nelder, J. A.: Generalized Linear Models, 2nd Edn., Chapman & Hall/CRC, London, UK, 1989. a
Mohr, S., Wilhelm, J., Wandel, J., Kunz, M., Portmann, R., Punge, H. J.,
Schmidberger, M., Quinting, J. F., and Grams, C. M.: The role of large-scale
dynamics in an exceptional sequence of severe thunderstorms in Europe
May–June 2018, Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, 2020. a
Müller, A. and Névir, P.: A geometric application of Nambu mechanics:
the motion of three point vortices in the plane, J. Phys. A, 47, 105201, https://doi.org/10.1088/1751-8113/47/10/105201, 2014. a
National Centers for Environmental Prediction, National
Weather Service, NOAA, U.S. Department of Commerce:
NCEP/DOE Reanalysis 2 (R2),
Research Data Archive at the National Center for
Atmospheric Research [data set], Computational and Information Systems Laboratory,
Boulder, CO, https://doi.org/10.5065/KVQZ-YJ93 (last access: 18 August 2020),
2000. a
Newton, P. K.: The N-Vortex Problem: Analytical Techniques, Springer-Verlag,
New York, https://doi.org/10.1115/1.1445334, 2001. a
Obukhov, A., Kurganskii, M., and Tatarskaia, M.: Dynamic conditions for the
origin of drought and other large-scale weather anomalies, Meteorologiia i
Gidrologiia, 10, 5–13, 1984. a
Pelly, J. L. and Hoskins, B. J.: A new perspective on blocking, J. Atmos. Sci., 60, 743–755, 2003. a
Pfahl, S. and Wernli, H.: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales, Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261, 2012. a
Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., and Wernli, H.:
Importance of latent heat release in ascending air streams for atmospheric
blocking, Nat. Geosci., 8, 610–614, 2015. a
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 20 December 2020), 2018. a
Riboldi, J., Lott, F., d'Andrea, F., and Rivière, G.: On the Linkage
Between Rossby Wave Phase Speed, Atmospheric Blocking, and Arctic Amplification, Geophys. Res. Lett., 47, e2020GL087796, https://doi.org/10.1029/2020gl087796, 2020. a
Russo, S., Sillmann, J., and Fischer, E. M.: Top ten European heatwaves since 1950 and their occurrence in the coming decades, Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003, 2015. a
Scherrer, S. C., Croci-Maspoli, M., Schwierz, C., and Appenzeller, C.:
Two-dimensional indices of atmospheric blocking and their statistical
relationship with winter climate patterns in the Euro-Atlantic region, Int.
J. Climatol., 26, 233–249, 2006. a
Schielicke, L., Névir, P., and Ulbrich, U.: Kinematic vorticity number – a tool for estimating vortex sizes and circulations, Tellus A, 68,
29464, https://doi.org/10.3402/tellusa.v68.29464, 2016. a, b
Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X., Peters, D.,
and Fraedrich, K.: Large-Scale Flow and the Long-Lasting Blocking High over
Russia: Summer 2010, Mon. Weather Rev., 140, 2967–2981, https://doi.org/10.1175/MWR-D-11-00249.1, 2012. a
Schwierz, C., Croci-Maspoli, M., and Davies, H.: Perspicacious indicators of
atmospheric blocking, Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003gl019341, 2004. a
Steinfeld, D. and Pfahl, S.: The role of latent heating in atmospheric blocking dynamics: a global climatology, Clim. Dynam., 53, 6159–6180, 2019. a
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x, 1990. a, b, c
Truesdell, C.: Two measures of vorticity, Indiana Univ. Math. J., 2, 173–217, 1953. a
Truesdell, C.: The kinematics of vorticity, Indiana University Press, Bloomington, Indiana, 1954. a
Tung, K. K. and Lindzen, R.: A theory of stationary long waves. Part I: A simple theory of blocking, Mon. Weather Rev., 107, 714–734, 1979. a
Tyrlis, E. and Hoskins, B. J.: Aspects of a northern hemisphere atmospheric
blocking Climatology, J. Atmos. Sci., 65, 1638–1652, https://doi.org/10.1175/2007JAS2337.1, 2008. a, b
Vautard, R., Mo, K. C., and Ghil, M.: Statistical significance test for
transition matrices of atmospheric Markov chains, J. Atmos. Sci., 47,
1926–1931, 1990. a
Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp, F., van Oldenborgh, G. J.,
Otto, F. E. L., Ribes, A., Robin, Y., Schneider,
M., Soubeyroux, J.-M., Stott, P., Seneviratne, S. I., Vogel, M. M., and Wehner, M.: Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe, Environ. Res. Lett., 15, 094077, https://doi.org/10.1088/1748-9326/aba3d4, 2020. a
Wallace, J. M., Zhang, Y., and Lau, K.-H.: Structure and seasonality of
interannual and interdecadal variability of the geopotential height and temperature fields in the Northern Hemisphere troposphere, J. Climate, 6,
2063–2082, 1993. a
Woollings, T. and Blackburn, M.: The North Atlantic jet stream under climate
change and its relation to the NAO and EA patterns, J. Climate, 25, 886–902, 2012. a
Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey,
B., Sillmann, J., Lupo, A. R., and Seneviratne, S.: Blocking and its response
to climate change, Curr. Climate Change Rep., 4, 287–300, 2018. a
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this...