Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-1003-2022
https://doi.org/10.5194/wcd-3-1003-2022
Research article
 | 
23 Aug 2022
Research article |  | 23 Aug 2022

Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya

Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda

Related authors

Exploring the daytime boundary layer evolution based on Doppler spectrum width from multiple coplanar wind lidars during CROSSINN
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
EGUsphere, https://doi.org/10.5194/egusphere-2023-1977,https://doi.org/10.5194/egusphere-2023-1977, 2023
Short summary
Adverse impact of terrain steepness on thermally driven initiation of orographic convection
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023,https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary
A gridded multi-site precipitation generator for complex terrain: an evaluation in the Austrian Alps
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023,https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022,https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Is it north or west foehn? A Lagrangian analysis of Penetration and Interruption of Alpine Foehn intensive observation period 1 (PIANO IOP 1)
Manuel Saigger and Alexander Gohm
Weather Clim. Dynam., 3, 279–303, https://doi.org/10.5194/wcd-3-279-2022,https://doi.org/10.5194/wcd-3-279-2022, 2022
Short summary

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024,https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Multi-decadal pacemaker simulations with an intermediate-complexity climate model
Franco Molteni, Fred Kucharski, and Riccardo Farneti
Weather Clim. Dynam., 5, 293–322, https://doi.org/10.5194/wcd-5-293-2024,https://doi.org/10.5194/wcd-5-293-2024, 2024
Short summary
Replicating the Hadley cell edge and subtropical jet latitude disconnect in idealized atmospheric models
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024,https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024,https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Understanding the dependence of mean precipitation on convective treatment and horizontal resolution in tropical aquachannel experiments
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023,https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary

Cited articles

Bond, N. A., Dierking, C. F., and Doyle, J. D.: Research aircraft and wind profiler observations in Gastineau Channel during a Taku wind event, Weather Forecast., 21, 489–501, https://doi.org/10.1175/WAF932.1, 2006. a
Cao, G., Giambelluca, T. W., Stevens, D. E., and Schroeder, T. A.: Inversion variability in the Hawaiian trade wind regime, J. Climate, 20, 1145–1160, https://doi.org/10.1175/JCLI4033.1, 2007. a
Carrillo, J., Guerra, J. C., Cuevas, E., and Barrancos, J.: Characterization of the Marine Boundary Layer and the Trade-Wind Inversion over the Sub-tropical North Atlantic, Bound.-Lay. Meteorol., 158, 311–330, https://doi.org/10.1007/s10546-015-0081-1, 2016. a
Copernicus Climate Change Service (C3S) at ECMWF: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service [data set], https://doi.org/10.24381/cds.bd0915c6, 2018. a
Copernicus Climate Change Service (C3S) at ECMWF: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a
Download
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.