Articles | Volume 2, issue 1
Weather Clim. Dynam., 2, 163–180, 2021
Weather Clim. Dynam., 2, 163–180, 2021

Research article 10 Mar 2021

Research article | 10 Mar 2021

A regime view of future atmospheric circulation changes in northern mid-latitudes

Federico Fabiano et al.

Related authors

How well does CMIP6 capture the dynamics of Euro-Atlantic weather regimes, and why?
Joshua Dorrington, Kristian Strommen, and Federico Fabiano
Weather Clim. Dynam. Discuss.,,, 2021
Preprint under review for WCD
Short summary
Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam. Discuss.,,, 2021
Preprint under review for WCD
Short summary
How well is Rossby wave activity represented in the PRIMAVERA coupled simulations?
Paolo Ghinassi, Federico Fabiano, and Susanna Corti
Weather Clim. Dynam. Discuss.,,, 2021
Revised manuscript under review for WCD
Short summary
HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation
Rein Haarsma, Mario Acosta, Rena Bakhshi, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Susanna Corti, Paolo Davini, Eleftheria Exarchou, Federico Fabiano, Uwe Fladrich, Ramon Fuentes Franco, Javier García-Serrano, Jost von Hardenberg, Torben Koenigk, Xavier Levine, Virna Loana Meccia, Twan van Noije, Gijs van den Oord, Froila M. Palmeiro, Mario Rodrigo, Yohan Ruprich-Robert, Philippe Le Sager, Etienne Tourigny, Shiyu Wang, Michiel van Weele, and Klaus Wyser
Geosci. Model Dev., 13, 3507–3527,,, 2020
Short summary

Related subject area

Dynamical processes in midlatitudes
Systematic assessment of the diabatic processes that modify low-level potential vorticity in extratropical cyclones
Roman Attinger, Elisa Spreitzer, Maxi Boettcher, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 2, 1073–1091,,, 2021
Short summary
The impact of deep convection representation in a global atmospheric model on the warm conveyor belt and jet stream during NAWDEX IOP6
Gwendal Rivière, Meryl Wimmer, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 1011–1031,,, 2021
Short summary
A global analysis of the dry-dynamic forcing during cyclone growth and propagation
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009,,, 2021
Short summary
Smoother versus sharper Gulf Stream and Kuroshio sea surface temperature fronts: effects on cyclones and climatology
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970,,, 2021
Short summary
Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952,,, 2021
Short summary

Cited articles

Ambaum, M. H. and Hoskins, B. J.: The NAO troposphere–stratosphere connection, J. Climate, 15, 1969–1978, 2002. a
Athanasiadis, P. J., Wallace, J. M., and Wettstein, J. J.: Patterns of wintertime jet stream variability and their relation to the storm tracks, J. Atmos. Sci., 67, 1361–1381, 2010. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, 2001. a, b
Barnes, E. A. and Polvani, L.: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models, J. Climate, 26, 7117–7135, 2013. a, b, c, d, e, f, g
Barnes, E. A. and Polvani, L. M.: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship, J. Climate, 28, 5254–5271, 2015. a
Short summary
Global warming not only affects the mean state of the climate (i.e. a warmer world) but also its variability. Here we analyze a set of future climate scenarios and show how some configurations of the wintertime atmospheric flow will become more frequent and persistent under continued greenhouse forcing. For example, over Europe, models predict an increase in the NAO+ regime which drives intense precipitation in northern Europe and the British Isles and dry conditions over the Mediterranean.