Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Meteorologisches Observatorium Lindenberg – Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Lindenberg, Germany
Annette Müller
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Lisa Schielicke
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Peter Névir
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Henning W. Rust
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Related authors
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798, https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain and in computer simulations in the past. However, they are particularly frequent near mountain ranges, which emphasizes the need to study storms near mountains. This article gives an overview about our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill these knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
George Pacey, Stephan Pfahl, and Lisa Schielicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2978, https://doi.org/10.5194/egusphere-2024-2978, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) in the warm-season, but the drivers and environments of cells at different locations relative to the front are not well-understood. We show that cells ahead of the surface front have the highest amount of environmental instability and moisture. Also, low-level lifting is maximised ahead of the surface front and upper-level lifting is particularly important for cell initiation behind the front.
Andreas Trojand, Henning Rust, and Uwe Ulbrich
EGUsphere, https://doi.org/10.5194/egusphere-2024-1506, https://doi.org/10.5194/egusphere-2024-1506, 2024
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporal dynamic.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
EGUsphere, https://doi.org/10.5194/egusphere-2024-1270, https://doi.org/10.5194/egusphere-2024-1270, 2024
Short summary
Short summary
Forest cover changes primarily affect the global climate system by altering the energy and water balance on the surface. This study explores how large-scale deforestation impacts drought across diverse climate zones and time scales. Results reveal drier conditions in tropics but wetter climates in arid regions post-deforestation. Minimal impact observed in temperate zones. Long-term drought is more affected than short-term. These insights enhance understanding of vegetation-climate dynamics.
Lisa Schielicke, Yidan Li, Jerome Schyns, Aaron Sperschneider, Jose Pablo Solano Marchini, and Christoph Peter Gatzen
Weather Clim. Dynam., 5, 703–710, https://doi.org/10.5194/wcd-5-703-2024, https://doi.org/10.5194/wcd-5-703-2024, 2024
Short summary
Short summary
We present course contents and results of a 2-week educational block course with a focus on Cloud Model 1 (CM1) and 3D visualization. Through hands-on experience, students gained skills in setting up and customizing the model and visualizing its output in 3D. The research aimed to bridge the gap between classroom learning and practical applications, fostering a deeper understanding of convective processes and preparing students for future careers in the field.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Andy Richling, Jens Grieger, and Henning W. Rust
EGUsphere, https://doi.org/10.5194/egusphere-2023-2582, https://doi.org/10.5194/egusphere-2023-2582, 2024
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score –a measure of forecast performance– as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Tarek Beutler, Annette Rudolph, Daniel Goehring, and Nikki Vercauteren
EGUsphere, https://doi.org/10.5194/egusphere-2022-440, https://doi.org/10.5194/egusphere-2022-440, 2022
Preprint withdrawn
Short summary
Short summary
Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. The positive effectiveness of finetuning and promising skill scores for a prediction time up to 100 minutes are shown.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021, https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary
Short summary
Decadal climate ensemble forecasts are increasingly being used to guide adaptation measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must be adjusted. Since it is not clear which statistical model is optimal for this purpose, we propose a recalibration strategy with a systematic model selection based on non-homogeneous boosting for identifying the most relevant features for both ensemble mean and ensemble spread.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Noelia Otero, Henning W. Rust, and Tim Butler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-691, https://doi.org/10.5194/acp-2020-691, 2020
Revised manuscript not accepted
Short summary
Short summary
Surface ozone concentrations are strongly correlated with temperature in summertime. Using long-term measurements, we investigate changes in the observed relationship between ozone and temperature over Germany. We propose a new statistical approach based on Generalized Additive Models (GAMs) to describe ozone production rates as a function of nitrogen oxides (NOx) and temperature. Our results suggest that NOx reductions alone can not explain the changes in the temperature dependence of ozone.
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018, https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Alexander Pasternack, Jonas Bhend, Mark A. Liniger, Henning W. Rust, Wolfgang A. Müller, and Uwe Ulbrich
Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018, https://doi.org/10.5194/gmd-11-351-2018, 2018
Short summary
Short summary
We propose a decadal forecast recalibration strategy (DeFoReSt) which simultaneously adjusts unconditional and conditional bias, as well as the ensemble spread while considering the typical setting of decadal predictions, i.e., model drift and a climate trend. We apply DeFoReSt to decadal toy model data and surface temperature forecasts from the MiKlip system and find consistent improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.
Christoph Ritschel, Uwe Ulbrich, Peter Névir, and Henning W. Rust
Hydrol. Earth Syst. Sci., 21, 6501–6517, https://doi.org/10.5194/hess-21-6501-2017, https://doi.org/10.5194/hess-21-6501-2017, 2017
Short summary
Short summary
A stochastic model for precipitation is used to simulate an observed precipitation series; it is compared to the original series in terms of intensity–duration frequency curves. Basis for the latter curves is a parametric model for the duration dependence of the underlying extreme value model allowing a consistent estimation of one single duration-dependent distribution using all duration series simultaneously. The stochastic model reproduces the curves except for very rare extreme events.
L. Schielicke and P. Névir
Nonlin. Processes Geophys., 20, 47–57, https://doi.org/10.5194/npg-20-47-2013, https://doi.org/10.5194/npg-20-47-2013, 2013
Related subject area
Dynamical processes in midlatitudes
The importance of diabatic processes for the dynamics of synoptic-scale extratropical weather systems – a review
The impact of synoptic storm likelihood on European subseasonal forecast uncertainty and their modulation by the stratosphere
Spatio-temporal averaging of jets obscures the reinforcement of baroclinicity by latent heating
Impact of stochastic physics on the representation of atmospheric blocking in EC-Earth3
The crucial representation of deep convection for the cyclogenesis of Medicane Ianos
The connection between North Atlantic storm track regimes and eastern Mediterranean cyclonic activity
A storm-relative climatology of compound hazards in Mediterranean cyclones
A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis
Linking compound weather extremes to Mediterranean cyclones, fronts, and airstreams
From Sea to Sky: Understanding the sea surface temperature impact on an atmospheric blocking event using sensitivity experiments with the ICOsahedral Nonhydrostatic (ICON) model
A linear assessment of barotropic Rossby wave propagation in different background flow configurations
Towards a process-oriented understanding of the impact of stochastic perturbations on the model climate
Atmospheric Deserts: Detection and Consequences
Deepening mechanisms of cut-off lows in the Southern Hemisphere and the role of jet streams: insights from eddy kinetic energy analysis
Large-scale perspective on extreme near-surface winds in the central North Atlantic
Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations
A global climatology of sting-jet extratropical cyclones
Changes in the North Atlantic Oscillation over the 20th century
Life cycle dynamics of Greenland blocking from a potential vorticity perspective
Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5
Influence of radiosonde observations on the sharpness and altitude of the midlatitude tropopause in the ECMWF IFS
Analysing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes
A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales
The upstream–downstream connection of North Atlantic and Mediterranean cyclones in semi-idealized simulations
Understanding the vertical temperature structure of recent record-shattering heatwaves
Persistent warm and cold spells in the Northern Hemisphere extratropics: regionalisation, synoptic-scale dynamics and temperature budget
Linking Gulf Stream air–sea interactions to the exceptional blocking episode in February 2019: a Lagrangian perspective
Process-based classification of Mediterranean cyclones using potential vorticity
The relation between Rossby wave-breaking events and low-level weather systems
Aquaplanet simulations with winter and summer hemispheres: model setup and circulation response to warming
Seasonally dependent increases in subweekly temperature variability over Southern Hemisphere landmasses detected in multiple reanalyses
Identification of high-wind features within extratropical cyclones using a probabilistic random forest – Part 2: Climatology over Europe
Cold wintertime air masses over Europe: where do they come from and how do they form?
Diabatic effects on the evolution of storm tracks
How a warmer Mediterranean preconditions the upper-level environment for the development of Medicane Ianos
Atmospheric response to cold wintertime Tibetan Plateau conditions over eastern Asia in climate models
Transient anticyclonic eddies and their relationship to atmospheric block persistence
A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones
Thunderstorm environments in Europe
What distinguishes 100-year precipitation extremes over central European river catchments from more moderate extreme events?
Towards a holistic understanding of blocked regime dynamics through a combination of complementary diagnostic perspectives
Moist available potential energy of the mean state of the atmosphere and the thermodynamic potential for warm conveyor belts and convection
Large spread in the representation of compound long-duration dry and hot spells over Europe in CMIP5
Similarity and variability of blocked weather-regime dynamics in the Atlantic–European region
Anomalous subtropical zonal winds drive decreases in southern Australian frontal rain
Origin of low-tropospheric potential vorticity in Mediterranean cyclones
Robust poleward jet shifts in idealised baroclinic-wave life-cycle experiments with noisy initial conditions
Revisiting the wintertime emergent constraint of the southern hemispheric midlatitude jet response to global warming
The global atmospheric energy transport analysed by a wavelength-based scale separation
European heatwaves in present and future climate simulations: a Lagrangian analysis
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024, https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Michele Filippucci, Simona Bordoni, and Paolo Davini
Weather Clim. Dynam., 5, 1207–1222, https://doi.org/10.5194/wcd-5-1207-2024, https://doi.org/10.5194/wcd-5-1207-2024, 2024
Short summary
Short summary
Atmospheric blocking is a recurring phenomenon in midlatitudes, causing winter cold spells and summer heat waves. Current models underestimate it, hindering understanding of global warming's impact on extremes. In this paper, we investigate whether stochastic parameterizations can improve blocking representation. We find that blocking frequency representation slightly deteriorates, following a change in midlatitude winds. We conclude by suggesting a direction for future model development.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Dor Sandler, Hadas Saaroni, Baruch Ziv, Talia Tamarin-Brodsky, and Nili Harnik
Weather Clim. Dynam., 5, 1103–1116, https://doi.org/10.5194/wcd-5-1103-2024, https://doi.org/10.5194/wcd-5-1103-2024, 2024
Short summary
Short summary
The North Atlantic region serves as a source of moisture and energy for Mediterranean storms. Its impact over the Levant region remains an open question due to its smaller weather systems and their longer distance from the ocean. We find an optimal circulation pattern which allows North Atlantic influence to reach farther into the eastern Mediterranean, thus making storms stronger and rainier. This may be relevant for future Mediterranean climate, which is projected to become much drier.
Raphaël Rousseau-Rizzi, Shira Raveh-Rubin, Jennifer L. Catto, Alice Portal, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024, https://doi.org/10.5194/wcd-5-1079-2024, 2024
Short summary
Short summary
We identify situations when rain and wind, rain and wave, or heat and dust hazards co-occur within Mediterranean cyclones. These hazard combinations are associated with risk to infrastructure, risk of coastal flooding and risk of respiratory issues. The presence of Mediterranean cyclones is associated with increased probability of all three hazard combinations. We identify weather configurations and cyclone structures, particularly those associated with specific co-occurrence combinations.
Jacob Perez, Amanda C. Maycock, Stephen D. Griffiths, Steven C. Hardiman, and Christine M. McKenna
Weather Clim. Dynam., 5, 1061–1078, https://doi.org/10.5194/wcd-5-1061-2024, https://doi.org/10.5194/wcd-5-1061-2024, 2024
Short summary
Short summary
This study assesses existing methods for identifying the position and tilt of the North Atlantic eddy-driven jet, proposing a new feature-based approach. The new method overcomes limitations of other methods, offering a more robust characterisation. Contrary to prior findings, the distribution of daily latitudes shows no distinct multi-modal structure, challenging the notion of preferred jet stream latitudes or regimes. This research enhances our understanding of North Atlantic dynamics.
Alice Portal, Shira Raveh-Rubin, Jennifer L. Catto, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1043–1060, https://doi.org/10.5194/wcd-5-1043-2024, https://doi.org/10.5194/wcd-5-1043-2024, 2024
Short summary
Short summary
Mediterranean cyclones are associated with extended rain, wind, and wave impacts. Although beneficial for regional water resources, their passage may induce extreme weather, which is especially impactful when multiple hazards combine together. Here we show how the passage of Mediterranean cyclones increases the likelihood of rain–wind and wave–wind compounding and how compound–cyclone statistics vary by region and season, depending on the presence of specific airflows around the cyclone.
Svenja Christ, Marta Wenta, Christian M. Grams, and Annika Oertel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2403, https://doi.org/10.5194/egusphere-2024-2403, 2024
Short summary
Short summary
The detailed representation of sea surface temperature (SST) in numerical models is important for the prediction of atmospheric blocking in the North Atlantic. Yet, the underlying physical processes are not fully understood. Using SST sensitivity experiments for a case study, we identify a physical pathway through which SST in the Gulf Stream region is linked to the downstream upper-level flow evolution in the North Atlantic.
Antonio Segalini, Jacopo Riboldi, Volkmar Wirth, and Gabriele Messori
Weather Clim. Dynam., 5, 997–1012, https://doi.org/10.5194/wcd-5-997-2024, https://doi.org/10.5194/wcd-5-997-2024, 2024
Short summary
Short summary
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
Moritz Deinhard and Christian M. Grams
Weather Clim. Dynam., 5, 927–942, https://doi.org/10.5194/wcd-5-927-2024, https://doi.org/10.5194/wcd-5-927-2024, 2024
Short summary
Short summary
Stochastic perturbations are an established technique to represent model uncertainties in numerical weather prediction. While such schemes are beneficial for the forecast skill, they can also change the mean state of the model. We analyse how different schemes modulate rapidly ascending airstreams and whether the changes to such weather systems are projected onto larger scales. We thereby provide a process-oriented perspective on how perturbations affect the model climate.
Fiona Fix, Georg Johann Mayr, Achim Zeileis, Isabell Kathrin Stucke, and Reto Stauffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2143, https://doi.org/10.5194/egusphere-2024-2143, 2024
Short summary
Short summary
“Atmospheric deserts” (ADs) are air masses that are transported away from hot, dry regions. Our study introduces this new concept. ADs can suppress or boost thunderstorms, and potentially contribute to the formation of heat waves, which makes them relevant for forecasting extreme events. Using a novel detection method, we follow the AD directly from North Africa to Europe for a case in June 2022, allowing us to analyze the air mass at any time and investigate how it is modified along the way.
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024, https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Short summary
Cut-off lows (COLs) are weather systems with varied structures and lifecycles, from upper atmospheric to deep vortices. Deep, strong COLs are common around Australia and the southwestern Pacific in autumn and spring, while shallow, weak COLs occur more in summer near the Equator. Jet streams play a crucial role in COL development, with different jets influencing its depth and strength. The study also emphasizes the need for better representation of diabatic processes in reanalysis data.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost
Weather Clim. Dynam., 5, 779–803, https://doi.org/10.5194/wcd-5-779-2024, https://doi.org/10.5194/wcd-5-779-2024, 2024
Short summary
Short summary
Deep convective clouds (thunderstorms), which may cause severe weather, tend to coherently organise into structured cloud systems. Accurate representation of these systems in models is difficult due to their complex dynamics and, in numerical simulations, the dependence of their dynamics on resolution. Here, the effect of convective organisation and geometry on their outflow winds (altitudes of 7–14 km) is investigated. Representation of their dynamics and outflows improves at higher resolution.
Suzanne Louise Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1413, https://doi.org/10.5194/egusphere-2024-1413, 2024
Short summary
Short summary
Sting jets occur in some of the most damaging extratropical cyclones impacting Europe. We present the first climatology of sting-jet cyclones over the major ocean basins. Cyclones with sting-jet precursors occur over the North Atlantic, North Pacific and Southern Oceans, with implications for wind warnings. Precursor cyclones have distinct characteristics, even in reanalyses which are too coarse to resolve sting jets, evidencing the climatological consequences of strong diabatic cloud processes.
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024, https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Short summary
The North Atlantic Oscillation is linked to wintertime weather events over Europe. One feature often overlooked is how much the climate variability explained by the NAO has changed over time. We show that there has been a considerable increase in the percentage variance explained by the NAO over the 20th century and that this is not reproduced by 50 CMIP6 climate models, which are generally biased too high. This has implications for projections and prediction of weather events in the region.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024, https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Short summary
Blocking over Greenland has substantial impacts on the weather and climate in mid- and high latitudes. This study applies a quasi-Lagrangian thinking on the dynamics of Greenland blocking and reveals two pathways of anticyclonic anomalies linked to the block. Moist processes were found to play a dominant role in the formation and maintenance of blocking. This emphasizes the necessity of the correct representation of moist processes in weather and climate models to realistically depict blocking.
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024, https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.
Konstantin Krüger, Andreas Schäfler, Martin Weissmann, and George C. Craig
Weather Clim. Dynam., 5, 491–509, https://doi.org/10.5194/wcd-5-491-2024, https://doi.org/10.5194/wcd-5-491-2024, 2024
Short summary
Short summary
Initial conditions of current numerical weather prediction models insufficiently represent the sharp vertical gradients across the midlatitude tropopause. Observation-space data assimilation output is used to study the influence of assimilated radiosondes on the tropopause. The radiosondes reduce systematic biases of the model background and sharpen temperature and wind gradients in the analysis. Tropopause sharpness is still underestimated in the analysis, which may impact weather forecasts.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024, https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary
Short summary
Using an innovative approach, the descent of foehn is diagnosed from a Lagrangian perspective based on 15 kilometer-scale simulations combined with online trajectories. The descent is confined to distinct hotspots in the immediate lee of local mountain peaks and chains. Two detailed case studies reveal a varying wave regime to be associated with the descent. Furthermore, additional controlling factors, such as the diurnal cycle, likewise influence the descent activity.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024, https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary
Short summary
We show that the formation of Mediterranean cyclones follows the presence of cyclones over the North Atlantic. The distinct regions of cyclone activity in the Mediterranean in the different seasons can be linked to the atmospheric state, in particular the position of the polar jet over the North Atlantic. With this we now better understand the processes that lead to the formation of Mediterranean cyclones. We used a novel simulation framework in which we directly show and probe this connection.
Belinda Hotz, Lukas Papritz, and Matthias Röthlisberger
Weather Clim. Dynam., 5, 323–343, https://doi.org/10.5194/wcd-5-323-2024, https://doi.org/10.5194/wcd-5-323-2024, 2024
Short summary
Short summary
Analysing the vertical structure of temperature anomalies of recent record-breaking heatwaves reveals a complex four-dimensional interplay of anticyclone–heatwave interactions, with vertically strongly varying advective, adiabatic, and diabatic contributions to the respective temperature anomalies. The heatwaves featured bottom-heavy positive temperature anomalies, extending throughout the troposphere.
Alexandre Tuel and Olivia Martius
Weather Clim. Dynam., 5, 263–292, https://doi.org/10.5194/wcd-5-263-2024, https://doi.org/10.5194/wcd-5-263-2024, 2024
Short summary
Short summary
Warm and cold spells often have damaging consequences for agriculture, power demand, human health and infrastructure, especially when they occur over large areas and persist for a week or more. Here, we split the Northern Hemisphere extratropics into coherent regions where 3-week warm and cold spells in winter and summer are associated with the same large-scale circulation patterns. To understand their physical drivers, we analyse the associated circulation and temperature budget anomalies.
Marta Wenta, Christian M. Grams, Lukas Papritz, and Marc Federer
Weather Clim. Dynam., 5, 181–209, https://doi.org/10.5194/wcd-5-181-2024, https://doi.org/10.5194/wcd-5-181-2024, 2024
Short summary
Short summary
Our study links air–sea interactions over the Gulf Stream to an atmospheric block in February 2019. We found that over 23 % of air masses that were lifted into the block by cyclones interacted with the Gulf Stream. As cyclones pass over the Gulf Stream, they cause intense surface evaporation events, preconditioning the environment for the development of cyclones. This implies that air–sea interactions over the Gulf Stream affect the large-scale dynamics in the North Atlantic–European region.
Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
Short summary
Short summary
A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
Talia Tamarin-Brodsky and Nili Harnik
Weather Clim. Dynam., 5, 87–108, https://doi.org/10.5194/wcd-5-87-2024, https://doi.org/10.5194/wcd-5-87-2024, 2024
Short summary
Short summary
Synoptic waves in the atmosphere tend to follow a typical Rossby wave lifecycle, involving a linear growth stage followed by nonlinear and irreversible Rossby wave breaking (RWB). Here we take a new approach to study RWB events and their fundamental relation to weather systems by combining a storm-tracking technique and an RWB detection algorithm. The synoptic-scale dynamics leading to RWB is then examined by analyzing time evolution composites of cyclones and anticyclones during RWB events.
Sebastian Schemm and Matthias Röthlisberger
Weather Clim. Dynam., 5, 43–63, https://doi.org/10.5194/wcd-5-43-2024, https://doi.org/10.5194/wcd-5-43-2024, 2024
Short summary
Short summary
Climate change has started to weaken atmospheric circulation during summer in the Northern Hemisphere. However, there is low agreement on the processes underlying changes in, for example, the stationarity of weather patterns or the seasonality of the jet response to warming. This study examines changes during summertime in an idealised setting and confirms some important changes in hemisphere-wide wave and jet characteristics under warming.
Patrick Martineau, Swadhin K. Behera, Masami Nonaka, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 5, 1–15, https://doi.org/10.5194/wcd-5-1-2024, https://doi.org/10.5194/wcd-5-1-2024, 2024
Short summary
Short summary
The representation of subweekly near-surface temperature variability trends over the Southern Hemisphere landmasses is compared across multiple atmospheric reanalyses. It is found that there is generally a good agreement concerning the positive trends affecting South Africa and Australia in the spring, and South America in the summer. A more efficient generation of subweekly temperature variance by horizontal temperature fluxes contributes to the observed rise.
Lea Eisenstein, Benedikt Schulz, Joaquim G. Pinto, and Peter Knippertz
Weather Clim. Dynam., 4, 981–999, https://doi.org/10.5194/wcd-4-981-2023, https://doi.org/10.5194/wcd-4-981-2023, 2023
Short summary
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. In Part 1 of this work, we introduced RAMEFI (RAndom-forest-based MEsoscale wind Feature Identification), an objective, flexible identification tool for these wind features based on a probabilistic random forest. Here, we use RAMEFI to compile a climatology of the features over 19 extended winter seasons over western and central Europe, focusing on relative occurrence, affected areas and further characteristics.
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Claudio Sanchez, Suzanne Gray, Ambrogio Volonte, Florian Pantillon, Segolene Berthou, and Silvio Davolio
EGUsphere, https://doi.org/10.5194/egusphere-2023-2431, https://doi.org/10.5194/egusphere-2023-2431, 2023
Short summary
Short summary
Medicane Ianos was a very intense cyclone which led to harmful impacts over Greece. We explore what processes are important for the forecasting of medicane Ianos, with the use of the MetOffice weather model. There is a preceding precipitation event before Ianos’s birth, whose energetics generate a bubble in the tropopause. This bubble creates the necessary conditions for Ianos to emerge and strengthen, the processes are enhanced in simulations with a warmer Mediterranean Sea.
Alice Portal, Fabio D'Andrea, Paolo Davini, Mostafa E. Hamouda, and Claudia Pasquero
Weather Clim. Dynam., 4, 809–822, https://doi.org/10.5194/wcd-4-809-2023, https://doi.org/10.5194/wcd-4-809-2023, 2023
Short summary
Short summary
The differences between climate models can be exploited to infer how specific aspects of the climate influence the Earth system. This work analyses the effects of a negative temperature anomaly over the Tibetan Plateau on the winter atmospheric circulation. We show that models with a colder-than-average Tibetan Plateau present a reinforcement of the eastern Asian winter monsoon and discuss the atmospheric response to the enhanced transport of cold air from the continent toward the Pacific Ocean.
Charlie C. Suitters, Oscar Martínez-Alvarado, Kevin I. Hodges, Reinhard K. H. Schiemann, and Duncan Ackerley
Weather Clim. Dynam., 4, 683–700, https://doi.org/10.5194/wcd-4-683-2023, https://doi.org/10.5194/wcd-4-683-2023, 2023
Short summary
Short summary
Atmospheric blocking describes large and persistent high surface pressure. In this study, the relationship between block persistence and smaller-scale systems is examined. Persistent blocks result from more interactions with small systems, but a block's persistence does not depend as strongly on the strength of these smaller features. This work is important because it provides more knowledge as to how blocks can be allowed to persist, which is something we still do not fully understand.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Florian Ruff and Stephan Pfahl
Weather Clim. Dynam., 4, 427–447, https://doi.org/10.5194/wcd-4-427-2023, https://doi.org/10.5194/wcd-4-427-2023, 2023
Short summary
Short summary
In this study, we analyse the generic atmospheric processes of very extreme, 100-year precipitation events in large central European river catchments and the corresponding differences to less extreme events, based on a large time series (~1200 years) of simulated but realistic daily precipitation events from the ECMWF. Depending on the catchment, either dynamical mechanisms or thermodynamic conditions or a combination of both distinguish 100-year events from less extreme precipitation events.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023, https://doi.org/10.5194/wcd-4-399-2023, 2023
Short summary
Short summary
Blocking describes a flow configuration in the midlatitudes where stationary high-pressure systems block the propagation of weather systems. This study combines three individual perspectives that capture the dynamics and importance of various processes in the formation of a major blocking in 2016 from a weather regime perspective. In future work, this framework will enable a holistic view of the dynamics and the role of moist processes in different life cycle stages of blocked weather regimes.
Charles G. Gertler, Paul A. O'Gorman, and Stephan Pfahl
Weather Clim. Dynam., 4, 361–379, https://doi.org/10.5194/wcd-4-361-2023, https://doi.org/10.5194/wcd-4-361-2023, 2023
Short summary
Short summary
The relationship between the time-mean state of the atmosphere and aspects of atmospheric circulation drives general understanding of the atmospheric circulation. Here, we present new techniques to calculate local properties of the time-mean atmosphere and relate those properties to aspects of extratropical circulation with important implications for weather. This relationship should help connect changes to the atmosphere, such as under global warming, to changes in midlatitude weather.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
Short summary
Short summary
Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
Acacia S. Pepler and Irina Rudeva
Weather Clim. Dynam., 4, 175–188, https://doi.org/10.5194/wcd-4-175-2023, https://doi.org/10.5194/wcd-4-175-2023, 2023
Short summary
Short summary
In recent decades, cold fronts have rained less often in southeast Australia, which contributes to decreasing cool season rainfall. The largest changes in front dynamics are found to the north of the area where rain changes. Wet fronts have strong westerly winds that reach much further north than dry fronts do, and these fronts are becoming less common, linked to weakening subtropical winds and changes in the Southern Hemisphere circulation.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023, https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Short summary
We investigate the dynamical origin of the lower-atmospheric potential vorticity (PV; linked to the intensity of cyclones) in Mediterranean cyclones. We quantify the contribution of the cyclone and the environment by tracing PV backward in time and space and linking it to the track of the cyclone. We find that the lower-tropospheric PV is produced shortly before the cyclone's stage of highest intensity. We investigate the driving processes and use a global dataset and a process-resolving one.
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Short summary
Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023, https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary
Short summary
Accurately predicting the response of the midlatitude jet stream to climate change is very important, but models show a variety of possible scenarios. Previous work identified a relationship between climatological jet latitude and future jet shift in the southern hemispheric winter. We show that the relationship does not hold in separate sectors and propose that zonal asymmetries are the ultimate cause in the zonal mean. This questions the usefulness of the relationship.
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.
Cited articles
Altenhoff, A. M., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies,
H. C.: Linkage of atmospheric blocks and synoptic-scale Rossby waves: a
climatological analysis, Tellus A, 60, 1053–1063,
https://doi.org/10.1111/j.1600-0870.2008.00354.x, 2008. a
Aref, H.: Motion of three vortices, Phys. Fluids, 22, p. 393,, 1979. a
Baclawski, K.: Introduction to probability with R, in: Texts in statistical science, Chapman & Hall/CRC, New York, https://doi.org/10.1201/9781420065220, 2008. a, b
Barnes, E. A., Slingo, J., and Woollings, T.: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios, Clim. Dynam., 38, 2467–2481, https://doi.org/10.1007/s00382-011-1243-6, 2011. a
Barriopedro, D., García-Herrera, R., Lupo, A. R., and Hernández, E.: A climatology of Northern Hemisphere blocking, J. Climate, 19, 1042–1063, https://doi.org/10.1175/JCLI3678.1, 2006. a
Barriopedro, D., García-Herrera, R., and Trigo, R.: Application of
blocking diagnosis methods to general circulation models. Part I: A novel
detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c
Berrisford, P., Hoskins, B. J., and Tyrlis, E.: Blocking and Rossby Wave
Breaking on the Dynamical Tropopause in the Southern Hemisphere, J. Atmos.
Sci., 64, 2881–2898, https://doi.org/10.1175/JAS3984.1, 2007. a
Bissolli, P., Deutschländer, T., Imbery, F., Haeseler, S., Lefebvre, C.,
Blahak, J., Fleckenstein, R., Breyer, J., Rocek, M., Kreienkamp, F.,
Rösner, S., and Schreiber, K.-J.: Hitzewelle Juli 2019 in Westeuropa –
neuer nationaler Rekord in Deutschland, Deutscher Wetterdienst, Abteilung Klimaüberwachung, available at:
https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20190801_hitzerekord_juli2019.pdf?__blob=publicationFile&v=3
(last access: 31 August 2020), 2019. a
Bott, A.: Synoptische Meteorologie, Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-25122-1, 2012. a
Brunner, L., Schaller, N., Anstey, J., Sillmann, J., and Steiner, A. K.:
Dependence of present and future European temperature extremes on the location of atmospheric blocking, Geophys. Res. Lett., 45, 6311–6320, 2018. a
Cheung, H. N., Zhou, W., Mok, H. Y., Wu, M. C., and Shao, Y.: Revisiting the
climatology of atmospheric blocking in the Northern Hemisphere, Adv. Atmos.
Sci., 30, 397–410, 2013. a
Davini, P. and D'Andrea, F.: From CMIP3 to CMIP6: Northern Hemisphere
atmospheric blocking simulation in present and future climate, J. Climate, 33, 10021–10038, 2020. a
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
diagnostics, variability, and trends of Northern Hemisphere blocking, J.
Climate, 25, 6496–6509, 2012. a
Deutscher Wetterdienst: The weather in Germany in July 2019,available at: https://www.dwd.de/EN/press/press_release/EN/2019/20190730_the_weather_in_germany_in_july_2019.pdf?__blob=publicationFile&v=2
(last access: 31 August 2020), 2019. a
Deutscher Wetterdienst: DWD-Stationen Duisburg-Baerl und Tönisvorst jetzt
Spitzenreiter mit 41,2 Grad Celsius, available at:
https://www.dwd.de/DE/presse/pressemitteilungen/DE/2020/20201217_annulierung_lingen_news.html
(last access: 11 February 2021), 2020. a
Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical
northern hemisphere wintertime circulation: Geographical distribution and
regional persistence characteristics, Mon. Weather Rev., 111, 1567–1586, 1983. a
Egger, J.: The blocking transition, in: Irreversible phenomena and dynamical
systems analysis in geosciences, edited by: Nicolis, C. and Nicolis, G.,
Springer Netherlands, Dordrecht, 181–197, https://doi.org/10.1007/978-94-009-4778-8_10, 1987. a
Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent verification of the
ECMWF ensemble over the Euro-Atlantic sector, Q. J. Roy. Meteorol. Soc., 141,
916–924, 2015. a
Freva: Freie Universität Berlin evaluation system (Freva), available at:
https://freva.met.fu-berlin.de/ (last access: 10 September 2020), 2017. a
Gottwald, G. A., Crommelin, D. T., and Franzke, C. L. E.: Stochastic climate
theory, Cambridge University Press, https://doi.org/10.1017/9781316339251.009, 2016. a
Grewal, J. K., Krzywinski, M., and Altman, N.: Markov models – Markov chains, Nat. Methods, 16, 663–664, https://doi.org/10.1038/s41592-019-0476-x, 2019. a
Henley, J., Chrisafis, A., and Jones, S.: France records all-time highest
temperature of 45.9 ∘C, The Guardian, 28 June 2019, available at: https://www.theguardian.com/world/2019/jun/28/france-on-red-alert-as-heatwave-forecast-to-reach-record-45c (last access: 31 August 2020), 2019. a
Hirt, M., Kröner, I., and Dioni, E.: Numerical simulaton of vortex flows
with a meteorological application – Report for the project “Vortex Flows”,
Tech. rep., Technische Universität Berlin, Berlin, 2015. a
Hong, C.-C., Hsu, H.-H., Lin, N.-H., and Chiu, H.: Roles of European blocking
and tropical-extratropical interaction in the 2010 Pakistan flooding, Geophys. Res. Lett., 38, L13806 https://doi.org/10.1029/2011gl047583, 2011. a
Kadow, C., Illing, S., Lucio-Eceiza, E. E., Bergemann, M., Ramadoss, M.,
Sommer, P. S., Kunst, O., Schartner, T., Pankatz, K., Grieger, J.,
Schuster, M., Richling, A., Thiemann, H., Kirchner, I., Rust, H. W.,
Ludwig, T., Cubasch, U., and Ulbrich, U.: Introduction to Freva – A
Free Evaluation System Framework for Earth System Modeling, J.
Open Res. Softw., 9, 13, https://doi.org/10.5334/jors.253, 2021. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino, M., and Potter, G.: Ncep–doe amip-ii reanalysis (r-2), B. Am. Meteorol. Soc., 83, 1631–1644, 2002. a
Kimoto, M. and Ghil, M.: Multiple flow regimes in the Northern Hemisphere
winter. Part II: Sectorial regimes and preferred transitions, J. Atmos. Sci.,
50, 2645–2673, 1993. a
Kuhlbrodt, T. and Névir, P.: Low-order point vortex models of atmospheric
blocking, Meteorol. Atmos. Phys., 73, 127–138, 2000. a
Lucarini, V., Freitas, A. C. M., Nicol, M., Freitas, J. M., Todd, M., Faranda, D., Kuna, T., Hollande, M., and Vaienti, S.: Extremes and recurrence in dynamical systems, Wiley, New York, https://doi.org/10.1002/9781118632321, 2016. a
Luo, D., Zhang, W., Zhong, L., and Dai, A.: A nonlinear theory of atmospheric
blocking: A potential vorticity gradient view, J. Atmos. Sci., 76, 2399–2427, 2019. a
Markov, A. A.: An Example of Statistical Investigation of the Text Eugene Onegin Concerning the Connection of Samples in Chains, Sci. Context, 19,
591–600, https://doi.org/10.1017/S0269889706001074, 2006. a
Matlab: MATLAB version 9.0.0.341360 (R2016a), The MathWorks Inc., Natick,
Massachusetts, 2016. a
McCullagh, P. and Nelder, J. A.: Generalized Linear Models, 2nd Edn., Chapman & Hall/CRC, London, UK, 1989. a
Mohr, S., Wilhelm, J., Wandel, J., Kunz, M., Portmann, R., Punge, H. J.,
Schmidberger, M., Quinting, J. F., and Grams, C. M.: The role of large-scale
dynamics in an exceptional sequence of severe thunderstorms in Europe
May–June 2018, Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, 2020. a
Müller, A. and Névir, P.: A geometric application of Nambu mechanics:
the motion of three point vortices in the plane, J. Phys. A, 47, 105201, https://doi.org/10.1088/1751-8113/47/10/105201, 2014. a
National Centers for Environmental Prediction, National
Weather Service, NOAA, U.S. Department of Commerce:
NCEP/DOE Reanalysis 2 (R2),
Research Data Archive at the National Center for
Atmospheric Research [data set], Computational and Information Systems Laboratory,
Boulder, CO, https://doi.org/10.5065/KVQZ-YJ93 (last access: 18 August 2020),
2000. a
Newton, P. K.: The N-Vortex Problem: Analytical Techniques, Springer-Verlag,
New York, https://doi.org/10.1115/1.1445334, 2001. a
Obukhov, A., Kurganskii, M., and Tatarskaia, M.: Dynamic conditions for the
origin of drought and other large-scale weather anomalies, Meteorologiia i
Gidrologiia, 10, 5–13, 1984. a
Pelly, J. L. and Hoskins, B. J.: A new perspective on blocking, J. Atmos. Sci., 60, 743–755, 2003. a
Pfahl, S. and Wernli, H.: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales, Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261, 2012. a
Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., and Wernli, H.:
Importance of latent heat release in ascending air streams for atmospheric
blocking, Nat. Geosci., 8, 610–614, 2015. a
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 20 December 2020), 2018. a
Riboldi, J., Lott, F., d'Andrea, F., and Rivière, G.: On the Linkage
Between Rossby Wave Phase Speed, Atmospheric Blocking, and Arctic Amplification, Geophys. Res. Lett., 47, e2020GL087796, https://doi.org/10.1029/2020gl087796, 2020. a
Russo, S., Sillmann, J., and Fischer, E. M.: Top ten European heatwaves since 1950 and their occurrence in the coming decades, Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003, 2015. a
Scherrer, S. C., Croci-Maspoli, M., Schwierz, C., and Appenzeller, C.:
Two-dimensional indices of atmospheric blocking and their statistical
relationship with winter climate patterns in the Euro-Atlantic region, Int.
J. Climatol., 26, 233–249, 2006. a
Schielicke, L., Névir, P., and Ulbrich, U.: Kinematic vorticity number – a tool for estimating vortex sizes and circulations, Tellus A, 68,
29464, https://doi.org/10.3402/tellusa.v68.29464, 2016. a, b
Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X., Peters, D.,
and Fraedrich, K.: Large-Scale Flow and the Long-Lasting Blocking High over
Russia: Summer 2010, Mon. Weather Rev., 140, 2967–2981, https://doi.org/10.1175/MWR-D-11-00249.1, 2012. a
Schwierz, C., Croci-Maspoli, M., and Davies, H.: Perspicacious indicators of
atmospheric blocking, Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003gl019341, 2004. a
Steinfeld, D. and Pfahl, S.: The role of latent heating in atmospheric blocking dynamics: a global climatology, Clim. Dynam., 53, 6159–6180, 2019. a
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x, 1990. a, b, c
Truesdell, C.: Two measures of vorticity, Indiana Univ. Math. J., 2, 173–217, 1953. a
Truesdell, C.: The kinematics of vorticity, Indiana University Press, Bloomington, Indiana, 1954. a
Tung, K. K. and Lindzen, R.: A theory of stationary long waves. Part I: A simple theory of blocking, Mon. Weather Rev., 107, 714–734, 1979. a
Tyrlis, E. and Hoskins, B. J.: Aspects of a northern hemisphere atmospheric
blocking Climatology, J. Atmos. Sci., 65, 1638–1652, https://doi.org/10.1175/2007JAS2337.1, 2008. a, b
Vautard, R., Mo, K. C., and Ghil, M.: Statistical significance test for
transition matrices of atmospheric Markov chains, J. Atmos. Sci., 47,
1926–1931, 1990. a
Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp, F., van Oldenborgh, G. J.,
Otto, F. E. L., Ribes, A., Robin, Y., Schneider,
M., Soubeyroux, J.-M., Stott, P., Seneviratne, S. I., Vogel, M. M., and Wehner, M.: Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe, Environ. Res. Lett., 15, 094077, https://doi.org/10.1088/1748-9326/aba3d4, 2020. a
Wallace, J. M., Zhang, Y., and Lau, K.-H.: Structure and seasonality of
interannual and interdecadal variability of the geopotential height and temperature fields in the Northern Hemisphere troposphere, J. Climate, 6,
2063–2082, 1993. a
Woollings, T. and Blackburn, M.: The North Atlantic jet stream under climate
change and its relation to the NAO and EA patterns, J. Climate, 25, 886–902, 2012. a
Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey,
B., Sillmann, J., Lupo, A. R., and Seneviratne, S.: Blocking and its response
to climate change, Curr. Climate Change Rep., 4, 287–300, 2018. a
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this...