Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-991-2021
https://doi.org/10.5194/wcd-2-991-2021
Research article
 | 
27 Oct 2021
Research article |  | 27 Oct 2021

A global analysis of the dry-dynamic forcing during cyclone growth and propagation

Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger

Related authors

Relating extratropical atmospheric heat transport to cyclone life cycle characteristics and numbers in Southern Hemispheric winter
Jan Zibell, Alejandro Hermoso, Aaron Donohoe, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-2314,https://doi.org/10.5194/egusphere-2025-2314, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Clear-air turbulence derived from in situ aircraft observation – a weather feature-based typology using ERA5 reanalysis
Ming Hon Franco Lee and Michael Sprenger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1949,https://doi.org/10.5194/egusphere-2025-1949, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
The interaction of warm conveyor belt outflows with the upper-level waveguide: a four-type climatological classification
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1731,https://doi.org/10.5194/egusphere-2025-1731, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Revealing the dynamics of a local Alpine windstorm using large-eddy simulations
Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
Weather Clim. Dynam., 6, 447–469, https://doi.org/10.5194/wcd-6-447-2025,https://doi.org/10.5194/wcd-6-447-2025, 2025
Short summary
psit 1.0: A System to Compress Lagrangian Flows
Alexander Pietak, Langwen Huang, Luigi Fusco, Michael Sprenger, Sebastian Schemm, and Torsten Hoefler
EGUsphere, https://doi.org/10.5194/egusphere-2025-793,https://doi.org/10.5194/egusphere-2025-793, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Related subject area

Dynamical processes in midlatitudes
Minimal influence of future Arctic sea ice loss on North Atlantic jet stream morphology
Yvonne Anderson, Jacob Perez, and Amanda C. Maycock
Weather Clim. Dynam., 6, 595–608, https://doi.org/10.5194/wcd-6-595-2025,https://doi.org/10.5194/wcd-6-595-2025, 2025
Short summary
Weather type reconstruction using machine learning approaches
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025,https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Temporally and zonally varying atmospheric waveguides – climatologies and connections to quasi-stationary waves
Rachel H. White and Lualawi Mareshet Admasu
Weather Clim. Dynam., 6, 549–570, https://doi.org/10.5194/wcd-6-549-2025,https://doi.org/10.5194/wcd-6-549-2025, 2025
Short summary
Moisture transport axes: a unifying definition for tropical moisture exports, atmospheric rivers, and warm moist intrusions
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
Weather Clim. Dynam., 6, 431–446, https://doi.org/10.5194/wcd-6-431-2025,https://doi.org/10.5194/wcd-6-431-2025, 2025
Short summary
On the movement of atmospheric blocking systems and the associated temperature responses
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
Weather Clim. Dynam., 6, 413–429, https://doi.org/10.5194/wcd-6-413-2025,https://doi.org/10.5194/wcd-6-413-2025, 2025
Short summary

Cited articles

Avila, L. A., Pasch, R. J., and Jiing, J.-G.: Atlantic tropical systems of 1996 and 1997: Years of contrasts, Mon. Weather Rev., 128, 3695–3706, https://doi.org/10.1175/1520-0493(2000)128<3695:ATSOAY>2.0.CO;2, 2000. a
Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will extratropical storms intensify in a warmer climate?, J. Climate, 22, 2276–2301, https://doi.org/10.1175/2008JCLI2678.1, 2009. a, b
Binder, H., Boettcher, M., Joos, H., and Wernli, H.: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter, J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1, 2016. a
Boettcher, M. and Wernli, H.: A 10-yr Climatology of diabatic Rossby waves in the Northern Hemisphere, Mon. Weather Rev., 141, 1139–1154, https://doi.org/10.1175/MWR-D-12-00012.1, 2013. a, b
Browning, K. A.: Organization of Clouds and Precipitation in Extratropical Cyclones, in: Extratropical Cyclones, edited by: Newton, C. W. and Holopainen, E. O., American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-944970-33-8_8, 1990. a
Download
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
Share