Articles | Volume 1, issue 2
Weather Clim. Dynam., 1, 459–479, 2020
https://doi.org/10.5194/wcd-1-459-2020
Weather Clim. Dynam., 1, 459–479, 2020
https://doi.org/10.5194/wcd-1-459-2020
Research article
10 Sep 2020
Research article | 10 Sep 2020

The life cycle of upper-level troughs and ridges: a novel detection method, climatologies and Lagrangian characteristics

Sebastian Schemm et al.

Related authors

Storm track response to uniform global warming downstream of an idealized sea surface temperature front
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022,https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
A global analysis of the dry-dynamic forcing during cyclone growth and propagation
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021,https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
A vorticity-and-stability diagram as a means to study potential vorticity nonconservation
Gabriel Vollenweider, Elisa Spreitzer, and Sebastian Schemm
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-31,https://doi.org/10.5194/wcd-2021-31, 2021
Publication in WCD not foreseen
Short summary
The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective
Sebastian Schemm, Heini Wernli, and Hanin Binder
Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021,https://doi.org/10.5194/wcd-2-55-2021, 2021
Short summary
Ambient conditions prevailing during hail events in central Europe
Michael Kunz, Jan Wandel, Elody Fluck, Sven Baumstark, Susanna Mohr, and Sebastian Schemm
Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020,https://doi.org/10.5194/nhess-20-1867-2020, 2020
Short summary

Related subject area

Dynamical processes in midlatitudes
Robust poleward jet shifts in idealised baroclinic-wave life-cycle experiments with noisy initial conditions
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023,https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Revisiting the wintertime emergent constraint of the southern hemispheric midlatitude jet response to global warming
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023,https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary
The global atmospheric energy transport analysed by a wavelength-based scale separation
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023,https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
European heatwaves in present and future climate simulations: a Lagrangian analysis
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022,https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Signatures of Eurasian heat waves in global Rossby wave spectra
Iana Strigunova, Richard Blender, Frank Lunkeit, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 1399–1414, https://doi.org/10.5194/wcd-3-1399-2022,https://doi.org/10.5194/wcd-3-1399-2022, 2022
Short summary

Cited articles

Afargan, H. and Kaspi, Y.: A Midwinter Minimum in North Atlantic Storm Track Intensity in Years of a Strong Jet, Geophys. Res. Lett., 44, 12511–12518, https://doi.org/10.1002/2017GL075136, 2017. a
Bannon, P. R.: A Model of Rocky Mountain Lee Cyclogenesis, J. Atmos. Sci., 49, 1510–1522, https://doi.org/10.1175/1520-0469(1992)049<1510:AMORML>2.0.CO;2, 1992. a
Benedict, J. J., Lee, S., and Feldstein, S. B.: Synoptic View of the North Atlantic Oscillation, J. Atmos. Sci., 61, 121–144, https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2, 2004. a
Booth, J. F., Polvani, L., O'Gorman, P. A., and Wang, S.: Effective stability in a moist baroclinic wave, Atmos. Sci. Lett., 16, 56–62, https://doi.org/10.1002/asl2.520, 2015. a
Browning, K. A.: Conceptual Models of Precipitation Systems, Weather Forecast., 1, 23–41, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2, 1986. a
Download
Short summary
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece elements of weather and climate research. A novel method is introduced to identify and track the life cycle of troughs and ridges and their orientation. The aim is to close the existing gap between methods that detect the initiation phase and methods that detect the decaying phase of Rossby wave development. Global climatologies, the influence of ENSO and Lagrangian characteristics are discussed.