Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The life cycle of upper-level troughs and ridges: a novel detection method, climatologies and Lagrangian characteristics
Sebastian Schemm
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Stefan Rüdisühli
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Michael Sprenger
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Related authors
Mona Bukenberger, Lena Fasnacht, Stefan Rüdisühli, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2024-1789, https://doi.org/10.5194/egusphere-2024-1789, 2024
Short summary
Short summary
The jet stream is a band of strong westerly winds, within which jet streaks are regions of faster wind speeds that can aid storm development. This study analyze jet streaks over the North Atlantic during winter. Jet streaks are linked to pairs of surface anticyclones and cyclones and often accompanied by intense precipitation, especially for extreme jet streaks. With cloud processes playing an increased role for extreme jet streaks, follow-up studies concerning their role are warranted.
Victoria Bauer, Sebastian Schemm, Raphael Portmann, Jingzhi Zhang, Gesa K. Eirund, Steven J. De Hertog, and Jan Zibell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2087, https://doi.org/10.5194/egusphere-2024-2087, 2024
Short summary
Short summary
Past research has shown that the North Atlantic ocean circulation reacts strongly to global land cover changes. Using Earth system model simulations featuring idealized forestation and deforestation of North America, this study shows that the North Atlantic ocean is highly sensitive to upstream land cover changes. Anomalies in air temperature over land propagate downstream and modify ocean-to-atmosphere heat fluxes over the North Atlantic through altering cold air outbreak frequency.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Sebastian Schemm and Matthias Röthlisberger
Weather Clim. Dynam., 5, 43–63, https://doi.org/10.5194/wcd-5-43-2024, https://doi.org/10.5194/wcd-5-43-2024, 2024
Short summary
Short summary
Climate change has started to weaken atmospheric circulation during summer in the Northern Hemisphere. However, there is low agreement on the processes underlying changes in, for example, the stationarity of weather patterns or the seasonality of the jet response to warming. This study examines changes during summertime in an idealised setting and confirms some important changes in hemisphere-wide wave and jet characteristics under warming.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022, https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Short summary
Much of the change in our daily weather patterns is due to the development and intensification of extratropical cyclones. The response of these systems to climate change is an important topic of ongoing research. This study is the first to reproduce the changes in the North Atlantic circulation and extratropical cyclone characteristics found in fully coupled Earth system models under high-CO2 scenarios, but in an idealized, reduced-complexity simulation with uniform warming.
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
Gabriel Vollenweider, Elisa Spreitzer, and Sebastian Schemm
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-31, https://doi.org/10.5194/wcd-2021-31, 2021
Publication in WCD not foreseen
Short summary
Short summary
The interactions between the dry and moist components of the atmosphere and the influence of, for example, the phase transition of water on the atmospheric circulation are often studied from the potential vorticity (PV) framework. Changes in the PV due to, for example, condensation can relate to changes in the static stability or vorticity. To better the interaction between these two drivers of PV changes, we explore the usefulness of a novel vorticity-and-stability diagram.
Sebastian Schemm, Heini Wernli, and Hanin Binder
Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021, https://doi.org/10.5194/wcd-2-55-2021, 2021
Short summary
Short summary
North Pacific cyclone intensities are reduced in winter, which is in contrast to North Atlantic cyclones and unexpected from the high available growth potential in winter. We investigate this intensity suppression from a cyclone life-cycle perspective and show that in winter Kuroshio cyclones propagate away from the region where they can grow more quickly, East China Sea cyclones are not relevant before spring, and Kamchatka cyclones grow in a region of reduced growth potential.
Michael Kunz, Jan Wandel, Elody Fluck, Sven Baumstark, Susanna Mohr, and Sebastian Schemm
Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, https://doi.org/10.5194/nhess-20-1867-2020, 2020
Short summary
Short summary
Severe convective storms are major loss drivers across Europe. We reconstructed several thousand storm tracks from radar reflectivity over a 10-year period for parts of Europe. The tracks were additionally combined with hail reports, reanalysis data, and front detections based on ERA-Interim (ECMWF Reanalysis). It is found that frontal hailstorms on average produce larger hailstones and have longer tracks and that wind shear is important not only for the hail diameter but also for track length.
Clemens Spensberger and Sebastian Schemm
Weather Clim. Dynam., 1, 175–189, https://doi.org/10.5194/wcd-1-175-2020, https://doi.org/10.5194/wcd-1-175-2020, 2020
Short summary
Short summary
In this paper, we take a second look at the development of an intense storm that made landfall in Norway a few hours into the new year of 1992, focussing on the effect of the Scandinavian mountains on the storm. We find that the cyclone core evolves largely unaffected, although both the warm and the cold fronts decay rapidly while passing over the mountains. This result suggests that the fronts of a cyclone can become detached from their cyclone core as part of the cyclone’s occlusion process.
Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3461, https://doi.org/10.5194/egusphere-2024-3461, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study investigates the Laseyer, a local windstorm in a narrow Swiss valley, characterized by strong south-easterly winds during north-westerly ambient flow. Using large-eddy simulations (LES) with 30 m grid spacing, this is the first study to reveal that the extreme gusts in the valley are caused by an amplifying interplay of two recirculation regions. Modifying terrain and ambient wind conditions affects the windstorm's intensity and highlights the importance of topographic details in LES.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
Mona Bukenberger, Lena Fasnacht, Stefan Rüdisühli, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2024-1789, https://doi.org/10.5194/egusphere-2024-1789, 2024
Short summary
Short summary
The jet stream is a band of strong westerly winds, within which jet streaks are regions of faster wind speeds that can aid storm development. This study analyze jet streaks over the North Atlantic during winter. Jet streaks are linked to pairs of surface anticyclones and cyclones and often accompanied by intense precipitation, especially for extreme jet streaks. With cloud processes playing an increased role for extreme jet streaks, follow-up studies concerning their role are warranted.
Victoria Bauer, Sebastian Schemm, Raphael Portmann, Jingzhi Zhang, Gesa K. Eirund, Steven J. De Hertog, and Jan Zibell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2087, https://doi.org/10.5194/egusphere-2024-2087, 2024
Short summary
Short summary
Past research has shown that the North Atlantic ocean circulation reacts strongly to global land cover changes. Using Earth system model simulations featuring idealized forestation and deforestation of North America, this study shows that the North Atlantic ocean is highly sensitive to upstream land cover changes. Anomalies in air temperature over land propagate downstream and modify ocean-to-atmosphere heat fluxes over the North Atlantic through altering cold air outbreak frequency.
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2148, https://doi.org/10.5194/egusphere-2024-2148, 2024
Short summary
Short summary
Our study looked at the intense hailstorms in Switzerland on June 28, 2021. We used detailed computer simulations to understand how these storms formed, grew stronger, and eventually faded away. By tracking storm features and studying the airflows and weather conditions around them, we found that our model accurately predicted storm paths and lifespans. The storms showed complex patterns of hail and rain. This research can help improve the forecasting and handling of severe weather events.
Marc Federer, Lukas Papritz, Michael Sprenger, and Christian M. Grams
EGUsphere, https://doi.org/10.5194/egusphere-2024-2112, https://doi.org/10.5194/egusphere-2024-2112, 2024
Short summary
Short summary
Although extratropical cyclones in the North Atlantic are among the most impactful midlatitude weather systems, the potential for their growth on synoptic scales is not well understood. Here we show how they convert potential into kinetic energy through the descent of cold upper-tropospheric air from high latitudes. Surface processes, such as ocean heat exchange, have a smaller effect. Understanding these dynamics helps to explain the processes that maintain storm tracks.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024, https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024, https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary
Short summary
Using an innovative approach, the descent of foehn is diagnosed from a Lagrangian perspective based on 15 kilometer-scale simulations combined with online trajectories. The descent is confined to distinct hotspots in the immediate lee of local mountain peaks and chains. Two detailed case studies reveal a varying wave regime to be associated with the descent. Furthermore, additional controlling factors, such as the diurnal cycle, likewise influence the descent activity.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
Short summary
Short summary
A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
Sebastian Schemm and Matthias Röthlisberger
Weather Clim. Dynam., 5, 43–63, https://doi.org/10.5194/wcd-5-43-2024, https://doi.org/10.5194/wcd-5-43-2024, 2024
Short summary
Short summary
Climate change has started to weaken atmospheric circulation during summer in the Northern Hemisphere. However, there is low agreement on the processes underlying changes in, for example, the stationarity of weather patterns or the seasonality of the jet response to warming. This study examines changes during summertime in an idealised setting and confirms some important changes in hemisphere-wide wave and jet characteristics under warming.
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023, https://doi.org/10.5194/acp-23-8705-2023, 2023
Short summary
Short summary
We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Hanna Joos, Michael Sprenger, Hanin Binder, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 4, 133–155, https://doi.org/10.5194/wcd-4-133-2023, https://doi.org/10.5194/wcd-4-133-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are strongly ascending, cloud- and precipitation-forming airstreams in extratropical cyclones. In this study we assess their representation in a climate simulation and their changes under global warming. They become moister, become more intense, and reach higher altitudes in a future climate, implying that they potentially have an increased impact on the mid-latitude flow.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Hanin Binder, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023, https://doi.org/10.5194/wcd-4-19-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are the main cloud- and precipitation-producing airstreams in extratropical cyclones. The latent heat release that occurs during cloud formation often contributes to the intensification of the associated cyclone. Based on the Community Earth System Model Large Ensemble coupled climate simulations, we show that WCBs and associated latent heating will become stronger in a future climate and be even more important for explosive cyclone intensification than in the present.
Michael A. Barnes, Thando Ndarana, Michael Sprenger, and Willem A. Landman
Weather Clim. Dynam., 3, 1291–1309, https://doi.org/10.5194/wcd-3-1291-2022, https://doi.org/10.5194/wcd-3-1291-2022, 2022
Short summary
Short summary
Stratospheric air can intrude into the troposphere and is associated with cyclonic development throughout the atmosphere. Through a highly idealized systematic approach, the effect that different intrusion characteristics have on surface cyclogenetic forcing is investigated. The proximity of stratospheric intrusions to the surface is shown to be the main factor in surface cyclogenetic forcing, whilst its width is an additional contributing factor.
Lukas Jansing, Lukas Papritz, Bruno Dürr, Daniel Gerstgrasser, and Michael Sprenger
Weather Clim. Dynam., 3, 1113–1138, https://doi.org/10.5194/wcd-3-1113-2022, https://doi.org/10.5194/wcd-3-1113-2022, 2022
Short summary
Short summary
This study presents a 5-year climatology of three main foehn types and three deep-foehn subtypes. The main types differ in their large-scale and Alpine-scale weather conditions and the subtypes in terms of the amount and extent of precipitation on the Alpine south side. The different types of foehn are found to strongly affect the local meteorological conditions at Altdorf. The study concludes by setting the new classification into a historic context.
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022, https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Short summary
Much of the change in our daily weather patterns is due to the development and intensification of extratropical cyclones. The response of these systems to climate change is an important topic of ongoing research. This study is the first to reproduce the changes in the North Atlantic circulation and extratropical cyclone characteristics found in fully coupled Earth system models under high-CO2 scenarios, but in an idealized, reduced-complexity simulation with uniform warming.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022, https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
Short summary
We investigate the variation in ice-nucleating particles (INPs) relevant for primary ice formation in mixed-phased clouds over the Alps based on simultaneous in situ observations at a mountaintop and a nearby high valley (1060 m height difference). In most cases, advection from the surrounding lower regions was responsible for changes in INP concentration, causing a diurnal cycle at the mountaintop. Our study underlines the importance of the planetary boundary layer as an INP reserve.
Lukas Bösiger, Michael Sprenger, Maxi Boettcher, Hanna Joos, and Tobias Günther
Geosci. Model Dev., 15, 1079–1096, https://doi.org/10.5194/gmd-15-1079-2022, https://doi.org/10.5194/gmd-15-1079-2022, 2022
Short summary
Short summary
Jet streams are coherent air flows that interact with atmospheric structures such as warm conveyor belts (WCBs) and the tropopause. Individually, these structures have a significant impact on the weather evolution. A first step towards a deeper understanding of the meteorological processes is to extract jet stream core lines, for which we develop a novel feature extraction algorithm. Based on the line geometry, we automatically detect and visualize potential interactions between WCBs and jets.
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
Gabriel Vollenweider, Elisa Spreitzer, and Sebastian Schemm
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-31, https://doi.org/10.5194/wcd-2021-31, 2021
Publication in WCD not foreseen
Short summary
Short summary
The interactions between the dry and moist components of the atmosphere and the influence of, for example, the phase transition of water on the atmospheric circulation are often studied from the potential vorticity (PV) framework. Changes in the PV due to, for example, condensation can relate to changes in the static stability or vorticity. To better the interaction between these two drivers of PV changes, we explore the usefulness of a novel vorticity-and-stability diagram.
Raphael Portmann, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, https://doi.org/10.5194/wcd-2-507-2021, 2021
Short summary
Short summary
We explore the three-dimensional life cycle of cyclonic structures
(so-called PV cutoffs) near the tropopause. PV cutoffs are frequent weather systems in the extratropics that lead to high-impact weather. However, many unknowns exist regarding their evolution. We present a new method to track PV cutoffs as 3D objects in reanalysis data by following air parcels along the flow. We study the climatological life cycles of PV cutoffs in detail and propose a classification into three types.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
Short summary
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
Sebastian Schemm, Heini Wernli, and Hanin Binder
Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021, https://doi.org/10.5194/wcd-2-55-2021, 2021
Short summary
Short summary
North Pacific cyclone intensities are reduced in winter, which is in contrast to North Atlantic cyclones and unexpected from the high available growth potential in winter. We investigate this intensity suppression from a cyclone life-cycle perspective and show that in winter Kuroshio cyclones propagate away from the region where they can grow more quickly, East China Sea cyclones are not relevant before spring, and Kamchatka cyclones grow in a region of reduced growth potential.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Raphael Portmann, Juan Jesús González-Alemán, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, https://doi.org/10.5194/wcd-1-597-2020, 2020
Short summary
Short summary
In September 2018 an intense Mediterranean cyclone with structural similarities to a hurricane, a so-called medicane, caused severe damage in Greece. Its development was uncertain, even just a few days in advance. The reason for this was uncertainties in the jet stream over the North Atlantic 3 d prior to cyclogenesis that propagated into the Mediterranean. They led to an uncertain position of the upper-level disturbance and, as a result, of the position and thermal structure of the cyclone.
Hanin Binder, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, https://doi.org/10.5194/wcd-1-577-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important cloud- and
precipitation-producing airstreams in extratropical cyclones. By combining satellite observations with model data from a new reanalysis dataset, this study provides detailed observational insight into the vertical cloud structure of WCBs. We find that the reanalyses essentially capture the observed cloud pattern, but the observations reveal mesoscale structures not resolved by the temporally and spatially much coarser-resolution model data.
Michael Kunz, Jan Wandel, Elody Fluck, Sven Baumstark, Susanna Mohr, and Sebastian Schemm
Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, https://doi.org/10.5194/nhess-20-1867-2020, 2020
Short summary
Short summary
Severe convective storms are major loss drivers across Europe. We reconstructed several thousand storm tracks from radar reflectivity over a 10-year period for parts of Europe. The tracks were additionally combined with hail reports, reanalysis data, and front detections based on ERA-Interim (ECMWF Reanalysis). It is found that frontal hailstorms on average produce larger hailstones and have longer tracks and that wind shear is important not only for the hail diameter but also for track length.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Clemens Spensberger and Sebastian Schemm
Weather Clim. Dynam., 1, 175–189, https://doi.org/10.5194/wcd-1-175-2020, https://doi.org/10.5194/wcd-1-175-2020, 2020
Short summary
Short summary
In this paper, we take a second look at the development of an intense storm that made landfall in Norway a few hours into the new year of 1992, focussing on the effect of the Scandinavian mountains on the storm. We find that the cyclone core evolves largely unaffected, although both the warm and the cold fronts decay rapidly while passing over the mountains. This result suggests that the fronts of a cyclone can become detached from their cyclone core as part of the cyclone’s occlusion process.
Annika Oertel, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 127–153, https://doi.org/10.5194/wcd-1-127-2020, https://doi.org/10.5194/wcd-1-127-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important, mainly stratiform cloud forming airstreams in extratropical cyclones that can include embedded convection. This WCB case study systematically compares the characteristics of convective vs. slantwise ascent of the WCB. We find that embedded convection leads to regions of significantly stronger precipitation. Moreover, it strongly modifies the potential vorticity distribution in the lower and upper troposphere, where its also influences the waveguide.
Matthias Röthlisberger, Michael Sprenger, Emmanouil Flaounas, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 1, 45–62, https://doi.org/10.5194/wcd-1-45-2020, https://doi.org/10.5194/wcd-1-45-2020, 2020
Short summary
Short summary
In this study we quantify how much the coldest, middle and hottest third of all days during extremely hot summers contribute to their respective seasonal mean anomaly. This
extreme-summer substructurevaries substantially across the Northern Hemisphere and is directly related to the local physical drivers of extreme summers. Furthermore, comparing re-analysis (i.e. measurement-based) and climate model extreme-summer substructures reveals a remarkable level of agreement.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Bojan Škerlak, Stephan Pfahl, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 19, 6535–6549, https://doi.org/10.5194/acp-19-6535-2019, https://doi.org/10.5194/acp-19-6535-2019, 2019
Short summary
Short summary
Upper-level fronts are often associated with the rapid transport of stratospheric air to the lower troposphere, leading to significantly enhanced ozone concentrations. This paper considers the multi-scale nature that is needed to bring stratospheric air down to the surface. The final transport step to the surface can be related to frontal zones and the associated vertical winds or to near-horizontal tracer transport followed by entrainment into a growing planetary boundary layer.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, Hans-Eckhart Scheel, and Michael Sprenger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1192, https://doi.org/10.5194/acp-2017-1192, 2018
Revised manuscript not accepted
Davide Putero, Paolo Cristofanelli, Michael Sprenger, Bojan Škerlak, Laura Tositti, and Paolo Bonasoni
Atmos. Chem. Phys., 16, 14203–14217, https://doi.org/10.5194/acp-16-14203-2016, https://doi.org/10.5194/acp-16-14203-2016, 2016
Short summary
Short summary
The aim of this paper is to present STEFLUX, a tool to obtain a fast-computing identification of the stratospheric intrusion (SI) events occurring at a specific location and during a specified time window. STEFLUX results are compared to the SI observations at two high-mountain WMO/GAW global stations in Nepal and Italy, representative of two hot spots for climate change. Furthermore, the climatology of SI at the two stations is assessed, and the impact of several climate factors investigated.
Dimitris Akritidis, Andrea Pozzer, Prodromos Zanis, Evangelos Tyrlis, Bojan Škerlak, Michael Sprenger, and Jos Lelieveld
Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, https://doi.org/10.5194/acp-16-14025-2016, 2016
Short summary
Short summary
We investigate the contribution of tropopause folds in the summertime tropospheric ozone pool over the eastern Mediterranean and the Middle East. For this purpose we use the EMAC atmospheric chemistry–climate model and a fold identification algorithm. A clear increase of ozone is found in the middle troposphere due to fold activity. The interannual variability of near-surface ozone over the eastern Mediterranean is related to that of both tropopause folds and ozone in the free troposphere.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Florian Berkes, Peter Hoor, Heiko Bozem, Daniel Kunkel, Michael Sprenger, and Stephan Henne
Atmos. Chem. Phys., 16, 6011–6025, https://doi.org/10.5194/acp-16-6011-2016, https://doi.org/10.5194/acp-16-6011-2016, 2016
Short summary
Short summary
We presented airborne measurements of CO2 and O3 across the entrainment zone over a semi-remote environment in southwestern Germany in late summer 2011 .
For the first time CO2 and O3 were used as tracer to identify mixing through this transport barrier. We demonstrated that the tracer--tracer correlation of CO2 and O3 is a powerful tool to identify entrainment and mixing.
P. Reutter, B. Škerlak, M. Sprenger, and H. Wernli
Atmos. Chem. Phys., 15, 10939–10953, https://doi.org/10.5194/acp-15-10939-2015, https://doi.org/10.5194/acp-15-10939-2015, 2015
Short summary
Short summary
In this manuscript, we investigate the exchange of air masses across the dynamical tropopause (stratosphere-troposphere exchange, STE) in the vicinity of North Atlantic cyclones. By using two 6-hourly resolved ERA-Interim climatologies of STE and cyclones from 1979 to 2011, we are able to directly compute the amount of STE in the vicinity of every individual cyclone in this time period. This enables us to provide a robust and consistent quantification of STE near North Atlantic cyclones.
M. Sprenger and H. Wernli
Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, https://doi.org/10.5194/gmd-8-2569-2015, 2015
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
B. Škerlak, M. Sprenger, and H. Wernli
Atmos. Chem. Phys., 14, 913–937, https://doi.org/10.5194/acp-14-913-2014, https://doi.org/10.5194/acp-14-913-2014, 2014
Related subject area
Dynamical processes in midlatitudes
The impact of preceding convection on the development of Medicane Ianos and the sensitivity to sea surface temperature
The importance of diabatic processes for the dynamics of synoptic-scale extratropical weather systems – a review
The impact of synoptic storm likelihood on European subseasonal forecast uncertainty and their modulation by the stratosphere
Spatio-temporal averaging of jets obscures the reinforcement of baroclinicity by latent heating
Impact of stochastic physics on the representation of atmospheric blocking in EC-Earth3
The crucial representation of deep convection for the cyclogenesis of Medicane Ianos
The connection between North Atlantic storm track regimes and eastern Mediterranean cyclonic activity
A storm-relative climatology of compound hazards in Mediterranean cyclones
A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis
Linking compound weather extremes to Mediterranean cyclones, fronts, and airstreams
From Sea to Sky: Understanding the sea surface temperature impact on an atmospheric blocking event using sensitivity experiments with the ICOsahedral Nonhydrostatic (ICON) model
A linear assessment of barotropic Rossby wave propagation in different background flow configurations
Towards a process-oriented understanding of the impact of stochastic perturbations on the model climate
Atmospheric Deserts: Detection and Consequences
Deepening mechanisms of cut-off lows in the Southern Hemisphere and the role of jet streams: insights from eddy kinetic energy analysis
Large-scale perspective on extreme near-surface winds in the central North Atlantic
Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations
A global climatology of sting-jet extratropical cyclones
Changes in the North Atlantic Oscillation over the 20th century
Life cycle dynamics of Greenland blocking from a potential vorticity perspective
Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5
Influence of radiosonde observations on the sharpness and altitude of the midlatitude tropopause in the ECMWF IFS
Analysing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes
A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales
The upstream–downstream connection of North Atlantic and Mediterranean cyclones in semi-idealized simulations
Simulating record-shattering cold winters of the beginning of the 21st century in France
Understanding the vertical temperature structure of recent record-shattering heatwaves
Persistent warm and cold spells in the Northern Hemisphere extratropics: regionalisation, synoptic-scale dynamics and temperature budget
Linking Gulf Stream air–sea interactions to the exceptional blocking episode in February 2019: a Lagrangian perspective
Process-based classification of Mediterranean cyclones using potential vorticity
The relation between Rossby wave-breaking events and low-level weather systems
Aquaplanet simulations with winter and summer hemispheres: model setup and circulation response to warming
Seasonally dependent increases in subweekly temperature variability over Southern Hemisphere landmasses detected in multiple reanalyses
Identification of high-wind features within extratropical cyclones using a probabilistic random forest – Part 2: Climatology over Europe
Cold wintertime air masses over Europe: where do they come from and how do they form?
Diabatic effects on the evolution of storm tracks
Atmospheric response to cold wintertime Tibetan Plateau conditions over eastern Asia in climate models
Transient anticyclonic eddies and their relationship to atmospheric block persistence
A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones
Thunderstorm environments in Europe
What distinguishes 100-year precipitation extremes over central European river catchments from more moderate extreme events?
Towards a holistic understanding of blocked regime dynamics through a combination of complementary diagnostic perspectives
Moist available potential energy of the mean state of the atmosphere and the thermodynamic potential for warm conveyor belts and convection
Large spread in the representation of compound long-duration dry and hot spells over Europe in CMIP5
Similarity and variability of blocked weather-regime dynamics in the Atlantic–European region
Anomalous subtropical zonal winds drive decreases in southern Australian frontal rain
Origin of low-tropospheric potential vorticity in Mediterranean cyclones
Robust poleward jet shifts in idealised baroclinic-wave life-cycle experiments with noisy initial conditions
Revisiting the wintertime emergent constraint of the southern hemispheric midlatitude jet response to global warming
The global atmospheric energy transport analysed by a wavelength-based scale separation
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024, https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary
Short summary
Medicane Ianos was a very intense cyclone that led to harmful impacts over Greece. We explore what processes are important for the forecasting of Medicane Ianos, with the use of the Met Office weather model. There was a preceding precipitation event before Ianos’s birth, whose energetics generated a bubble in the tropopause. This bubble created the necessary conditions for Ianos to emerge and strengthen, and the processes are enhanced in simulations with a warmer Mediterranean Sea.
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024, https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Michele Filippucci, Simona Bordoni, and Paolo Davini
Weather Clim. Dynam., 5, 1207–1222, https://doi.org/10.5194/wcd-5-1207-2024, https://doi.org/10.5194/wcd-5-1207-2024, 2024
Short summary
Short summary
Atmospheric blocking is a recurring phenomenon in midlatitudes, causing winter cold spells and summer heat waves. Current models underestimate it, hindering understanding of global warming's impact on extremes. In this paper, we investigate whether stochastic parameterizations can improve blocking representation. We find that blocking frequency representation slightly deteriorates, following a change in midlatitude winds. We conclude by suggesting a direction for future model development.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Dor Sandler, Hadas Saaroni, Baruch Ziv, Talia Tamarin-Brodsky, and Nili Harnik
Weather Clim. Dynam., 5, 1103–1116, https://doi.org/10.5194/wcd-5-1103-2024, https://doi.org/10.5194/wcd-5-1103-2024, 2024
Short summary
Short summary
The North Atlantic region serves as a source of moisture and energy for Mediterranean storms. Its impact over the Levant region remains an open question due to its smaller weather systems and their longer distance from the ocean. We find an optimal circulation pattern which allows North Atlantic influence to reach farther into the eastern Mediterranean, thus making storms stronger and rainier. This may be relevant for future Mediterranean climate, which is projected to become much drier.
Raphaël Rousseau-Rizzi, Shira Raveh-Rubin, Jennifer L. Catto, Alice Portal, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024, https://doi.org/10.5194/wcd-5-1079-2024, 2024
Short summary
Short summary
We identify situations when rain and wind, rain and wave, or heat and dust hazards co-occur within Mediterranean cyclones. These hazard combinations are associated with risk to infrastructure, risk of coastal flooding and risk of respiratory issues. The presence of Mediterranean cyclones is associated with increased probability of all three hazard combinations. We identify weather configurations and cyclone structures, particularly those associated with specific co-occurrence combinations.
Jacob Perez, Amanda C. Maycock, Stephen D. Griffiths, Steven C. Hardiman, and Christine M. McKenna
Weather Clim. Dynam., 5, 1061–1078, https://doi.org/10.5194/wcd-5-1061-2024, https://doi.org/10.5194/wcd-5-1061-2024, 2024
Short summary
Short summary
This study assesses existing methods for identifying the position and tilt of the North Atlantic eddy-driven jet, proposing a new feature-based approach. The new method overcomes limitations of other methods, offering a more robust characterisation. Contrary to prior findings, the distribution of daily latitudes shows no distinct multi-modal structure, challenging the notion of preferred jet stream latitudes or regimes. This research enhances our understanding of North Atlantic dynamics.
Alice Portal, Shira Raveh-Rubin, Jennifer L. Catto, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1043–1060, https://doi.org/10.5194/wcd-5-1043-2024, https://doi.org/10.5194/wcd-5-1043-2024, 2024
Short summary
Short summary
Mediterranean cyclones are associated with extended rain, wind, and wave impacts. Although beneficial for regional water resources, their passage may induce extreme weather, which is especially impactful when multiple hazards combine together. Here we show how the passage of Mediterranean cyclones increases the likelihood of rain–wind and wave–wind compounding and how compound–cyclone statistics vary by region and season, depending on the presence of specific airflows around the cyclone.
Svenja Christ, Marta Wenta, Christian M. Grams, and Annika Oertel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2403, https://doi.org/10.5194/egusphere-2024-2403, 2024
Short summary
Short summary
The detailed representation of sea surface temperature (SST) in numerical models is important for the prediction of atmospheric blocking in the North Atlantic. Yet, the underlying physical processes are not fully understood. Using SST sensitivity experiments for a case study, we identify a physical pathway through which SST in the Gulf Stream region is linked to the downstream upper-level flow evolution in the North Atlantic.
Antonio Segalini, Jacopo Riboldi, Volkmar Wirth, and Gabriele Messori
Weather Clim. Dynam., 5, 997–1012, https://doi.org/10.5194/wcd-5-997-2024, https://doi.org/10.5194/wcd-5-997-2024, 2024
Short summary
Short summary
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
Moritz Deinhard and Christian M. Grams
Weather Clim. Dynam., 5, 927–942, https://doi.org/10.5194/wcd-5-927-2024, https://doi.org/10.5194/wcd-5-927-2024, 2024
Short summary
Short summary
Stochastic perturbations are an established technique to represent model uncertainties in numerical weather prediction. While such schemes are beneficial for the forecast skill, they can also change the mean state of the model. We analyse how different schemes modulate rapidly ascending airstreams and whether the changes to such weather systems are projected onto larger scales. We thereby provide a process-oriented perspective on how perturbations affect the model climate.
Fiona Fix, Georg Johann Mayr, Achim Zeileis, Isabell Kathrin Stucke, and Reto Stauffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2143, https://doi.org/10.5194/egusphere-2024-2143, 2024
Short summary
Short summary
“Atmospheric deserts” (ADs) are air masses that are transported away from hot, dry regions. Our study introduces this new concept. ADs can suppress or boost thunderstorms, and potentially contribute to the formation of heat waves, which makes them relevant for forecasting extreme events. Using a novel detection method, we follow the AD directly from North Africa to Europe for a case in June 2022, allowing us to analyze the air mass at any time and investigate how it is modified along the way.
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024, https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Short summary
Cut-off lows (COLs) are weather systems with varied structures and lifecycles, from upper atmospheric to deep vortices. Deep, strong COLs are common around Australia and the southwestern Pacific in autumn and spring, while shallow, weak COLs occur more in summer near the Equator. Jet streams play a crucial role in COL development, with different jets influencing its depth and strength. The study also emphasizes the need for better representation of diabatic processes in reanalysis data.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost
Weather Clim. Dynam., 5, 779–803, https://doi.org/10.5194/wcd-5-779-2024, https://doi.org/10.5194/wcd-5-779-2024, 2024
Short summary
Short summary
Deep convective clouds (thunderstorms), which may cause severe weather, tend to coherently organise into structured cloud systems. Accurate representation of these systems in models is difficult due to their complex dynamics and, in numerical simulations, the dependence of their dynamics on resolution. Here, the effect of convective organisation and geometry on their outflow winds (altitudes of 7–14 km) is investigated. Representation of their dynamics and outflows improves at higher resolution.
Suzanne Louise Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1413, https://doi.org/10.5194/egusphere-2024-1413, 2024
Short summary
Short summary
Sting jets occur in some of the most damaging extratropical cyclones impacting Europe. We present the first climatology of sting-jet cyclones over the major ocean basins. Cyclones with sting-jet precursors occur over the North Atlantic, North Pacific and Southern Oceans, with implications for wind warnings. Precursor cyclones have distinct characteristics, even in reanalyses which are too coarse to resolve sting jets, evidencing the climatological consequences of strong diabatic cloud processes.
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024, https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Short summary
The North Atlantic Oscillation is linked to wintertime weather events over Europe. One feature often overlooked is how much the climate variability explained by the NAO has changed over time. We show that there has been a considerable increase in the percentage variance explained by the NAO over the 20th century and that this is not reproduced by 50 CMIP6 climate models, which are generally biased too high. This has implications for projections and prediction of weather events in the region.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024, https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Short summary
Blocking over Greenland has substantial impacts on the weather and climate in mid- and high latitudes. This study applies a quasi-Lagrangian thinking on the dynamics of Greenland blocking and reveals two pathways of anticyclonic anomalies linked to the block. Moist processes were found to play a dominant role in the formation and maintenance of blocking. This emphasizes the necessity of the correct representation of moist processes in weather and climate models to realistically depict blocking.
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024, https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.
Konstantin Krüger, Andreas Schäfler, Martin Weissmann, and George C. Craig
Weather Clim. Dynam., 5, 491–509, https://doi.org/10.5194/wcd-5-491-2024, https://doi.org/10.5194/wcd-5-491-2024, 2024
Short summary
Short summary
Initial conditions of current numerical weather prediction models insufficiently represent the sharp vertical gradients across the midlatitude tropopause. Observation-space data assimilation output is used to study the influence of assimilated radiosondes on the tropopause. The radiosondes reduce systematic biases of the model background and sharpen temperature and wind gradients in the analysis. Tropopause sharpness is still underestimated in the analysis, which may impact weather forecasts.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024, https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary
Short summary
Using an innovative approach, the descent of foehn is diagnosed from a Lagrangian perspective based on 15 kilometer-scale simulations combined with online trajectories. The descent is confined to distinct hotspots in the immediate lee of local mountain peaks and chains. Two detailed case studies reveal a varying wave regime to be associated with the descent. Furthermore, additional controlling factors, such as the diurnal cycle, likewise influence the descent activity.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024, https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary
Short summary
We show that the formation of Mediterranean cyclones follows the presence of cyclones over the North Atlantic. The distinct regions of cyclone activity in the Mediterranean in the different seasons can be linked to the atmospheric state, in particular the position of the polar jet over the North Atlantic. With this we now better understand the processes that lead to the formation of Mediterranean cyclones. We used a novel simulation framework in which we directly show and probe this connection.
Camille Cadiou and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-612, https://doi.org/10.5194/egusphere-2024-612, 2024
Short summary
Short summary
Extreme winter cold temperatures in Europe have huge societal impacts. This study focuses on very extreme cold events, such as the record of winter 1963 in France, expected to become rarer due to climate change. We use a light and efficient rare event algorithm to simulate a large number of extreme cold winters over France, to analyse their characteristics. We find that despite fewer occurrences, their intensity remains steady. We analyse prevailing atmospheric circulation during these events.
Belinda Hotz, Lukas Papritz, and Matthias Röthlisberger
Weather Clim. Dynam., 5, 323–343, https://doi.org/10.5194/wcd-5-323-2024, https://doi.org/10.5194/wcd-5-323-2024, 2024
Short summary
Short summary
Analysing the vertical structure of temperature anomalies of recent record-breaking heatwaves reveals a complex four-dimensional interplay of anticyclone–heatwave interactions, with vertically strongly varying advective, adiabatic, and diabatic contributions to the respective temperature anomalies. The heatwaves featured bottom-heavy positive temperature anomalies, extending throughout the troposphere.
Alexandre Tuel and Olivia Martius
Weather Clim. Dynam., 5, 263–292, https://doi.org/10.5194/wcd-5-263-2024, https://doi.org/10.5194/wcd-5-263-2024, 2024
Short summary
Short summary
Warm and cold spells often have damaging consequences for agriculture, power demand, human health and infrastructure, especially when they occur over large areas and persist for a week or more. Here, we split the Northern Hemisphere extratropics into coherent regions where 3-week warm and cold spells in winter and summer are associated with the same large-scale circulation patterns. To understand their physical drivers, we analyse the associated circulation and temperature budget anomalies.
Marta Wenta, Christian M. Grams, Lukas Papritz, and Marc Federer
Weather Clim. Dynam., 5, 181–209, https://doi.org/10.5194/wcd-5-181-2024, https://doi.org/10.5194/wcd-5-181-2024, 2024
Short summary
Short summary
Our study links air–sea interactions over the Gulf Stream to an atmospheric block in February 2019. We found that over 23 % of air masses that were lifted into the block by cyclones interacted with the Gulf Stream. As cyclones pass over the Gulf Stream, they cause intense surface evaporation events, preconditioning the environment for the development of cyclones. This implies that air–sea interactions over the Gulf Stream affect the large-scale dynamics in the North Atlantic–European region.
Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
Short summary
Short summary
A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
Talia Tamarin-Brodsky and Nili Harnik
Weather Clim. Dynam., 5, 87–108, https://doi.org/10.5194/wcd-5-87-2024, https://doi.org/10.5194/wcd-5-87-2024, 2024
Short summary
Short summary
Synoptic waves in the atmosphere tend to follow a typical Rossby wave lifecycle, involving a linear growth stage followed by nonlinear and irreversible Rossby wave breaking (RWB). Here we take a new approach to study RWB events and their fundamental relation to weather systems by combining a storm-tracking technique and an RWB detection algorithm. The synoptic-scale dynamics leading to RWB is then examined by analyzing time evolution composites of cyclones and anticyclones during RWB events.
Sebastian Schemm and Matthias Röthlisberger
Weather Clim. Dynam., 5, 43–63, https://doi.org/10.5194/wcd-5-43-2024, https://doi.org/10.5194/wcd-5-43-2024, 2024
Short summary
Short summary
Climate change has started to weaken atmospheric circulation during summer in the Northern Hemisphere. However, there is low agreement on the processes underlying changes in, for example, the stationarity of weather patterns or the seasonality of the jet response to warming. This study examines changes during summertime in an idealised setting and confirms some important changes in hemisphere-wide wave and jet characteristics under warming.
Patrick Martineau, Swadhin K. Behera, Masami Nonaka, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 5, 1–15, https://doi.org/10.5194/wcd-5-1-2024, https://doi.org/10.5194/wcd-5-1-2024, 2024
Short summary
Short summary
The representation of subweekly near-surface temperature variability trends over the Southern Hemisphere landmasses is compared across multiple atmospheric reanalyses. It is found that there is generally a good agreement concerning the positive trends affecting South Africa and Australia in the spring, and South America in the summer. A more efficient generation of subweekly temperature variance by horizontal temperature fluxes contributes to the observed rise.
Lea Eisenstein, Benedikt Schulz, Joaquim G. Pinto, and Peter Knippertz
Weather Clim. Dynam., 4, 981–999, https://doi.org/10.5194/wcd-4-981-2023, https://doi.org/10.5194/wcd-4-981-2023, 2023
Short summary
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. In Part 1 of this work, we introduced RAMEFI (RAndom-forest-based MEsoscale wind Feature Identification), an objective, flexible identification tool for these wind features based on a probabilistic random forest. Here, we use RAMEFI to compile a climatology of the features over 19 extended winter seasons over western and central Europe, focusing on relative occurrence, affected areas and further characteristics.
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Alice Portal, Fabio D'Andrea, Paolo Davini, Mostafa E. Hamouda, and Claudia Pasquero
Weather Clim. Dynam., 4, 809–822, https://doi.org/10.5194/wcd-4-809-2023, https://doi.org/10.5194/wcd-4-809-2023, 2023
Short summary
Short summary
The differences between climate models can be exploited to infer how specific aspects of the climate influence the Earth system. This work analyses the effects of a negative temperature anomaly over the Tibetan Plateau on the winter atmospheric circulation. We show that models with a colder-than-average Tibetan Plateau present a reinforcement of the eastern Asian winter monsoon and discuss the atmospheric response to the enhanced transport of cold air from the continent toward the Pacific Ocean.
Charlie C. Suitters, Oscar Martínez-Alvarado, Kevin I. Hodges, Reinhard K. H. Schiemann, and Duncan Ackerley
Weather Clim. Dynam., 4, 683–700, https://doi.org/10.5194/wcd-4-683-2023, https://doi.org/10.5194/wcd-4-683-2023, 2023
Short summary
Short summary
Atmospheric blocking describes large and persistent high surface pressure. In this study, the relationship between block persistence and smaller-scale systems is examined. Persistent blocks result from more interactions with small systems, but a block's persistence does not depend as strongly on the strength of these smaller features. This work is important because it provides more knowledge as to how blocks can be allowed to persist, which is something we still do not fully understand.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Florian Ruff and Stephan Pfahl
Weather Clim. Dynam., 4, 427–447, https://doi.org/10.5194/wcd-4-427-2023, https://doi.org/10.5194/wcd-4-427-2023, 2023
Short summary
Short summary
In this study, we analyse the generic atmospheric processes of very extreme, 100-year precipitation events in large central European river catchments and the corresponding differences to less extreme events, based on a large time series (~1200 years) of simulated but realistic daily precipitation events from the ECMWF. Depending on the catchment, either dynamical mechanisms or thermodynamic conditions or a combination of both distinguish 100-year events from less extreme precipitation events.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023, https://doi.org/10.5194/wcd-4-399-2023, 2023
Short summary
Short summary
Blocking describes a flow configuration in the midlatitudes where stationary high-pressure systems block the propagation of weather systems. This study combines three individual perspectives that capture the dynamics and importance of various processes in the formation of a major blocking in 2016 from a weather regime perspective. In future work, this framework will enable a holistic view of the dynamics and the role of moist processes in different life cycle stages of blocked weather regimes.
Charles G. Gertler, Paul A. O'Gorman, and Stephan Pfahl
Weather Clim. Dynam., 4, 361–379, https://doi.org/10.5194/wcd-4-361-2023, https://doi.org/10.5194/wcd-4-361-2023, 2023
Short summary
Short summary
The relationship between the time-mean state of the atmosphere and aspects of atmospheric circulation drives general understanding of the atmospheric circulation. Here, we present new techniques to calculate local properties of the time-mean atmosphere and relate those properties to aspects of extratropical circulation with important implications for weather. This relationship should help connect changes to the atmosphere, such as under global warming, to changes in midlatitude weather.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
Short summary
Short summary
Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
Acacia S. Pepler and Irina Rudeva
Weather Clim. Dynam., 4, 175–188, https://doi.org/10.5194/wcd-4-175-2023, https://doi.org/10.5194/wcd-4-175-2023, 2023
Short summary
Short summary
In recent decades, cold fronts have rained less often in southeast Australia, which contributes to decreasing cool season rainfall. The largest changes in front dynamics are found to the north of the area where rain changes. Wet fronts have strong westerly winds that reach much further north than dry fronts do, and these fronts are becoming less common, linked to weakening subtropical winds and changes in the Southern Hemisphere circulation.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023, https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Short summary
We investigate the dynamical origin of the lower-atmospheric potential vorticity (PV; linked to the intensity of cyclones) in Mediterranean cyclones. We quantify the contribution of the cyclone and the environment by tracing PV backward in time and space and linking it to the track of the cyclone. We find that the lower-tropospheric PV is produced shortly before the cyclone's stage of highest intensity. We investigate the driving processes and use a global dataset and a process-resolving one.
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Short summary
Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023, https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary
Short summary
Accurately predicting the response of the midlatitude jet stream to climate change is very important, but models show a variety of possible scenarios. Previous work identified a relationship between climatological jet latitude and future jet shift in the southern hemispheric winter. We show that the relationship does not hold in separate sectors and propose that zonal asymmetries are the ultimate cause in the zonal mean. This questions the usefulness of the relationship.
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Cited articles
Afargan, H. and Kaspi, Y.: A Midwinter Minimum in North Atlantic Storm Track Intensity in Years of a Strong Jet, Geophys. Res. Lett., 44, 12511–12518, https://doi.org/10.1002/2017GL075136, 2017. a
Bannon, P. R.: A Model of Rocky Mountain Lee Cyclogenesis, J. Atmos. Sci., 49, 1510–1522, https://doi.org/10.1175/1520-0469(1992)049<1510:AMORML>2.0.CO;2, 1992. a
Benedict, J. J., Lee, S., and Feldstein, S. B.: Synoptic View of the North
Atlantic Oscillation, J. Atmos. Sci., 61, 121–144,
https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2, 2004. a
Booth, J. F., Polvani, L., O'Gorman, P. A., and Wang, S.: Effective stability
in a moist baroclinic wave, Atmos. Sci. Lett., 16, 56–62, https://doi.org/10.1002/asl2.520, 2015. a
Browning, K. A.: Conceptual Models of Precipitation Systems, Weather
Forecast., 1, 23–41, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2,
1986. a
Browning, K. A.: Organization of Clouds and Precipitation in Extratropical
Cyclones, in: Extratropical cyclones, American Meteorological Society, Boston, MA, 129–153, https://doi.org/10.1007/978-1-944970-33-8_8, 1990. a
Chang, E. K. M.: GCM and Observational Diagnoses of the Seasonal and
Interannual Variations of the Pacific Storm Track during the Cool Season, J. Atmos. Sci., 58, 1784–1800, https://doi.org/10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2, 2001. a, b, c
Chang, E. K. M.: The Impact of Wave Packets Propagating across Asia on Pacific Cyclone Development, Mon. Weather Rev., 133, 1998–2015,
https://doi.org/10.1175/MWR2953.1, 2005. a, b
Chang, E. K. M. and Guo, Y.: Comments on “The Source of the Midwinter
Suppression in Storminess over the North Pacific”, J. Climate, 24, 5187–5191, https://doi.org/10.1175/2011JCLI3987.1, 2011. a
Chang, E. K. M. and Guo, Y.: Is Pacific Storm-Track Activity Correlated with
the Strength of Upstream Wave Seeding?, J. Climate, 25, 5768–5776,
https://doi.org/10.1175/JCLI-D-11-00555.1, 2012. a
Chang, E. K. M. and Yu, D. B.: Characteristics of Wave Packets in the Upper
Troposphere. Part I: Northern Hemisphere Winter, J. Atmos. Sci., 56, 1708–1728,
https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2, 1999. a, b
Davies, H. C., Schär, C., and Wernli, H.: The Palette of Fronts and Cyclones within a Baroclinic Wave Development, J. Atmos. Sci., 48, 1666–1689, https://doi.org/10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2, 1991. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Drouard, M., Rivière, G., and Arbogast, P.: The Link between the North
Pacific Climate Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic Waves, J. Climate, 28, 3957–3976,
https://doi.org/10.1175/JCLI-D-14-00552.1, 2015. a, b
ETH Zürich: Feature-based ERA-Interim Climatologies, available at: http://eraiclim.ethz.ch/, last access: 4 September 2020. a
Franzke, C., Lee, S., and Feldstein, S. B.: Is the North Atlantic Oscillation
a Breaking Wave?, J. Atmos. Sci., 61, 145–160,
https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2, 2004. a
Graf, M. A., Wernli, H., and Sprenger, M.: Objective classification of
extratropical cyclogenesis, Q. J. Roy. Meteorol. Soc., 143, 1047–1061, https://doi.org/10.1002/qj.2989, 2017. a, b
Grams, C. M., Wernli, H., Böttcher, M., C̆ampa, J., Corsmeier, U., Jones, S. C., Keller, J. H., Lenz, C.-J., and Wiegand, L.: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study, Q. J. Roy. Meteorol. Soc., 137, 2174–2193, https://doi.org/10.1002/qj.891, 2011. a, b
Gray, S. L. and Dacre, H. F.: Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones, Q. J. Roy. Meteorol. Soc., 132, 1119–1137, https://doi.org/10.1256/qj.05.69, 2006. a
Harnik, N. and Chang, E. K. M.: The Effects of Variations in Jet Width on the
Growth of Baroclinic Waves: Implications for Midwinter Pacific Storm Track
Variability, J. Atmos. Sci., 61, 23–40,
https://doi.org/10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2, 2004. a
Harrold, T. W.: Mechanisms influencing the distribution of precipitation within baroclinic disturbances, Q. J. Roy. Meteorol. Soc., 99, 232–251, https://doi.org/10.1002/qj.49709942003, 1973. a
Hobbs, P. V., Locatelli, J. D., and Martin, J. E.: A New Conceptual Model for
Cyclones Generated in the Lee of the Rocky Mountains, B. Am. Meteorol. Soc., 77, 1169–1178,
https://doi.org/10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2, 1996. a
Holton, J. R.: An Introduction to Dynamic Meteorology, 4th Edn., Elsevier Academic Press, Burlington, MA, USA, 2004. a
Hoskins, B. J. and Hodges, K. I.: The Annual Cycle of Northern Hemisphere Storm Tracks. Part I: Seasons, J. Climate, 32, 1743–1760,
https://doi.org/10.1175/JCLI-D-17-0870.1, 2019. a, b, c, d
Hoskins, B. J., James, I. N., and White, G. H.: The Shape, Propagation and
Mean-Flow Interaction of Large-Scale Weather Systems, J. Atmos. Sci., 40, 1595–1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2, 1983. a, b, c, d
Jeffreys, H.: On the dynamics of geostrophic winds, Q. J. Roy. Meteorol. Soc., 52, 85–104, https://doi.org/10.1002/qj.49705221708, 1926. a
Lackmann, G. M., Keyser, D., and Bosart, L. F.: A Characteristic Life Cycle of Upper-Tropospheric Cyclogenetic Precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA), Mon. Weather Rev.,
125, 2729–2758, https://doi.org/10.1175/1520-0493(1997)125<2729:ACLCOU>2.0.CO;2, 1997. a
Lee, S. and Feldstein, S.: Two Types of Wave Breaking in an Aquaplanet GCM,
J. Atmos. Sci., 53, 842–857,
https://doi.org/10.1175/1520-0469(1996)053<0842:TTOWBI>2.0.CO;2, 1996. a
Li, Y. and Lau, N.-C.: Impact of ENSO on the Atmospheric Variability over the
North Atlantic in Late Winter – Role of Transient Eddies, J. Climate, 25, 320–342, https://doi.org/10.1175/JCLI-D-11-00037.1, 2012a. a, b
Li, Y. and Lau, N.-C.: Contributions of Downstream Eddy Development to the
Teleconnection between ENSO and the Atmospheric Circulation over the North
Atlantic, J. Climate, 25, 4993–5010, https://doi.org/10.1175/JCLI-D-11-00377.1, 2012b. a, b
Liu, Z. and Alexander, M.: Atmospheric bridge, oceanic tunnel, and global
climatic teleconnections, Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172, 2007. a
Martius, O. and Rivière, G.: Rossby wave breaking: climatology, interaction with low-frequency climate variability, and links to extreme weather events, in: Special Publications of the International Union of Geodesy and Geophysics, Cambridge University Press, Cambridge, 69–78, https://doi.org/10.1017/CBO9781107775541.006, 2016. a
Martius, O., Zenklusen, E., Schwierz, C., and Davies, H. C.: Episodes of
Alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology, Int. J. Climatol., 26, 1149–1164, https://doi.org/10.1002/joc.1295, 2006. a
Martius, O., Schwierz, C., and Davies, H. C.: Tropopause-Level Waveguides, J. Atmos. Sci., 67, 866–879, https://doi.org/10.1175/2009JAS2995.1, 2010. a
Martius, O., Sodemann, H., Joos, H., Pfahl, S., Winschall, A., Croci-Maspoli,
M., Graf, M., Madonna, E., Mueller, B., Schemm, S., Sedláček, J., Sprenger, M., and Wernli, H.: The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010, Q. J. Roy. Meteorol. Soc., 139, 1780–1797, https://doi.org/10.1002/qj.2082, 2013. a
Massacand, A. C., Wernli, H., and Davies, H. C.: Influence of upstream diabatic heating upon an Alpine event of heavy precipitation, Mon. Weather Rev., 129, 2822–2828, https://doi.org/10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2, 2001. a, b
McIntyre, M. E. and Palmer, T.: Breaking planetary waves in the stratosphere,
Nature, 305, 593–600, https://doi.org/10.1038/305593a0, 1983. a
Mo, K. C. and Livezey, R. E.: Tropical-Extratropical Geopotential Height
Teleconnections during the Northern Hemisphere Winter, Mon. Weather Rev., 114, 2488–2515, https://doi.org/10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2, 1986. a
Nakamura, H.: Midwinter Suppression of Baroclinic Wave Activity in the Pacific, J. Atmos. Sci., 49, 1629–1642,
https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2, 1992. a, b
Nakamura, H. and Sampe, T.: Trapping of synoptic-scale disturbances into the
North-Pacific subtropical jet core in midwinter, Geophys. Res. Lett., 29, 8-1–8-4, https://doi.org/10.1029/2002GL015535, 2002. a
Novak, L., Schneider, T., and Ait-Chaalal, F.: Midwinter Suppression of Storm Tracks in an Idealized Zonally Symmetric Setting, J. Atmos. Sci., 77, 297–313, https://doi.org/10.1175/JAS-D-18-0353.1, 2020. a, b
O'Gorman, P. A.: The Effective Static Stability Experienced by Eddies in a
Moist Atmosphere, J. Atmos. Sci., 68, 75–90, https://doi.org/10.1175/2010JAS3537.1, 2011. a
Orlanski, I.: Bifurcation in Eddy Life Cycles: Implications for Storm Track
Variability, J. Atmos. Sci., 60, 993–1023,
https://doi.org/10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2, 2003. a
Orlanski, I. and Chang, E. K. M.: Ageostrophic Geopotential Fluxes in
Downstream and Upstream Development of Baroclinic Waves, J. Atmos. Sci., 50, 212–225, https://doi.org/10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2, 1993. a
Papritz, L. and Schemm, S.: Development of an idealised downstream cyclone:
Eulerian and Lagrangian perspective on the kinetic energy, Tellus A, 65, 19539, https://doi.org/10.3402/tellusa.v65i0.19539, 2013. a
Penny, S., Roe, G. H., and Battisti, D. S.: The Source of the Midwinter
Suppression in Storminess over the North Pacific, J. Climate, 23, 634–648, https://doi.org/10.1175/2009JCLI2904.1, 2010. a, b, c, d
Penny, S. M., Roe, G. H., and Battisti, D. S.: Reply, J. Climate, 24, 5192–5194, https://doi.org/10.1175/2011JCLI4187.1, 2011. a
Penny, S. M., Battisti, D. S., and Roe, G. H.: Examining Mechanisms of
Variability within the Pacific Storm Track: Upstream Seeding and Jet-Core
Strength, J. Climate, 26, 5242–5259, https://doi.org/10.1175/JCLI-D-12-00017.1, 2013. a, b
Petterssen, S. and Smebye, S. J.: On the development of extratropical cyclones, Q. J. Roy. Meteorol. Soc., 97, 457–482, https://doi.org/10.1002/qj.49709741407, 1971. a
Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., and Wernli, H.:
Importance of latent heat release in ascending air streams for atmospheric
blocking, Nat. Geosci., 8, 610–614, https://doi.org/10.1038/NGEO2487, 2015. a
Pomroy, H. R. and Thorpe, A. J.: The Evolution and Dynamical Role of Reduced
Upper-Tropospheric Potential Vorticity in Intensive Observing Period One of
FASTEX, Mon. Weather Rev., 128, 1817–1834,
https://doi.org/10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2, 2000. a
Postel, G. A. and Hitchman, M. H.: A Climatology of Rossby Wave Breaking along the Subtropical Tropopause, J. Atmos. Sci., 56, 359–373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2, 1999. a, b
Raveh-Rubin, S. and Flaounas, E.: A dynamical link between deep Atlantic
extratropical cyclones and intense Mediterranean cyclones, Atmos. Sci. Lett., 18, 215–221, https://doi.org/10.1002/asl.745, 2017. a, b
Rivière, G. and Orlanski, I.: Characteristics of the Atlantic Storm-Track
Eddy Activity and Its Relation with the North Atlantic Oscillation, J. Atmos. Sci., 64, 241–266, https://doi.org/10.1175/JAS3850.1, 2007. a
Rivière, G., Hua, B. L., and Klein, P.: Perturbation growth in terms of
barotropic alignment properties, Q. J. Roy. Meteorol. Soc., 129, 2613–2635, https://doi.org/10.1256/qj.02.106, 2003. a, b
Röthlisberger, M., Martius, O., and Wernli, H.: An algorithm for
identifying the initiation of synoptic-scale Rossby waves on potential
vorticity waveguides, Q. J. Roy. Meteorol. Soc., 142, 889–900, https://doi.org/10.1002/qj.2690, 2016. a
Rüdisühli, S.: Attribution of Rain to Cyclones and Fronts Over Europe
in a Kilometer-Scale Regional Climate Simulation, PhD Thesis, ETH Zurich,
Zurich, 221 pp., https://doi.org/10.3929/ethz-b-000351234, 2018. a
Sanders, F.: Life History of Mobile Troughs in the Upper Westerlies, Mon.
Weather Rev., 116, 2629–2648, https://doi.org/10.1175/1520-0493(1988)116<2629:LHOMTI>2.0.CO;2, 1988. a
Sanders, F. and Gyakum, J. R.: Synoptic-Dynamic Climatology of the “Bomb”,
Mon. Weather Rev., 108, 1589–1606,
https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2, 1980. a
Schemm, S.: Conveyor belts in idealized moist baroclinic wave life cycles,
PhD Thesis, Dept. of Environmental Systems Science, ETH Zürich, Zurich, 190 pp., https://doi.org/10.3929/ethz-a-7632512, 2013. a
Schemm, S., Wernli, H., and Papritz, L.: Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations, J. Atmos. Sci., 70, 627–652, https://doi.org/10.1175/JAS-D-12-0147.1, 2013. a, b
Schemm, S., Ciasto, L. M., Li, C., and Kvamstø, N. G.: Influence of Tropical
Pacific Sea Surface Temperature on the Genesis of Gulf Stream Cyclones, J. Atmos. Sci., 73, 4203–4214, https://doi.org/10.1175/JAS-D-16-0072.1, 2016. a
Schemm, S., Rivière, G., Ciasto, L. M., and Li, C.: Extratropical Cyclogenesis Changes in Connection with Tropospheric ENSO Teleconnections to the North Atlantic: Role of Stationary and Transient Waves, J. Atmos. Sci., 75, 3943–3964, https://doi.org/10.1175/JAS-D-17-0340.1, 2018. a, b
Shapiro, M. A., Wernli, H., Bond, N. A., and Langland, R.: The influence of the 1997–99 El Niño Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific, Q. J. Roy. Meteorol. Soc., 127, 331–342, https://doi.org/10.1002/qj.49712757205, 2001. a
Simmons A.: Numerical Simulations of Cyclone Life Cycles, in: The Life Cycles of Extratropical Cyclones, edited by: Shapiro, M. A. and Grønås, S., American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-935704-09-6_13, 1999. a
Simmons, A. J. and Hoskins, B. J.: The Downstream and Upstream Development of
Unstable Baroclinic Waves, J. Atmos. Sci., 36, 1239–1254, https://doi.org/10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2, 1979. a
Sinclair, V. A., Rantanen, M., Haapanala, P., Räisänen, J., and Järvinen, H.: The characteristics and structure of extra-tropical cyclones in a warmer climate, Weather Clim. Dynam., 1, 1–25, https://doi.org/10.5194/wcd-1-1-2020, 2020. a
Spreitzer, E., Attinger, R., Boettcher, M., Forbes, R., Wernli, H., and Joos,
H.: Modification of Potential Vorticity near the Tropopause by Nonconservative Processes in the ECMWF Model, J. Atmos. Sci., 76, 1709–1726, https://doi.org/10.1175/JAS-D-18-0295.1, 2019. a
Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, 2015. a
Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams, C.M., Knippertz, P., Madonna, E., Schemm, S., Škerlak, B., and Wernli, H.: Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim, B. Am. Meteorol. Soc., 98, 1739–1748, https://doi.org/10.1175/BAMS-D-15-00299.1, 2017. a, b
Stan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. ., and
Schumacher, C.: Review of Tropical-Extratropical Teleconnections on
Intraseasonal Time Scales, Rev. Geophys., 55, 902–937, https://doi.org/10.1002/2016RG000538, 2017. a
Starr, V. P.: An essay on the general circulation of the Earth's atmosphere,
J. Meteorol., 5, 39–43,
https://doi.org/10.1175/1520-0469(1948)005<0039:AEOTGC>2.0.CO;2, 1948. a
Steinfeld, D. and Pfahl, S.: The role of latent heating in atmospheric blocking dynamics: a global climatology, Clim. Dynam., 53, 6159–6180, https://doi.org/10.1007/s00382-019-04919-6, 2019. a
Stoelinga, M. T.: A Potential Vorticity-Based Study of the Role of Diabatic
Heating and Friction in a Numerically Simulated Baroclinic Cyclone, Mon. Weather Rev., 124, 849–874,
https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2, 1996. a
Tamarin-Brodsky, T. and Hadas, O.: The Asymmetry of Vertical Velocity in
Current and Future Climate, Geophys. Res. Lett., 46, 374–382,
https://doi.org/10.1029/2018GL080363, 2019. a
Trenberth, K. E.: An Assessment of the Impact of Transient Eddies on the Zonal Flow during a Blocking Episode Using Localized Eliassen-Palm Flux
Diagnostics, J. Atmos. Sci., 43, 2070–2087,
https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2, 1986. a, b, c
Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of Cyclogenesis
Mechanisms in the Mediterranean, Mon. Weather Rev., 130, 549–569,
https://doi.org/10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2, 2002. a
Uccellini, L. W.: Processes contributing to the rapid development of
extratropical cyclones, in: Extratropical cyclones, American
Meteorological Society, Boston, MA, 81–105, https://doi.org/10.1007/978-1-944970-33-8_6, 1990. a
Wash, C. H., Peak, J. E., Calland, W. E., and Cook, W. A.: Diagnostic Study of Explosive Cyclogenesis during FGGE, Mon. Weather Rev., 116, 431–451,
https://doi.org/10.1175/1520-0493(1988)116<0431:DSOECD>2.0.CO;2, 1988. a
Wernli, H.: A lagrangian-based analysis of extratropical cyclones. II: A
detailed case-study, Q. J. Roy. Meteorol. Soc., 123, 1677–1706, https://doi.org/10.1002/qj.49712354211, 1997. a
Wernli, H. and Davies, H. C.: A lagrangian-based analysis of extratropical
cyclones. I: The method and some applications, Q. J. Roy. Meteorol. Soc., 123, 467–489, https://doi.org/10.1002/qj.49712353811, 1997. a, b, c, d
Wernli, H., Dirren, S., Liniger, M. A., and Zillig, M.: Dynamical aspects of
the life cycle of the winter storm `Lothar' (24–26 December 1999), Q. J. Roy. Meteorol. Soc., 128, 405–429, https://doi.org/10.1256/003590002321042036, 2002. a
Yeh, S.-W., Cai, W., Min, S.-K., McPhaden, M. J., Dommenget, D., Dewitte, B.,
Collins, M., Ashok, K., An, S.-I., Yim, B.-Y., and Kug, J.-S.: ENSO
Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing, Rev. Geophys., 56, 185–206, 2018. a
Yuval, J., Afargan, H., and Kaspi, Y.: The Relation Between the Seasonal Changes in Jet Characteristics and the Pacific Midwinter Minimum in Eddy
Activity, Geophys. Res. Lett., 45, 9995–10002, https://doi.org/10.1029/2018GL078678, 2018. a
Short summary
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece elements of weather and climate research. A novel method is introduced to identify and track the life cycle of troughs and ridges and their orientation. The aim is to close the existing gap between methods that detect the initiation phase and methods that detect the decaying phase of Rossby wave development. Global climatologies, the influence of ENSO and Lagrangian characteristics are discussed.
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece...