Articles | Volume 5, issue 4 
            
                
                    
            
            
            https://doi.org/10.5194/wcd-5-1287-2024
                    © Author(s) 2024. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-1287-2024
                    © Author(s) 2024. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
The impact of synoptic storm likelihood on European subseasonal forecast uncertainty and their modulation by the stratosphere
                                            Meteorological Institute Munich, Ludwig Maximilian University of Munich, Munich, Germany
                                        
                                    Jonas Spaeth
                                            Meteorological Institute Munich, Ludwig Maximilian University of Munich, Munich, Germany
                                        
                                    Hilla Afargan-Gerstman
                                            Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
                                        
                                    
                                            Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
                                        
                                    Dominik Büeler
                                            Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
                                        
                                    
                                            Center for Climate Systems Modeling (C2SM), ETH Zürich, Zurich, Switzerland
                                        
                                    Michael Sprenger
                                            Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
                                        
                                    Thomas Birner
                                            Meteorological Institute Munich, Ludwig Maximilian University of Munich, Munich, Germany
                                        
                                    
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    Related authors
Philip Rupp, Jonas Spaeth, and Thomas Birner
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4925, https://doi.org/10.5194/egusphere-2025-4925, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                Weather forecasts several weeks ahead are uncertain, but this uncertainty itself can change depending on large-scale atmospheric conditions. We present a new way to measure how well forecasts capture these changes in uncertainty. Our results show that reliability of uncertainty varies strongly with region and is linked to slow, predictable patterns in the atmosphere. These findings help identify periods when forecasts are more trustworthy.
                                            
                                            
                                        Sheena Loeffel, Philip Rupp, Selina Kiefer, Joaquim G. Pinto, Thomas Birner, and Hella Garny
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4164, https://doi.org/10.5194/egusphere-2025-4164, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                We use a dedicated simulation setup to shed light on the question whether, and why, some sudden stratospheric warming events are more likely than others to develop a surface response. We find that the propensity for downward coupling is unique to each event, and that from day one, the chance of a lower-stratospheric response can be predicted – a key step toward anticipating the surface response, moving beyond 'random' surface outcomes to quantified likelihoods of the ensuing surface response.
                                            
                                            
                                        Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
                                    Short summary
                                    Short summary
                                            
                                                Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
                                            
                                            
                                        Felix Jäger, Philip Rupp, and Thomas Birner
                                    Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
                                            
                                            
                                        Philip Rupp and Peter Haynes
                                    Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, https://doi.org/10.5194/wcd-2-413-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
                                            
                                            
                                        Philip Rupp and Thomas Birner
                                    Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
                                            
                                            
                                        Tuule Müürsepp, Michael Sprenger, Heini Wernli, and Hanna Joos
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-5224, https://doi.org/10.5194/egusphere-2025-5224, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                The tropopause region of the atmosphere is greatly impacted by the exchange of mass and constituents between the troposphere and the stratosphere. This study quantifies the role of radiation in troposphere-to-stratosphere transport using reanalysis data. We find that radiation contributes to this transport most of the time, albeit it might not be the dominant process. We provide a new insight into the complex interplay of processes that air parcels experience on their way to the stratosphere.
                                            
                                            
                                        Matthias Röthlisberger, Michael Sprenger, Urs Beyerle, Erich M. Fischer, and Heini Wernli
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-5146, https://doi.org/10.5194/egusphere-2025-5146, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                This study investigates yearly heat extremes simulated with the global climate model CESM2. A trajectory-based method is used, which allows quantifying the contributions to temperature anomalies from advection, subsidence, and diabatic heating. The results show that the magnitude of CESM2 heat extremes agrees fairly well with ERA5 reanalyses, but it is often “right for the partly wrong physical reasons”.
                                            
                                            
                                        Philip Rupp, Jonas Spaeth, and Thomas Birner
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4925, https://doi.org/10.5194/egusphere-2025-4925, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                Weather forecasts several weeks ahead are uncertain, but this uncertainty itself can change depending on large-scale atmospheric conditions. We present a new way to measure how well forecasts capture these changes in uncertainty. Our results show that reliability of uncertainty varies strongly with region and is linked to slow, predictable patterns in the atmosphere. These findings help identify periods when forecasts are more trustworthy.
                                            
                                            
                                        Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
                                    Weather Clim. Dynam., 6, 1195–1219, https://doi.org/10.5194/wcd-6-1195-2025, https://doi.org/10.5194/wcd-6-1195-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Extratropical cyclones feature rapidly ascending airstreams known as warm conveyor belts, which could influence upper-level flow dynamics. This study classifies interactions between warm conveyor belt outflows and the jet stream into four types: no interactions, ridges, blocks, and tropospheric cutoffs. We use reanalysis data to demonstrate that the interaction type depends on the structure of the ambient flow than on the outflow, improving our understanding of extratropical flow variability.
                                            
                                            
                                        Rasul Baikhadzhaev, Felix Ploeger, Peter Preusse, Manfred Ern, and Thomas Birner
                                    Atmos. Chem. Phys., 25, 12753–12777, https://doi.org/10.5194/acp-25-12753-2025, https://doi.org/10.5194/acp-25-12753-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Across four reanalyses, the shallow branch of the stratospheric overturning circulation was found to be driven by planetary waves 1 to 3, and the deep branch of the circulation was found to be driven by smaller-scale waves (wave 4 and higher). However, the height of the level separating the branches is dependent on the reanalysis considered. Thus, using the appropriate separation levels in model inter-comparisons could reduce the spread between models regarding climatology and trends in the circulation.
                                            
                                            
                                        Sheena Loeffel, Philip Rupp, Selina Kiefer, Joaquim G. Pinto, Thomas Birner, and Hella Garny
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4164, https://doi.org/10.5194/egusphere-2025-4164, 2025
                                    This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD). 
                                    Short summary
                                    Short summary
                                            
                                                We use a dedicated simulation setup to shed light on the question whether, and why, some sudden stratospheric warming events are more likely than others to develop a surface response. We find that the propensity for downward coupling is unique to each event, and that from day one, the chance of a lower-stratospheric response can be predicted – a key step toward anticipating the surface response, moving beyond 'random' surface outcomes to quantified likelihoods of the ensuing surface response.
                                            
                                            
                                        Killian P. Brennan, Iris Thurnherr, Michael Sprenger, and Heini Wernli
                                    Nat. Hazards Earth Syst. Sci., 25, 3693–3712, https://doi.org/10.5194/nhess-25-3693-2025, https://doi.org/10.5194/nhess-25-3693-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Hailstorms can cause severe damage to homes, crops, and infrastructure. Using high-resolution climate simulations, we tracked thousands of hailstorms across Europe to study future changes. Large hail will become more frequent, hail-covered areas will expand, and instances of extreme hail combined with heavy rain will double. These shifts could increase risks for communities and businesses, highlighting the need for better preparedness and adaptation.
                                            
                                            
                                        Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Robin Noyelle, Matthias Röthlisberger, and Heini Wernli
                                    Weather Clim. Dynam., 6, 1027–1043, https://doi.org/10.5194/wcd-6-1027-2025, https://doi.org/10.5194/wcd-6-1027-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assess whether these regime frequency changes are relevant to understanding climate change signals in precipitation. At least in our example application, in most regions, regime frequency changes explain little of the projected precipitation changes.
                                            
                                            
                                        Katharina Hartmuth, Dominik Büeler, and Heini Wernli
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4111, https://doi.org/10.5194/egusphere-2025-4111, 2025
                                    Short summary
                                    Short summary
                                            
                                                This study presents three case studies of applying a newly developed method to quantify the uncertainty of the operational ECMWF ensemble in forecasting precipitation and wind extremes associated with Mediterranean cyclones. We find that the cyclones as well as their associated extremes are predicted well for lead times ≤48 h; however, for longer lead times there is large case-to-case variability in the ensemble performance.
                                            
                                            
                                        Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
                                    Short summary
                                    Short summary
                                            
                                                Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
                                            
                                            
                                        Jacopo Riboldi, Robin Noyelle, Ellina Agayar, Hanin Binder, Marc Federer, Katharina Hartmuth, Michael Sprenger, Iris Thurnherr, and Selvakumar Vishnupriya
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-3599, https://doi.org/10.5194/egusphere-2025-3599, 2025
                                    Short summary
                                    Short summary
                                            
                                                Storm Boris hit central Europe in September 2024 with extreme precipitation and impacts: this work introduces a methodology to strengthen our comprehension of how global warming affects similar events, based on the incorporation of event-specific meteorological information. Furthermore, it contextualizes how the answer to the question "How will Boris-like storms change in a warmer climate?" depends on explicit and implicit methodological choices, with the aim to inform future research.
                                            
                                            
                                        Huw Davies and Michael Sprenger
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-3017, https://doi.org/10.5194/egusphere-2025-3017, 2025
                                    Short summary
                                    Short summary
                                            
                                                The Stratospheric Polar Vortex (SPV) with its accompanying strong circumpolar jet is a dominant feature of the wintertime stratosphere. Evidence is presented that the SPV’s periphery often possesses distinctive sub-planetary scale features. The scale and dynamics of the features are linked to the break-up of an annular band of strong vorticity at the SPV’s periphery, and the latter’s aggregation into one or two vortices due to forcing from below bears comparison to Sudden Stratospheric Warming.
                                            
                                            
                                        Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
                                    Weather Clim. Dynam., 6, 645–668, https://doi.org/10.5194/wcd-6-645-2025, https://doi.org/10.5194/wcd-6-645-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We studied severe hailstorms that occurred in Switzerland on 28 June 2021 using a weather prediction model to understand how they evolved. We found that the storms moved toward areas with more storm energy. Hailfall was quickly followed by heavy rain. Just before the storms died out, the air feeding them stopped coming from near the ground. We also observed a delay between different types of precipitation forming in the incoming air. 
                                            
                                            
                                        Frederik Harzer, Hella Garny, Felix Ploeger, J. Moritz Menken, and Thomas Birner
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-2195, https://doi.org/10.5194/egusphere-2025-2195, 2025
                                    Short summary
                                    Short summary
                                            
                                                We study ozone transport in the extratropical lowermost stratosphere using potential temperature as vertical coordinate, thereby distinguishing adiabatic and diabatic processes. We find that on top of known dominant transport processes (quasi-horizontal mixing, slow diabatic descent) vertical mixing plays an important role near the tropopause. Our findings are relevant for understanding ozone's role in climate including its imprint on tropospheric ozone via stratosphere-troposphere air exchange.
                                            
                                            
                                        Ming Hon Franco Lee and Michael Sprenger
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-1949, https://doi.org/10.5194/egusphere-2025-1949, 2025
                                    Short summary
                                    Short summary
                                            
                                                Turbulence can occur in clear-air conditions at cruising altitude. From around 5000 clear-air turbulence events identified using aircraft measurements, nonlinear breaking of large-scale waves and rapidly ascending airstreams associated with cyclones are found concurrent with 40 % and 30 % of them respectively. The results further show that these weather systems may trigger turbulence by generating highly deformed flow or flow instability, improving our understanding of clear-air turbulence.
                                            
                                            
                                        Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
                                    Weather Clim. Dynam., 6, 447–469, https://doi.org/10.5194/wcd-6-447-2025, https://doi.org/10.5194/wcd-6-447-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                This study investigates the Laseyer, a local windstorm in a narrow Swiss valley characterized by strong southeasterly winds during northwesterly ambient flow. Using large-eddy simulations (LESs) with 30 m grid spacing, this is the first study to reveal that the extreme gusts in the valley are caused by an amplifying interplay of two recirculation regions. Modifying terrain and ambient wind conditions affects the windstorm's intensity and highlights the importance of topographic details in LES.
                                            
                                            
                                        Alexander Pietak, Langwen Huang, Luigi Fusco, Michael Sprenger, Sebastian Schemm, and Torsten Hoefler
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-793, https://doi.org/10.5194/egusphere-2025-793, 2025
                                    This preprint is open for discussion and under review for Geoscientific Model Development (GMD). 
                                    Short summary
                                    Short summary
                                            
                                                As meteorological models grow in complexity, the volume of output data increases, making compression increasingly desirable. However, no specialized methods currently exist for compressing data in the Lagrangian frame. To address this gap, we developed psit, a pipeline for the lossy compression of Lagrangian flow data. In most cases, psit achieves performance that is equivalent or superior to non specialized alternatives, with compression errors behaving similar to measurement inaccuracies.
                                            
                                            
                                        Marc Federer, Lukas Papritz, Michael Sprenger, and Christian M. Grams
                                    Weather Clim. Dynam., 6, 211–230, https://doi.org/10.5194/wcd-6-211-2025, https://doi.org/10.5194/wcd-6-211-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Although extratropical cyclones in the North Atlantic are among the most impactful midlatitude weather systems, their intensification is not entirely understood. Here, we explore how individual cyclones convert available potential energy (APE) into kinetic energy and relate these conversions to the synoptic development of the cyclones. By combining potential vorticity thinking with a local APE framework, we offer a novel perspective on established concepts in dynamic meteorology.
                                            
                                            
                                        Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, and Katharina Turhal
                                    Atmos. Chem. Phys., 25, 1227–1252, https://doi.org/10.5194/acp-25-1227-2025, https://doi.org/10.5194/acp-25-1227-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The lowermost stratosphere (LMS) plays an important role in the Earth's climate, containing strong gradients of ozone and water vapor. Our results indicate that the thermodynamic structure of the LMS was changing between 1979–2019 in response to anthropogenic climate change and the recovery of stratospheric ozone, also indicating large-scale circulation changes. We find that both the upper and the lower LMS boundaries show an (upward) trend, which has implications for the LMS mass.
                                            
                                            
                                        Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
                                    Atmos. Chem. Phys., 24, 13653–13679, https://doi.org/10.5194/acp-24-13653-2024, https://doi.org/10.5194/acp-24-13653-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The tropopause separates the troposphere, where many greenhouse gases originate, from the stratosphere. This study examines a tropopause defined by potential vorticity – an analogue for angular momentum that changes sharply in the subtropics, creating a transport barrier. Between 1980 and 2017, this tropopause shifted poleward at lower altitudes and equatorward above, suggesting height-dependent changes in atmospheric circulation that may affect greenhouse gas distribution and global warming.
                                            
                                            
                                        Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
                                        EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
                                    Short summary
                                    Short summary
                                            
                                                Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
                                            
                                            
                                        Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
                                    Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
                                            
                                            
                                        Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
                                    Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
                                            
                                            
                                        Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
                                    Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024, https://doi.org/10.5194/wcd-5-537-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.
                                            
                                            
                                        Lukas Jansing, Lukas Papritz, and Michael Sprenger
                                    Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024, https://doi.org/10.5194/wcd-5-463-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Using an innovative approach, the descent of foehn is diagnosed from a Lagrangian perspective based on 15 kilometer-scale simulations combined with online trajectories. The descent is confined to distinct hotspots in the immediate lee of local mountain peaks and chains. Two detailed case studies reveal a varying wave regime to be associated with the descent. Furthermore, additional controlling factors, such as the diurnal cycle, likewise influence the descent activity.
                                            
                                            
                                        Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
                                    Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
                                            
                                            
                                        Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
                                    Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
                                            
                                            
                                        Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
                                    Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
                                            
                                            
                                        Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
                                    Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
                                            
                                            
                                        Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
                                    Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
                                            
                                            
                                        Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
                                    Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
                                            
                                            
                                        Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell
                                    Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023, https://doi.org/10.5194/acp-23-8705-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
                                            
                                            
                                        Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
                                    Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
                                            
                                            
                                        Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
                                    Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
                                            
                                            
                                        Hanna Joos, Michael Sprenger, Hanin Binder, Urs Beyerle, and Heini Wernli
                                    Weather Clim. Dynam., 4, 133–155, https://doi.org/10.5194/wcd-4-133-2023, https://doi.org/10.5194/wcd-4-133-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Warm conveyor belts (WCBs) are strongly ascending, cloud- and precipitation-forming airstreams in extratropical cyclones. In this study we assess their representation in a climate simulation and their changes under global warming. They become moister, become more intense, and reach higher altitudes in a future climate, implying that they potentially have an increased impact on the mid-latitude flow.
                                            
                                            
                                        Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
                                    Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
                                            
                                            
                                        Felix Jäger, Philip Rupp, and Thomas Birner
                                    Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
                                            
                                            
                                        Hanin Binder, Hanna Joos, Michael Sprenger, and Heini Wernli
                                    Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023, https://doi.org/10.5194/wcd-4-19-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Warm conveyor belts (WCBs) are the main cloud- and precipitation-producing airstreams in extratropical cyclones. The latent heat release that occurs during cloud formation often contributes to the intensification of the associated cyclone. Based on the Community Earth System Model Large Ensemble coupled climate simulations, we show that WCBs and associated latent heating will become stronger in a future climate and be even more important for explosive cyclone intensification than in the present.
                                            
                                            
                                        Michael A. Barnes, Thando Ndarana, Michael Sprenger, and Willem A. Landman
                                    Weather Clim. Dynam., 3, 1291–1309, https://doi.org/10.5194/wcd-3-1291-2022, https://doi.org/10.5194/wcd-3-1291-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Stratospheric air can intrude into the troposphere and is associated with cyclonic development throughout the atmosphere. Through a highly idealized systematic approach, the effect that different intrusion characteristics have on surface cyclogenetic forcing is investigated. The proximity of stratospheric intrusions to the surface is shown to be the main factor in surface cyclogenetic forcing, whilst its width is an additional contributing factor.
                                            
                                            
                                        Lukas Jansing, Lukas Papritz, Bruno Dürr, Daniel Gerstgrasser, and Michael Sprenger
                                    Weather Clim. Dynam., 3, 1113–1138, https://doi.org/10.5194/wcd-3-1113-2022, https://doi.org/10.5194/wcd-3-1113-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                This study presents a 5-year climatology of three main foehn types and three deep-foehn subtypes. The main types differ in their large-scale and Alpine-scale weather conditions and the subtypes in terms of the amount and extent of precipitation on the Alpine south side. The different types of foehn are found to strongly affect the local meteorological conditions at Altdorf. The study concludes by setting the new classification into a historic context.
                                            
                                            
                                        Jonas Spaeth and Thomas Birner
                                    Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
                                            
                                            
                                        Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
                                    Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
                                            
                                            
                                        Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
                                    Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022, https://doi.org/10.5194/acp-22-3111-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                We investigate the variation in ice-nucleating particles (INPs) relevant for primary ice formation in mixed-phased clouds over the Alps based on simultaneous in situ observations at a mountaintop and a nearby high valley (1060 m height difference). In most cases, advection from the surrounding lower regions was responsible for changes in INP concentration, causing a diurnal cycle at the mountaintop. Our study underlines the importance of the planetary boundary layer as an INP reserve.
                                            
                                            
                                        Lukas Bösiger, Michael Sprenger, Maxi Boettcher, Hanna Joos, and Tobias Günther
                                    Geosci. Model Dev., 15, 1079–1096, https://doi.org/10.5194/gmd-15-1079-2022, https://doi.org/10.5194/gmd-15-1079-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Jet streams are coherent air flows that interact with atmospheric structures such as warm conveyor belts (WCBs) and the tropopause. Individually, these structures have a significant impact on the weather evolution. A first step towards a deeper understanding of the meteorological processes is to extract jet stream core lines, for which we develop a novel feature extraction algorithm. Based on the line geometry, we automatically detect and visualize potential interactions between WCBs and jets.
                                            
                                            
                                        Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
                                    Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
                                            
                                            
                                        Raphael Portmann, Michael Sprenger, and Heini Wernli
                                    Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, https://doi.org/10.5194/wcd-2-507-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We explore the three-dimensional life cycle of cyclonic structures 
(so-called PV cutoffs) near the tropopause. PV cutoffs are frequent weather systems in the extratropics that lead to high-impact weather. However, many unknowns exist regarding their evolution. We present a new method to track PV cutoffs as 3D objects in reanalysis data by following air parcels along the flow. We study the climatological life cycles of PV cutoffs in detail and propose a classification into three types.
                                            
                                            
                                        Philip Rupp and Peter Haynes
                                    Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, https://doi.org/10.5194/wcd-2-413-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
                                            
                                            
                                        Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
                                    Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
                                            
                                            
                                        Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
                                    Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
                                            
                                            
                                        Philip Rupp and Thomas Birner
                                    Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
                                            
                                            
                                        Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
                                    Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the 
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
                                            
                                            
                                        Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
                                    Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
                                            
                                            
                                        Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
                                    Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
                                            
                                            
                                        Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
                                    Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
                                            
                                            
                                        Cited articles
                        
                        Afargan-Gerstman, H. and Domeisen, D. I.: Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events, Geophys. Res. Lett., 47, e2019GL085007, https://doi.org/10.1029/2019GL085007, 2020. a
                    
                
                        
                        Afargan-Gerstman, H., Büeler, D., Wulff, C. O., Sprenger, M., and Domeisen, D. I. V.: Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts, Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, 2024. a, b, c
                    
                
                        
                        Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva, F., Gray, L. J., Butchart, N., Hamilton, K., Osprey, S., Bellprat, O., Braesicke, P., Bushell, A. C.,Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Garcia, R. R., Holt, L., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., Lott, F., McLandress, C., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Teleconnections of the quasi-biennial oscillation in a multi-model ensemble of QBO-resolving models, Q. J. Roy. Meteorol. Soc., 148, 1568–1592, 2022. a
                    
                
                        
                        Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, 2001. a
                    
                
                        
                        Baldwin, M. P., Stephenson, D. B., Thompson, D. W., Dunkerton, T. J., Charlton, A. J., and O'Neill, A.: Stratospheric memory and skill of extended-range weather forecasts, Science, 301, 636–640, 2003. a
                    
                
                        
                        Benedict, J. J., Lee, S., and Feldstein, S. B.: Synoptic view of the North Atlantic oscillation, J. Atmos. Sci., 61, 121–144, 2004. a
                    
                
                        
                        Blessing, S., Fraedrich, K., Junge, M., Kunz, T., and Lunkeit, F.: Daily North-Atlantic Oscillation (NAO) index: Statistics and its stratospheric polar vortex dependence, Meteorol. Z., 14, 763–770, 2005. a
                    
                
                        
                        Brönnimann, S.: Impact of El Niño–southern oscillation on European climate, Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199, 2007. a
                    
                
                        
                        Büeler, D., Beerli, R., Wernli, H., and Grams, C. M.: Stratospheric influence on ECMWF sub-seasonal forecast skill for energy-industry-relevant surface weather in European countries, Q. J. Roy. Meteorol. Soc., 146, 3675–3694, 2020. a
                    
                
                        
                        Büeler, D., Sprenger, M., and Wernli, H.: Northern Hemisphere extratropical cyclone biases in ECMWF subseasonal forecasts, Q. J. Roy. Meteorol. Soc., 150, 1096–1123, https://doi.org/10.1002/qj.4638, 2024. a, b
                    
                
                        
                        Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017. a
                    
                
                        
                        Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation, Nature, 455, 523–527, 2008. a
                    
                
                        
                        Domeisen, D. I., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020. a, b
                    
                
                        
                        Donat, M. G., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases, Int. J. Climatol., 30, 1289–1300, 2010. a
                    
                
                        
                        ECMWF: S2S forecast database, ECMWF [data set], https://apps.ecmwf.int/datasets/data/s2s (last access: 15 October 2024), 2015. a
                    
                
                        
                        Huang, J., Higuchi, K., and Shabbar, A.: The relationship between the North Atlantic Oscillation and El Niño–Southern Oscillation, Geophys. Res. Lett., 25, 2707–2710, 1998. a
                    
                
                        
                        Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of the North Atlantic oscillation, American Geophysical Union, Geophys. Monogr., 134, 1–36, 2003. a
                    
                
                        
                        Knippertz, P., Ulbrich, U., and Speth, P.: Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment, Clim. Res., 15, 109–122, 2000. a
                    
                
                        
                        Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., Dirmeyer, P. A., Ferranti, L., Johnson, N. C., Jones, J., Kirtman, B. P., Lang, A. L., Molod, A., Newman, M., Robertson, A. W., Schubert, S., Waliser, D. E., and Albers, J.: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond, B. Am. Meteorol. Soc., 101, E608–E625, 2020. a
                    
                
                        
                        Maycock, A. C., Masukwedza, G. I., Hitchcock, P., and Simpson, I. R.: A regime perspective on the North Atlantic eddy-driven jet response to sudden stratospheric warmings, J. Climate, 33, 3901–3917, 2020. a
                    
                
                        
                        Merino, A., Fernández-Vaquero, M., López, L., Fernández-González, S., Hermida, L., Sánchez, J. L., García-Ortega, E., and Gascón, E.: Large-scale patterns of daily precipitation extremes on the Iberian Peninsula, Int. J. Climatol., 36, 3873–3891, 2016. a
                    
                
                        
                        Moron, V. and Plaut, G.: The impact of El Niño–Southern Oscillation upon weather regimes over Europe and the North Atlantic during boreal winter, Int. J. Climatol., 23, 363–379, 2003. a
                    
                
                        
                        Pinto, J. G., Fröhlich, E. L., Leckebusch, G. C., and Ulbrich, U.: Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM, Nat. Hazards Earth Syst. Sci., 7, 165–175, https://doi.org/10.5194/nhess-7-165-2007, 2007. a
                    
                
                        
                        Pinto, J. G., Zacharias, S., Fink, A. H., Leckebusch, G. C., and Ulbrich, U.: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO, Clim. Dynam., 32, 711–737, 2009. a
                    
                
                        
                        Priestley, M. D. K. and Catto, J. L.: Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure, Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, 2022. a
                    
                
                        
                        Schwierz, C. B. and Davies, H. C.: Evolution of a synoptic-scale vortex advecting toward a high mountain, Tellus A, 55, 158–172, 2003. a
                    
                
                        
                        Skeie, R. B., Kristjansson, J. E., Ólafsson, H., and Rosting, B.: Dynamical processes related to cyclone development near Greenland, Meteorol. Z., 15, 147, https://doi.org/10.1127/0941-2948/2006/0114, 2006. a
                    
                
                        
                        Spaeth, J., Rupp, P., Osman, M., Grams, C. M., and Birner, T.: Flow-Dependence of Ensemble Spread of Subseasonal Forecasts Explored via North Atlantic-European Weather Regimes, Geophys. Res. Lett., 51, e2024GL109733, https://doi.org/10.1029/2024GL109733, 2024b. a, b
                    
                
                        
                        Vallis, G. K. and Gerber, E. P.: Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index, Dynam. Atmos. Oceans, 44, 184–212, 2008.  a
                    
                
                        
                        Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H.-S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D.-J., Xiao, H., Zaripov, R., and Zhang, L.: The subseasonal to seasonal (S2S) prediction project database, B. Am. Meteorol. Soc., 98, 163–173, 2017. a
                    
                
                        
                        Wang, J., Kim, H.-M., Chang, E. K., and Son, S.-W.: Modulation of the MJO and North Pacific storm track relationship by the QBO, J. Geophys. Res.-Atmos., 123, 3976–3992, 2018. a
                    
                
                        
                        Wernli, H. and Schwierz, C.: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology, J. Atmos. Sci., 63, 2486–2507, 2006. a
                    
                
                        
                        White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J., Lazo, J. K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R., Kjellström, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B., and Zebiak, S. E.: Potential applications of subseasonal-to-seasonal (S2S) predictions, Meteorol. Appl., 24, 315–325, 2017. a
                    
                
                        
                        Yang, M., Luo, D., Shi, W., Yao, Y., Li, X., and Chen, X.: Contrasting interannual impacts of European and Greenland blockings on the winter North Atlantic storm track, Environ. Res. Lett., 16, 104036, https://doi.org/10.1088/1748-9326/ac2934, 2021. a
                    
                
                        
                        Zheng, C., Chang, E. K.-M., Kim, H., Zhang, M., and Wang, W.: Subseasonal to seasonal prediction of wintertime Northern Hemisphere extratropical cyclone activity by S2S and NMME models, J. Geophys. Res.-Atmos., 124, 12057–12077, 2019. a
                    
                Short summary
            We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
            We quantify the occurrence of strong synoptic storms as contributing about 20 % to the...