Articles | Volume 3, issue 4
https://doi.org/10.5194/wcd-3-1439-2022
https://doi.org/10.5194/wcd-3-1439-2022
Research article
 | 
22 Dec 2022
Research article |  | 22 Dec 2022

European heatwaves in present and future climate simulations: a Lagrangian analysis

Lisa Schielicke and Stephan Pfahl

Related authors

Invited perspectives: Thunderstorm Intensification from Mountains to Plains
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798,https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Environments and lifting mechanisms of cold-frontal convective cells during the warm-season in Germany
George Pacey, Stephan Pfahl, and Lisa Schielicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2978,https://doi.org/10.5194/egusphere-2024-2978, 2024
Short summary
Meeting summary: Exploring cloud dynamics with Cloud Model 1 and 3D visualization – insights from a university modeling workshop
Lisa Schielicke, Yidan Li, Jerome Schyns, Aaron Sperschneider, Jose Pablo Solano Marchini, and Christoph Peter Gatzen
Weather Clim. Dynam., 5, 703–710, https://doi.org/10.5194/wcd-5-703-2024,https://doi.org/10.5194/wcd-5-703-2024, 2024
Short summary
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023,https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021,https://doi.org/10.5194/wcd-2-927-2021, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
From sea to sky: understanding the sea surface temperature impact on an atmospheric blocking event using sensitivity experiments with the ICOsahedral Nonhydrostatic (ICON) model
Svenja Christ, Marta Wenta, Christian M. Grams, and Annika Oertel
Weather Clim. Dynam., 6, 17–42, https://doi.org/10.5194/wcd-6-17-2025,https://doi.org/10.5194/wcd-6-17-2025, 2025
Short summary
Simulating record-shattering cold winters of the beginning of the 21st century in France
Camille Cadiou and Pascal Yiou
Weather Clim. Dynam., 6, 1–15, https://doi.org/10.5194/wcd-6-1-2025,https://doi.org/10.5194/wcd-6-1-2025, 2025
Short summary
Detection and consequences of atmospheric deserts: insights from a case study
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024,https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
A global climatology of sting-jet extratropical cyclones
Suzanne L. Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
Weather Clim. Dynam., 5, 1523–1544, https://doi.org/10.5194/wcd-5-1523-2024,https://doi.org/10.5194/wcd-5-1523-2024, 2024
Short summary
The impact of preceding convection on the development of Medicane Ianos and the sensitivity to sea surface temperature
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024,https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary

Cited articles

Atmospheric Dynamics Group, Institute for Atmospheric, and Climate Science, ETH Zürich: LAGRANTO The Lagrangian Analysis Tool, https://iacweb.ethz.ch/staff/sprenger/lagranto/download.html (last access: 20 December 2022), 2020. a
Bennett, L., Melchers, B., and Proppe, B.: Curta: A General-purpose High-Performance Computer at ZEDAT, Freie Universität Berlin, https://doi.org/10.17169/refubium-26754, 2020. a
Bieli, M., Pfahl, S., and Wernli, H.: A Lagrangian investigation of hot and cold temperature extremes in Europe, Q. J. Roy. Meteorol. Soc., 141, 98–108, https://doi.org/10.1002/qj.2339, 2015. a, b, c, d, e
Breshears, D. D., Fontaine, J. B., Ruthrof, K. X., Field, J. P., Feng, X., Burger, J. R., Law, D. J., Kala, J., and Hardy, G. E. S. J.: Underappreciated plant vulnerabilities to heat waves, New Phytol., 231, 32–39, https://doi.org/10.1111/nph.17348, 2021. a
Brunner, L., Schaller, N., Anstey, J., Sillmann, J., and Steiner, A. K.: Dependence of Present and Future European Temperature Extremes on the Location of Atmospheric Blocking, Geophys. Res. Lett., 45, 6311–6320, https://doi.org/10.1029/2018GL077837, 2018. a
Download
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.