Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-373-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-373-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events
Daniela I. V. Domeisen
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Christian M. Grams
Institute of Meteorology and Climate Research – Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Lukas Papritz
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Related authors
Pauline Rivoire, Sonia Dupuis, Antoine Guisan, Pascal Vittoz, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3482, https://doi.org/10.5194/egusphere-2024-3482, 2024
Short summary
Short summary
Our study investigates the conditions in temperature, precipitation, humidity, and soil moisture leading to the browning of the European forests in summer. Using a Random Forest model and satellite measurement of vegetation greenness, we identify key conditions that predict forest damage. We conclude that hot and dry conditions in spring and summer are adverse conditions, in particular for broad-leaved trees. The hydro-meteorological conditions during the preceding year can also have an impact.
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024, https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
Short summary
Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts.
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Preprint under review for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
EGUsphere, https://doi.org/10.5194/egusphere-2024-2079, https://doi.org/10.5194/egusphere-2024-2079, 2024
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere, and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264, https://doi.org/10.5194/gmd-17-2247-2024, https://doi.org/10.5194/gmd-17-2247-2024, 2024
Short summary
Short summary
This paper introduces a new method for detecting atmospheric cloud bands to identify long convective cloud bands that extend from the tropics to the midlatitudes. The algorithm allows for easy use and enables researchers to study the life cycle and climatology of cloud bands and associated rainfall. This method provides insights into the large-scale processes involved in cloud band formation and their connections between different regions, as well as differences across ocean basins.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Maria Pyrina, Wolfgang Wicker, Andries Jan de Vries, Georgios Fragkoulidis, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3088, https://doi.org/10.5194/egusphere-2023-3088, 2024
Preprint withdrawn
Short summary
Short summary
We investigate the atmospheric dynamics behind heatwaves, specifically of those occurring simultaneously across regions, known as concurrent heatwaves. We find that heatwaves are strongly modulated by Rossby wave packets, being Rossby waves whose amplitude has a local maximum and decays at larger distances. High amplitude Rossby wave packets increase the occurrence probabilities of concurrent and non-concurrent heatwaves by a factor of 15 and 18, respectively, over several regions globally.
David Martin Straus, Daniela I. V. Domeisen, Sarah-Jane Lock, Franco Molteni, and Priyanka Yadav
Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023, https://doi.org/10.5194/wcd-4-1001-2023, 2023
Short summary
Short summary
The global response to the Madden–Julian oscillation (MJO) is potentially predictable. Yet the diabatic heating is uncertain even within a particular episode of the MJO. Experiments with a global model probe the limitations imposed by this uncertainty. The large-scale tropical heating is predictable for 25 to 45 d, yet the associated Rossby wave source that links the heating to the midlatitude circulation is predictable for 15 to 20 d. This limitation has not been recognized in prior work.
Gabriel Chiodo, Marina Friedel, Svenja Seeber, Daniela Domeisen, Andrea Stenke, Timofei Sukhodolov, and Franziska Zilker
Atmos. Chem. Phys., 23, 10451–10472, https://doi.org/10.5194/acp-23-10451-2023, https://doi.org/10.5194/acp-23-10451-2023, 2023
Short summary
Short summary
Stratospheric ozone protects the biosphere from harmful UV radiation. Anthropogenic activity has led to a reduction in the ozone layer in the recent past, but thanks to the implementation of the Montreal Protocol, the ozone layer is projected to recover. In this study, we show that projected future changes in Arctic ozone abundances during springtime will influence stratospheric climate and thereby actively modulate large-scale circulation changes in the Northern Hemisphere.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Raphaël de Fondeville, Zheng Wu, Enikő Székely, Guillaume Obozinski, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 287–307, https://doi.org/10.5194/wcd-4-287-2023, https://doi.org/10.5194/wcd-4-287-2023, 2023
Short summary
Short summary
We propose a fully data-driven, interpretable, and computationally scalable framework to characterize sudden stratospheric warmings (SSWs), extract statistically significant precursors, and produce machine learning (ML) forecasts. By successfully leveraging the long-lasting impact of SSWs, the ML predictions outperform sub-seasonal numerical forecasts for lead times beyond 25 d. Post-processing numerical predictions using their ML counterparts yields a performance increase of up to 20 %.
Wolfgang Wicker, Inna Polichtchouk, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 81–93, https://doi.org/10.5194/wcd-4-81-2023, https://doi.org/10.5194/wcd-4-81-2023, 2023
Short summary
Short summary
Sudden stratospheric warmings are extreme weather events where the winter polar stratosphere warms by about 25 K. An improved representation of small-scale gravity waves in sub-seasonal prediction models can reduce forecast errors since their impact on the large-scale circulation is predictable multiple weeks ahead. After a sudden stratospheric warming, vertically propagating gravity waves break at a lower altitude than usual, which strengthens the long-lasting positive temperature anomalies.
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys., 22, 13997–14017, https://doi.org/10.5194/acp-22-13997-2022, https://doi.org/10.5194/acp-22-13997-2022, 2022
Short summary
Short summary
In spring, winds the Arctic stratosphere change direction – an event called final stratospheric warming (FSW). Here, we examine whether the interannual variability in Arctic stratospheric ozone impacts the timing of the FSW. We find that Arctic ozone shifts the FSW to earlier and later dates in years with high and low ozone via the absorption of UV light. The modulation of the FSW by ozone has consequences for surface climate in ozone-rich years, which may result in better seasonal predictions.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022, https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring–summer time in the Southern Hemisphere. Using chemistry-climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models' circulations.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Short summary
Accurate predictions of the stratospheric polar vortex can enhance surface weather predictability. Stratospheric events themselves are less predictable, with strong inter-event differences. We assess the predictability of stratospheric acceleration and deceleration events in a sub-seasonal prediction system, finding that the predictability of events is largely dependent on event magnitude, while extreme drivers of deceleration events are not fully represented in the model.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Zheng Wu, Bernat Jiménez-Esteve, Raphaël de Fondeville, Enikő Székely, Guillaume Obozinski, William T. Ball, and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 841–865, https://doi.org/10.5194/wcd-2-841-2021, https://doi.org/10.5194/wcd-2-841-2021, 2021
Short summary
Short summary
We use an advanced statistical approach to investigate the dynamics of the development of sudden stratospheric warming (SSW) events in the winter Northern Hemisphere. We identify distinct signals that are representative of these events and their event type at lead times beyond currently predictable lead times. The results can be viewed as a promising step towards improving the predictability of SSWs in the future by using more advanced statistical methods in operational forecasting systems.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Matthias Fischer, Daniela I. V. Domeisen, Wolfgang A. Müller, and Johanna Baehr
Earth Syst. Dynam., 8, 129–146, https://doi.org/10.5194/esd-8-129-2017, https://doi.org/10.5194/esd-8-129-2017, 2017
Short summary
Short summary
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM), we find that a decline in the Atlantic Ocean meridional heat transport (OHT) is accompanied by a change in the seasonal cycle of the total OHT and its components. We found a northward shift of 5° and latitude-dependent shifts between 1 and 6 months in the seasonal cycle that are mainly associated with changes in the meridional velocity field rather than the temperature field.
Pauline Rivoire, Sonia Dupuis, Antoine Guisan, Pascal Vittoz, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3482, https://doi.org/10.5194/egusphere-2024-3482, 2024
Short summary
Short summary
Our study investigates the conditions in temperature, precipitation, humidity, and soil moisture leading to the browning of the European forests in summer. Using a Random Forest model and satellite measurement of vegetation greenness, we identify key conditions that predict forest damage. We conclude that hot and dry conditions in spring and summer are adverse conditions, in particular for broad-leaved trees. The hydro-meteorological conditions during the preceding year can also have an impact.
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024, https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
Short summary
Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts.
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Preprint under review for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024, https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Short summary
Extreme rainfall is the leading weather-related source of damages in Europe, but it is still difficult to predict on long timescales. A recent example of this was the devastating floods in the Italian region of Emiglia Romagna in May 2023. We present perspectives based on large-scale dynamical information that allows us to better understand and predict such events.
Svenja Christ, Marta Wenta, Christian M. Grams, and Annika Oertel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2403, https://doi.org/10.5194/egusphere-2024-2403, 2024
Short summary
Short summary
The detailed representation of sea surface temperature (SST) in numerical models is important for the prediction of atmospheric blocking in the North Atlantic. Yet, the underlying physical processes are not fully understood. Using SST sensitivity experiments for a case study, we identify a physical pathway through which SST in the Gulf Stream region is linked to the downstream upper-level flow evolution in the North Atlantic.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
EGUsphere, https://doi.org/10.5194/egusphere-2024-2079, https://doi.org/10.5194/egusphere-2024-2079, 2024
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere, and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Moritz Deinhard and Christian M. Grams
Weather Clim. Dynam., 5, 927–942, https://doi.org/10.5194/wcd-5-927-2024, https://doi.org/10.5194/wcd-5-927-2024, 2024
Short summary
Short summary
Stochastic perturbations are an established technique to represent model uncertainties in numerical weather prediction. While such schemes are beneficial for the forecast skill, they can also change the mean state of the model. We analyse how different schemes modulate rapidly ascending airstreams and whether the changes to such weather systems are projected onto larger scales. We thereby provide a process-oriented perspective on how perturbations affect the model climate.
Marc Federer, Lukas Papritz, Michael Sprenger, and Christian M. Grams
EGUsphere, https://doi.org/10.5194/egusphere-2024-2112, https://doi.org/10.5194/egusphere-2024-2112, 2024
Short summary
Short summary
Although extratropical cyclones in the North Atlantic are among the most impactful midlatitude weather systems, the potential for their growth on synoptic scales is not well understood. Here we show how they convert potential into kinetic energy through the descent of cold upper-tropospheric air from high latitudes. Surface processes, such as ocean heat exchange, have a smaller effect. Understanding these dynamics helps to explain the processes that maintain storm tracks.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024, https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Short summary
Blocking over Greenland has substantial impacts on the weather and climate in mid- and high latitudes. This study applies a quasi-Lagrangian thinking on the dynamics of Greenland blocking and reveals two pathways of anticyclonic anomalies linked to the block. Moist processes were found to play a dominant role in the formation and maintenance of blocking. This emphasizes the necessity of the correct representation of moist processes in weather and climate models to realistically depict blocking.
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
EGUsphere, https://doi.org/10.5194/egusphere-2024-878, https://doi.org/10.5194/egusphere-2024-878, 2024
Short summary
Short summary
In this study, we use large-ensemble climate model simulations to analyze extreme winters in the Barents Sea in a changing climate. We find that variability in both atmospheric processes and sea ice conditions determines the formation of such seasons in the present-day climate. The reduction in sea ice variability results in a decreasing importance of surface boundary conditions in a warmer climate, while the robust link shown for surface weather systems persists.
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024, https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary
Short summary
Using an innovative approach, the descent of foehn is diagnosed from a Lagrangian perspective based on 15 kilometer-scale simulations combined with online trajectories. The descent is confined to distinct hotspots in the immediate lee of local mountain peaks and chains. Two detailed case studies reveal a varying wave regime to be associated with the descent. Furthermore, additional controlling factors, such as the diurnal cycle, likewise influence the descent activity.
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264, https://doi.org/10.5194/gmd-17-2247-2024, https://doi.org/10.5194/gmd-17-2247-2024, 2024
Short summary
Short summary
This paper introduces a new method for detecting atmospheric cloud bands to identify long convective cloud bands that extend from the tropics to the midlatitudes. The algorithm allows for easy use and enables researchers to study the life cycle and climatology of cloud bands and associated rainfall. This method provides insights into the large-scale processes involved in cloud band formation and their connections between different regions, as well as differences across ocean basins.
Belinda Hotz, Lukas Papritz, and Matthias Röthlisberger
Weather Clim. Dynam., 5, 323–343, https://doi.org/10.5194/wcd-5-323-2024, https://doi.org/10.5194/wcd-5-323-2024, 2024
Short summary
Short summary
Analysing the vertical structure of temperature anomalies of recent record-breaking heatwaves reveals a complex four-dimensional interplay of anticyclone–heatwave interactions, with vertically strongly varying advective, adiabatic, and diabatic contributions to the respective temperature anomalies. The heatwaves featured bottom-heavy positive temperature anomalies, extending throughout the troposphere.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Marta Wenta, Christian M. Grams, Lukas Papritz, and Marc Federer
Weather Clim. Dynam., 5, 181–209, https://doi.org/10.5194/wcd-5-181-2024, https://doi.org/10.5194/wcd-5-181-2024, 2024
Short summary
Short summary
Our study links air–sea interactions over the Gulf Stream to an atmospheric block in February 2019. We found that over 23 % of air masses that were lifted into the block by cyclones interacted with the Gulf Stream. As cyclones pass over the Gulf Stream, they cause intense surface evaporation events, preconditioning the environment for the development of cyclones. This implies that air–sea interactions over the Gulf Stream affect the large-scale dynamics in the North Atlantic–European region.
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024, https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Short summary
Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones have an important effect on the evolution of downstream weather and predictability. In this study, we show that the occurrence of these airstreams over the North Pacific is modulated by tropical convection. Depending on the modulation, known atmospheric circulation patterns evolve quite differently, which may affect extended-range predictions in the Atlantic–European region.
Maria Pyrina, Wolfgang Wicker, Andries Jan de Vries, Georgios Fragkoulidis, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3088, https://doi.org/10.5194/egusphere-2023-3088, 2024
Preprint withdrawn
Short summary
Short summary
We investigate the atmospheric dynamics behind heatwaves, specifically of those occurring simultaneously across regions, known as concurrent heatwaves. We find that heatwaves are strongly modulated by Rossby wave packets, being Rossby waves whose amplitude has a local maximum and decays at larger distances. High amplitude Rossby wave packets increase the occurrence probabilities of concurrent and non-concurrent heatwaves by a factor of 15 and 18, respectively, over several regions globally.
David Martin Straus, Daniela I. V. Domeisen, Sarah-Jane Lock, Franco Molteni, and Priyanka Yadav
Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023, https://doi.org/10.5194/wcd-4-1001-2023, 2023
Short summary
Short summary
The global response to the Madden–Julian oscillation (MJO) is potentially predictable. Yet the diabatic heating is uncertain even within a particular episode of the MJO. Experiments with a global model probe the limitations imposed by this uncertainty. The large-scale tropical heating is predictable for 25 to 45 d, yet the associated Rossby wave source that links the heating to the midlatitude circulation is predictable for 15 to 20 d. This limitation has not been recognized in prior work.
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Gabriel Chiodo, Marina Friedel, Svenja Seeber, Daniela Domeisen, Andrea Stenke, Timofei Sukhodolov, and Franziska Zilker
Atmos. Chem. Phys., 23, 10451–10472, https://doi.org/10.5194/acp-23-10451-2023, https://doi.org/10.5194/acp-23-10451-2023, 2023
Short summary
Short summary
Stratospheric ozone protects the biosphere from harmful UV radiation. Anthropogenic activity has led to a reduction in the ozone layer in the recent past, but thanks to the implementation of the Montreal Protocol, the ozone layer is projected to recover. In this study, we show that projected future changes in Arctic ozone abundances during springtime will influence stratospheric climate and thereby actively modulate large-scale circulation changes in the Northern Hemisphere.
Annika Oertel, Annette K. Miltenberger, Christian M. Grams, and Corinna Hoose
Atmos. Chem. Phys., 23, 8553–8581, https://doi.org/10.5194/acp-23-8553-2023, https://doi.org/10.5194/acp-23-8553-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are cloud- and precipitation-producing airstreams in extratropical cyclones that are important for the large-scale flow and cloud radiative forcing. We analyze cloud formation processes during WCB ascent in a two-moment microphysics scheme. Quantification of individual diabatic heating rates shows the importance of condensation, vapor deposition, rain evaporation, melting, and cloud-top radiative cooling for total heating and WCB-related potential vorticity structure.
Axel Seifert, Vanessa Bachmann, Florian Filipitsch, Jochen Förstner, Christian M. Grams, Gholam Ali Hoshyaripour, Julian Quinting, Anika Rohde, Heike Vogel, Annette Wagner, and Bernhard Vogel
Atmos. Chem. Phys., 23, 6409–6430, https://doi.org/10.5194/acp-23-6409-2023, https://doi.org/10.5194/acp-23-6409-2023, 2023
Short summary
Short summary
We investigate how mineral dust can lead to the formation of cirrus clouds. Dusty cirrus clouds lead to a reduction in solar radiation at the surface and, hence, a reduced photovoltaic power generation. Current weather prediction systems are not able to predict this interaction between mineral dust and cirrus clouds. We have developed a new physical description of the formation of dusty cirrus clouds. Overall we can show a considerable improvement in the forecast quality of clouds and radiation.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023, https://doi.org/10.5194/wcd-4-399-2023, 2023
Short summary
Short summary
Blocking describes a flow configuration in the midlatitudes where stationary high-pressure systems block the propagation of weather systems. This study combines three individual perspectives that capture the dynamics and importance of various processes in the formation of a major blocking in 2016 from a weather regime perspective. In future work, this framework will enable a holistic view of the dynamics and the role of moist processes in different life cycle stages of blocked weather regimes.
Raphaël de Fondeville, Zheng Wu, Enikő Székely, Guillaume Obozinski, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 287–307, https://doi.org/10.5194/wcd-4-287-2023, https://doi.org/10.5194/wcd-4-287-2023, 2023
Short summary
Short summary
We propose a fully data-driven, interpretable, and computationally scalable framework to characterize sudden stratospheric warmings (SSWs), extract statistically significant precursors, and produce machine learning (ML) forecasts. By successfully leveraging the long-lasting impact of SSWs, the ML predictions outperform sub-seasonal numerical forecasts for lead times beyond 25 d. Post-processing numerical predictions using their ML counterparts yields a performance increase of up to 20 %.
Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
Short summary
Short summary
Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
Wolfgang Wicker, Inna Polichtchouk, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 81–93, https://doi.org/10.5194/wcd-4-81-2023, https://doi.org/10.5194/wcd-4-81-2023, 2023
Short summary
Short summary
Sudden stratospheric warmings are extreme weather events where the winter polar stratosphere warms by about 25 K. An improved representation of small-scale gravity waves in sub-seasonal prediction models can reduce forecast errors since their impact on the large-scale circulation is predictable multiple weeks ahead. After a sudden stratospheric warming, vertically propagating gravity waves break at a lower altitude than usual, which strengthens the long-lasting positive temperature anomalies.
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys., 22, 13997–14017, https://doi.org/10.5194/acp-22-13997-2022, https://doi.org/10.5194/acp-22-13997-2022, 2022
Short summary
Short summary
In spring, winds the Arctic stratosphere change direction – an event called final stratospheric warming (FSW). Here, we examine whether the interannual variability in Arctic stratospheric ozone impacts the timing of the FSW. We find that Arctic ozone shifts the FSW to earlier and later dates in years with high and low ozone via the absorption of UV light. The modulation of the FSW by ozone has consequences for surface climate in ozone-rich years, which may result in better seasonal predictions.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022, https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring–summer time in the Southern Hemisphere. Using chemistry-climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models' circulations.
Lukas Jansing, Lukas Papritz, Bruno Dürr, Daniel Gerstgrasser, and Michael Sprenger
Weather Clim. Dynam., 3, 1113–1138, https://doi.org/10.5194/wcd-3-1113-2022, https://doi.org/10.5194/wcd-3-1113-2022, 2022
Short summary
Short summary
This study presents a 5-year climatology of three main foehn types and three deep-foehn subtypes. The main types differ in their large-scale and Alpine-scale weather conditions and the subtypes in terms of the amount and extent of precipitation on the Alpine south side. The different types of foehn are found to strongly affect the local meteorological conditions at Altdorf. The study concludes by setting the new classification into a historic context.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Short summary
Accurate predictions of the stratospheric polar vortex can enhance surface weather predictability. Stratospheric events themselves are less predictable, with strong inter-event differences. We assess the predictability of stratospheric acceleration and deceleration events in a sub-seasonal prediction system, finding that the predictability of events is largely dependent on event magnitude, while extreme drivers of deceleration events are not fully represented in the model.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022, https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Short summary
Much of the change in our daily weather patterns is due to the development and intensification of extratropical cyclones. The response of these systems to climate change is an important topic of ongoing research. This study is the first to reproduce the changes in the North Atlantic circulation and extratropical cyclone characteristics found in fully coupled Earth system models under high-CO2 scenarios, but in an idealized, reduced-complexity simulation with uniform warming.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Julian F. Quinting and Christian M. Grams
Geosci. Model Dev., 15, 715–730, https://doi.org/10.5194/gmd-15-715-2022, https://doi.org/10.5194/gmd-15-715-2022, 2022
Short summary
Short summary
Physical processes in weather systems importantly affect the midlatitude large-scale circulation. This study introduces an artificial-intelligence-based framework which allows the identification of an important weather system – the so-called warm conveyor belt (WCB) – at comparably low computational costs and from data at low spatial and temporal resolution. The framework thus newly enables the systematic investigation of WCBs in large data sets such as climate model projections.
Julian F. Quinting, Christian M. Grams, Annika Oertel, and Moritz Pickl
Geosci. Model Dev., 15, 731–744, https://doi.org/10.5194/gmd-15-731-2022, https://doi.org/10.5194/gmd-15-731-2022, 2022
Short summary
Short summary
This study applies novel artificial-intelligence-based models that allow the identification of one specific weather system which affects the midlatitude circulation. We show that the models yield similar results as their trajectory-based counterpart, which requires data at higher spatiotemporal resolution and is computationally more expensive. Overall, we aim to show how deep learning methods can be used efficiently to support process understanding of biases in weather prediction models.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022, https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary
Short summary
Water vapor profoundly impacts the Arctic, for example by contributing to sea ice melt. A substantial portion of water vapor in the Arctic originates at mid-latitudes and is transported poleward in a few episodic and intense events. This transport is accomplished by low- and high-pressure systems occurring in specific regions or following particular tracks. Here, we explore how the type of weather system impacts where the water vapor is coming from and how it is transported poleward.
Zheng Wu, Bernat Jiménez-Esteve, Raphaël de Fondeville, Enikő Székely, Guillaume Obozinski, William T. Ball, and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 841–865, https://doi.org/10.5194/wcd-2-841-2021, https://doi.org/10.5194/wcd-2-841-2021, 2021
Short summary
Short summary
We use an advanced statistical approach to investigate the dynamics of the development of sudden stratospheric warming (SSW) events in the winter Northern Hemisphere. We identify distinct signals that are representative of these events and their event type at lead times beyond currently predictable lead times. The results can be viewed as a promising step towards improving the predictability of SSWs in the future by using more advanced statistical methods in operational forecasting systems.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Susanna Mohr, Jannik Wilhelm, Jan Wandel, Michael Kunz, Raphael Portmann, Heinz Jürgen Punge, Manuel Schmidberger, Julian F. Quinting, and Christian M. Grams
Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, https://doi.org/10.5194/wcd-1-325-2020, 2020
Short summary
Short summary
We investigated an exceptional thunderstorm episode in 2018, in which atmospheric blocking provided large-scale environmental conditions favouring convection. Furthermore, blocking was accompanied by a high cut-off frequency on its upstream side, which together with filaments of high PV provided the mesoscale setting for deep moist convection. The exceptional persistence of low stability combined with weak wind speed in the mid-troposphere over more than 3 weeks has never been observed before.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Matthias Fischer, Daniela I. V. Domeisen, Wolfgang A. Müller, and Johanna Baehr
Earth Syst. Dynam., 8, 129–146, https://doi.org/10.5194/esd-8-129-2017, https://doi.org/10.5194/esd-8-129-2017, 2017
Short summary
Short summary
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM), we find that a decline in the Atlantic Ocean meridional heat transport (OHT) is accompanied by a change in the seasonal cycle of the total OHT and its components. We found a northward shift of 5° and latitude-dependent shifts between 1 and 6 months in the seasonal cycle that are mainly associated with changes in the meridional velocity field rather than the temperature field.
M. Rautenhaus, C. M. Grams, A. Schäfler, and R. Westermann
Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, https://doi.org/10.5194/gmd-8-2355-2015, 2015
Short summary
Short summary
This article presents the application of interactive 3D visualization of ensemble
weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. A method to predict 3D probabilities of the spatial occurrence of WCBs is developed and integrated into the 3D visualization tool "Met.3D", introduced in the first part of this two-paper study. A case study demonstrates the use of 3D and uncertainty visualization for weather forecasting.
C. M. Grams, H. Binder, S. Pfahl, N. Piaget, and H. Wernli
Nat. Hazards Earth Syst. Sci., 14, 1691–1702, https://doi.org/10.5194/nhess-14-1691-2014, https://doi.org/10.5194/nhess-14-1691-2014, 2014
Related subject area
Atmospheric teleconnections incl. stratosphere–troposphere coupling
The role of the Indian Ocean Dipole in modulating the austral spring ENSO teleconnection to the Southern Hemisphere
Model spread in multidecadal North Atlantic Oscillation variability connected to stratosphere–troposphere coupling
A process-based evaluation of biases in extratropical stratosphere-troposphere coupling in subseasonal forecast systems
Opposite spectral properties of Rossby waves during weak and strong stratospheric polar vortex events
Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts
How do different pathways connect the stratospheric polar vortex to its tropospheric precursors?
A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations
The teleconnection of extreme El Niño–Southern Oscillation (ENSO) events to the tropical North Atlantic in coupled climate models
Using large ensembles to quantify the impact of sudden stratospheric warmings and their precursors on the North Atlantic Oscillation
The stratosphere: a review of the dynamics and variability
Stratospheric downward wave reflection events modulate North American weather regimes and cold spells
Modulation of the El Niño teleconnection to the North Atlantic by the tropical North Atlantic during boreal spring and summer
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Stratospheric modulation of Arctic Oscillation extremes as represented by extended-range ensemble forecasts
The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model
Decline in Etesian winds after large volcanic eruptions in the last millennium
Stationary wave biases and their effect on upward troposphere– stratosphere coupling in sub-seasonal prediction models
Stratospheric wave driving events as an alternative to sudden stratospheric warmings
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases
Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections
Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic
The wave geometry of final stratospheric warming events
Origins of multi-decadal variability in sudden stratospheric warmings
Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles
Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States
The role of Barents–Kara sea ice loss in projected polar vortex changes
Mechanisms and predictability of sudden stratospheric warming in winter 2018
On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics
Nonlinearity in the tropospheric pathway of ENSO to the North Atlantic
Luciano Gustavo Andrian, Marisol Osman, and Carolina Susana Vera
Weather Clim. Dynam., 5, 1505–1522, https://doi.org/10.5194/wcd-5-1505-2024, https://doi.org/10.5194/wcd-5-1505-2024, 2024
Short summary
Short summary
The interplay between the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is well-researched in the tropical Indian Ocean, but their effects on the Southern Hemisphere's extratropical regions during spring are less studied. We show that the positive phase of the IOD can strengthen the El Niño circulation anomalies, heightening their continental impacts. On the other hand, negative IOD combined with La Niña shows less consistent changes among the different methodologies.
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024, https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
Short summary
Climate models underestimate multidecadal winter North Atlantic Oscillation (NAO) variability. Understanding the origin of this weak variability is important for making reliable climate projections. We use multi-model climate simulations to explore statistical relationships with drivers that may contribute to NAO variability. We find a relationship between modelled stratosphere–troposphere coupling and multidecadal NAO variability, offering an avenue to improve the simulation of NAO variability.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Raphael Harry Köhler, Ralf Jaiser, and Dörthe Handorf
Weather Clim. Dynam., 4, 1071–1086, https://doi.org/10.5194/wcd-4-1071-2023, https://doi.org/10.5194/wcd-4-1071-2023, 2023
Short summary
Short summary
This study explores the local mechanisms of troposphere–stratosphere coupling on seasonal timescales during extended winter in the Northern Hemisphere. The detected tropospheric precursor regions exhibit very distinct mechanisms of coupling to the stratosphere, thus highlighting the importance of the time- and zonally resolved picture. Moreover, this study demonstrates that the ICOsahedral Non-hydrostatic atmosphere model (ICON) can realistically reproduce troposphere–stratosphere coupling.
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Philip E. Bett, Adam A. Scaife, Steven C. Hardiman, Hazel E. Thornton, Xiaocen Shen, Lin Wang, and Bo Pang
Weather Clim. Dynam., 4, 213–228, https://doi.org/10.5194/wcd-4-213-2023, https://doi.org/10.5194/wcd-4-213-2023, 2023
Short summary
Short summary
Sudden-stratospheric-warming (SSW) events can severely affect the subsequent weather at the surface. We use a large ensemble of climate model hindcasts to investigate features of the climate that make strong impacts more likely through negative NAO conditions. This allows a more robust assessment than using observations alone. Air pressure over the Arctic prior to an SSW and the zonal-mean zonal wind in the lower stratosphere have the strongest relationship with the subsequent NAO response.
Neal Butchart
Weather Clim. Dynam., 3, 1237–1272, https://doi.org/10.5194/wcd-3-1237-2022, https://doi.org/10.5194/wcd-3-1237-2022, 2022
Short summary
Short summary
In recent years, it has emerged that there is an affinity between stratospheric variability and surface events. Waves from the troposphere interacting with the mean flow drive much of the variability in the polar vortex, sudden stratospheric warmings and tropical quasi-biennial oscillation. Here we review the historical evolution of established knowledge of the stratosphere's global structure and dynamical variability, along with recent advances and theories, and identify outstanding challenges.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022, https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary
Short summary
We investigate the impact of strong volcanic eruptions on the northerly Etesian winds blowing in the eastern Mediterranean. Μodel simulations of the last millennium demonstrate a robust reduction in the total number of days with Etesian winds in the post-eruption summers. The decline in the Etesian winds is attributed to a weakened Indian summer monsoon in the post-eruption summer. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Thomas Reichler and Martin Jucker
Weather Clim. Dynam., 3, 659–677, https://doi.org/10.5194/wcd-3-659-2022, https://doi.org/10.5194/wcd-3-659-2022, 2022
Short summary
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
Roseanna C. McKay, Julie M. Arblaster, and Pandora Hope
Weather Clim. Dynam., 3, 413–428, https://doi.org/10.5194/wcd-3-413-2022, https://doi.org/10.5194/wcd-3-413-2022, 2022
Short summary
Short summary
Understanding what makes it hot in Australia in spring helps us better prepare for harmful impacts. We look at how the higher latitudes and tropics change the atmospheric circulation from early to late spring and how that changes maximum temperatures in Australia. We find that the relationship between maximum temperatures and the tropics is stronger in late spring than early spring. These findings could help improve forecasts of hot months in Australia in spring.
Nicholas L. Tyrrell, Juho M. Koskentausta, and Alexey Yu. Karpechko
Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022, https://doi.org/10.5194/wcd-3-45-2022, 2022
Short summary
Short summary
El Niño events are known to effect the variability of the wintertime stratospheric polar vortex. The observed relationship differs from what is seen in climate models. Climate models have errors in their average winds and temperature, and in this work we artificially reduce those errors to see how that changes the communication of El Niño events to the polar stratosphere. We find reducing errors improves stratospheric variability, but does not explain the differences with observations.
Nicholas L. Tyrrell and Alexey Yu. Karpechko
Weather Clim. Dynam., 2, 913–925, https://doi.org/10.5194/wcd-2-913-2021, https://doi.org/10.5194/wcd-2-913-2021, 2021
Short summary
Short summary
Tropical Pacific sea surface temperatures (El Niño) affect the global climate. The Pacific-to-Europe connection relies on interactions of large atmospheric waves with winds and surface pressure. We looked at how mean errors in a climate model affect its ability to simulate the Pacific-to-Europe connection. We found that even large errors in the seasonal winds did not affect the response of the model to an El Niño event, which is good news for seasonal forecasts which rely on these connections.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
Irene Erner, Alexey Y. Karpechko, and Heikki J. Järvinen
Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, https://doi.org/10.5194/wcd-1-657-2020, 2020
Short summary
Short summary
In this paper we investigate the role of the tropospheric forcing in the occurrence of the sudden stratospheric warming (SSW) that took place in February 2018, its predictability and teleconnection with the Madden–Julian oscillation (MJO) by analysing the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast. The purpose of the paper is to present the results of the analysis of the atmospheric circulation before and during the SSW and clarify the driving mechanisms.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Cited articles
Afargan-Gerstman, H. and Domeisen, D. I. V.: Pacific Modulation of the North
Atlantic Storm Track Response to Sudden Stratospheric Warming Events,
Geophys. Res. Lett., 47, e2019GL085007,
https://doi.org/10.1029/2019GL085007, 2020. a, b
Andrews, M. B., Knight, J. R., Scaife, A. A., and Lu, Y.: Observed and
simulated teleconnections between the stratospheric Quasi-Biennial
Oscillation and Northern Hemisphere winter atmospheric circulation, J.
Geophys. Res.-Atmos., 124, 1219–1232, https://doi.org/10.1029/2018JD029368, 2019. a
Attard, H. E., Lang, A. L., Attard, H. E., and Lang, A. L.: The Impact of
Tropospheric and Stratospheric Tropical Variability on the Location,
Frequency, and Duration of Cool-Season Extratropical Synoptic Events,
Mon. Weather Rev., 147, 519–542, 2019. a
Ayarzagüena, B., Barriopedro, D., Perez, J. M. G., Abalos, M., de la
Camara, A., Herrera, R. G., Calvo, N., and Ordóñez, C.:
Stratospheric Connection to the Abrupt End of the 2016/2017 Iberian
Drought, Geophys. Res. Lett., 45, 12639–12646, 2018. a
Barnes, E. A., Samarasinghe, S. M., Uphoff, I. E., and Furtado, J. C.:
Tropospheric and Stratospheric Causal Pathways Between the MJO and NAO,
J. Geophys. Res.-Atmos., 124, 9356–9371, 2019. a
Beerli, R. and Grams, C. M.: Stratospheric Modulation of the Large-Scale
Circulation in the Atlantic-European Region and Its Implications for
Surface Weather Events, Q. J. Roy. Meteor.
Soc., 145, 3732–3750, https://doi.org/10.1002/qj.3653, 2019. a, b, c, d
Beerli, R., Wernli, H., and Grams, C. M.: Does the lower stratosphere provide
predictability for month-ahead wind electricity generation in Europe?,
Q. J. Roy. Meteor. Soc., 143, 3025–3036, 2017. a
Butler, A., Charlton-Perez, A., Domeisen, D. I. V., Garfinkel, C., Gerber,
E. P., Hitchcock, P., Karpechko, A. Y., Maycock, A. C., Sigmond, M., Simpson,
I., and Son, S.-W.: Sub-seasonal Predictability and the Stratosphere, in:
Sub-Seasonal to Seasonal Prediction, Elsevier, 223–241,
https://doi.org/10.1016/B978-0-12-811714-9.00011-5, 2019. a
Butler, A. H., Arribas, A., Athanassiadou, M., Baehr, J., Calvo, N.,
Charlton-Perez, A., Déqué, M., Domeisen, D. I. V., Fröhlich, K.,
Hendon, H., Imada, Y., Ishii, M., Iza, M., Karpechko, A. Y., Kumar, A.,
MacLachlan, C., Merryfield, W. J., Müller, W. A., O'Neill, A., Scaife,
A. A., Scinocca, J., Sigmond, M., Stockdale, T. N., and Yasuda, T.: The
Climate-system Historical Forecast Project: do stratosphere-resolving models
make better seasonal climate predictions in boreal winter?, Q.
J. Roy. Meteor. Soc., 142, 1413–1427, 2016. a
Cassou, C.: Intraseasonal interaction between the Madden–Julian
oscillation and the North Atlantic Oscillation, Nature, 455, 523–527,
https://doi.org/10.1038/nature07286, 2008. a
Cohen, J., Furtado, J. C., Jones, J., Barlow, M., Whittleston, D., and
Entekhabi, D.: Linking Siberian Snow Cover to Precursors of Stratospheric
Variability, J. Climate, 27, 5422–5432, 2014. a
Cropper, T., Hanna, E., Valente, M. A., and Jónsson, T.: A daily
Azores-Iceland North Atlantic Oscillation index back to 1850, Geosci.
Data J., 2, 12–24, 2015. a
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A., Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hersbach, H., Holm, E., Isaksen, L.,
Kållberg, P., Köhler, M., Matricardi, M., McNally, A., Monge-Sanz,
B., Morcrette, J., Park, B., Peubey, C., Rosnay, P. D., Tavolato, C.,
Thepaut, J., and Vitart, F.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Domeisen, D. I. V.: Estimating the Frequency of Sudden Stratospheric Warming
Events from Surface Observations of the North Atlantic Oscillation, J.
Geophys. Res.-Atmos., 124, 3180–3194, https://doi.org/10.1029/2018JD030077, 2019. a, b, c
Domeisen, D. I. V., Sun, L., and Chen, G.: The role of synoptic eddies in the
tropospheric response to stratospheric variability, Geophys. Res. Lett., 40,
4933–4937, https://doi.org/10.1002/grl.50943, 2013. a
Domeisen, D. I. V., Butler, A. H., Fröhlich, K., Bittner, M., Müller,
W. A., and Baehr, J.: Seasonal Predictability over Europe Arising from El
Niño and Stratospheric Variability in the MPI-ESM Seasonal Prediction
System, J. Climate, 28, 256–271, https://doi.org/10.1175/JCLI-D-14-00207.1,
2015. a
Domeisen, D. I. V., Badin, G., and Koszalka, I. M.: How Predictable Are the
Arctic and North Atlantic Oscillations? Exploring the Variability and
Predictability of the Northern Hemisphere, J. Climate, 31,
997–1014, 2018. a
Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of
El Niño Southern Oscillation to the Stratosphere, Rev. Geophys.,
57, 5–47, https://doi.org/10.1029/2018RG000596, 2019. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzaguena, B.,
Baldwin, M. P., Dunn Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The role of the stratosphere in subseasonal to seasonal
prediction: 2. Predictability arising from stratosphere – troposphere
coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923,
https://doi.org/10.1029/2019JD030923, 2020a. a, b
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzaguena, B.,
Baldwin, M. P., Dunn Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The role of the stratosphere in subseasonal to seasonal
prediction: 1. Predictability of the stratosphere, J. Geophys.
Res.-Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920, 2020b. a
Drouard, M., Rivière, G., Arbogast, P., Drouard, M., Rivière, G., and
Arbogast, P.: The North Atlantic Oscillation Response to Large-Scale
Atmospheric Anomalies in the Northeastern Pacific, J. Atmos. Sci., 70,
2854–2874, 2013. a
Ferranti, L., Corti, S., and Janousek, M.: Flow-Dependent Verification of the
ECMWF Ensemble over the Euro-Atlantic Sector, Q. J. Roy. Meteor. Soc., 141, 916–924, https://doi.org/10.1002/qj.2411,
2015. a, b
Garfinkel, C. I., Butler, A. H., Waugh, D. W., Hurwitz, M. M., and Polvani,
L. M.: Why might stratospheric sudden warmings occur with similar frequency
in El Niño and La Niña winters?, J. Geophys. Res.,
117, D19106, https://doi.org/10.1029/2012JD017777, 2012. a
Garfinkel, C. I., Waugh, D. W., and Gerber, E. P.: The Effect of Tropospheric
Jet Latitude on Coupling between the Stratospheric Polar Vortex and the
Troposphere, J. Climate, 26, 2077–2095, 2013. a
Garfinkel, C. I., Benedict, J. J., and Maloney, E. D.: Impact of the MJO on
the boreal winter extratropical circulation, Geophys. Res. Lett.,
41, 6055–6062, 2014. a
Gerber, E. P., Orbe, C., and Polvani, L. M.: Stratospheric influence on the
tropospheric circulation revealed by idealized ensemble forecasts,
Geophys. Res. Lett., 36, L24801, https://doi.org/10.1029/2009GL040913, 2009. a
Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018, 2018. a
Greatbatch, R. J., Gollan, G., Jung, T., and Kunz, T.: Factors influencing
Northern Hemisphere winter mean atmospheric circulation anomalies during the
period 1960/61 to 2001/02, Q. J. Roy. Meteor.
Soc., 138, 1970–1982, 2012. a
Hitchcock, P. and Simpson, I. R.: The Downward Influence of Stratospheric
Sudden Warmings, J. Atmos. Sci., 71, 3856–3876, 2014. a
Hitchcock, P., Shepherd, T. G., Taguchi, M., Yoden, S., and Noguchi, S.:
Lower-stratospheric Radiative Damping and Polar-night Jet Oscillation
Events, J. Atmos. Sci., 70, 1391–1408, 2013b. a
Honda, M. and Nakamura, H.: Interannual Seesaw between the Aleutian and
Icelandic Lows. Part II: Its Significance in the Interannual Variability over
the Wintertime Northern Hemisphere, J. Climate, 14, 4512–4529,
2001. a
Huang, J. and Tian, W.: Eurasian Cold Air Outbreaks under Different Arctic
Stratospheric Polar Vortex Strength, J. Atmos. Sci., 76, 1245–1264,
https://doi.org/10.1175/JAS-D-18-0285.1, 2019. a
Jia, L., Yang, X., Vecchi, G., Gudgel, R., Delworth, T., Fueglistaler, S., Lin,
P., Scaife, A. A., Underwood, S., and Lin, S.-J.: Seasonal Prediction Skill
of Northern Extratropical Surface Temperature Driven by the Stratosphere,
J. Climate, 30, 4463–4475, 2017. a
Jiménez-Esteve, B. and Domeisen, D. I. V.: The Tropospheric Pathway of the
ENSO-North Atlantic Teleconnection, J. Climate, 31, 4563–4584,
https://doi.org/10.1175/JCLI-D-17-0716.1, 2018. a, b
Karpechko, A. Y.: Improvements in statistical forecasts of monthly and
two-monthly surface air temperatures using a stratospheric predictor,
Q. J. Roy. Meteor. Soc., 141, 2444–2456, 2015. a
Kolstad, E. W. and Charlton-Perez, A. J.: Observed and simulated precursors of
stratospheric polar vortex anomalies in the Northern Hemisphere, Clim.
Dynam., 37, 1443–1456, 2011. a
Kretschmer, M., Cohen, J., Matthias, V., Runge, J., and Coumou, D.: The
Different Stratospheric Influence on Cold-Extremes in Eurasia and North
America, npj Climate and Atmospheric Science, 1, 44,
https://doi.org/10.1038/s41612-018-0054-4, 2018a. a
Kretschmer, M., Coumou, D., Agel, L., Barlow, M., Tziperman, E., and Cohen, J.:
More-Persistent Weak Stratospheric Polar Vortex States Linked to Cold
Extremes, B. Am. Meteorol. Soc., 99, 49–60,
2018b. a
Kuroda, Y. and Kodera, K.: Role of the Polar-night Jet Oscillation on the
formation of the Arctic Oscillation in the Northern Hemisphere winter,
J. Geophys. Res., 109, D11112, https://doi.org/10.1029/2003JD004123, 2004. a
Martius, O., Polvani, L., and Davies, H.: Blocking precursors to stratospheric
sudden warming events, Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776, 2009. a
Matthias, V. and Kretschmer, M.: The Influence of Stratospheric Wave
Reflection on North American Cold Spells, Mon. Weather Rev., 148,
1675–1690, 2020. a
Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., and Simpson, I. R.: A
Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden
Stratospheric Warmings, J. Climate, 33, 3901–3917, 2020. a
Michel, C. and Rivière, G.: The Link between Rossby Wave Breakings
and Weather Regime Transitions, J. Atmos. Sci., 68,
1730–1748, https://doi.org/10.1175/2011JAS3635.1, 2011. a, b, c
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather Regimes:
Recurrence and Quasi Stationarity, J. Atmos.
Sci., 52, 1237–1256,
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995. a, b, c
Nakagawa, K. I. and Yamazaki, K.: What kind of stratospheric sudden warming
propagates to the troposphere?, Geophys. Res. Lett., 33, L04801,
https://doi.org/10.1029/2005GL024784, 2006. a
Nishii, K., Nakamura, H., and Orsolini, Y. J.: Geographical Dependence
Observed in Blocking High Influence on the Stratospheric Variability through
Enhancement and Suppression of Upward Planetary-Wave Propagation, J.
Climate, 24, 6408–6423, 2011. a
Papritz, L. and Grams, C.: Linking low-frequency large-scale circulation
patterns to cold air outbreak formation in the north-eastern North
Atlantic, Geophys. Res. Lett., 45, 2542–2553, https://doi.org/10.1002/2017GL076921,
2018. a, b
Peings, Y.: Ural Blocking as a driver of early winter stratospheric warmings,
Geophys. Res. Lett., 46, 5460–5468, https://doi.org/10.1029/2019GL082097, 2019. a, b
Seviour, W. J. M., Gray, L. J., and Mitchell, D. M.: Stratospheric polar
vortex splits and displacements in the high-top CMIP5 climate models,
J. Geophys. Res.-Atmos., 121, 1400–1413, https://doi.org/10.1002/2015JD024178, 2016. a, b
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced
seasonal forecast skill following stratospheric sudden warmings, Nat.
Geosci., 6, 1–5, 2013. a
Smith, K. L. and Scott, R. K.: The role of planetary waves in the tropospheric
jet response to stratospheric cooling, Geophys. Res. Lett., 43,
2904–2911, 2016. a
Song, Y. and Robinson, W. A.: Dynamical Mechanisms for Stratospheric
Influences on the Troposphere, J. Atmos. Sci., 61,
1711–1725, 2004. a
Sun, J. and Tan, B.: Mechanism of the wintertime Aleutian
Low–Icelandic Low seesaw, Geophys. Res. Lett., 40,
4103–4108, 2013. a
Sun, L., Deser, C., and Tomas, R. A.: Mechanisms of Stratospheric and
Tropospheric Circulation Response to Projected Arctic Sea Ice Loss, J. Climate, 28, 7824–7845, 2015. a
Taguchi, M.: Predictability of Major Stratospheric Sudden Warmings of the
Vortex Split Type: Case Study of the 2002 Southern Event and the 2009 and
1989 Northern Events, J. Atmos. Sci., 71, 2886–2904, 2014. a
Taguchi, M.: Connection of predictability of major stratospheric sudden
warmings to polar vortex geometry, Atmos. Science Letters, 17, 33–38,
2016. a
Tyrrell, N. L., Karpechko, A. Y., Uotila, P., and Vihma, T.: Atmospheric
Circulation Response to Anomalous Siberian Forcing in October 2016 and its
Long-Range Predictability, Geophys. Res. Lett., 46, 2800–2810, https://doi.org/10.1029/2018GL081580,
2019. a
UCAR/NCAR/CISL/VETS: The NCAR Command Language (Version 6.1.2)
[Software], Boulder, Colorado, https://doi.org/10.5065/D6WD3XH5,
2014. a
Vautard, R.: Multiple Weather Regimes over the North Atlantic: Analysis of
Precursors and Successors, Mon. Weather Rev., 118, 2056–2081,
https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2, 1990. a
Woollings, T., Charlton-Perez, A., Ineson, S., Marshall, A. G., and Masato, G.:
Associations between stratospheric variability and tropospheric blocking,
J. Geophys. Res.: Atmospheres, 115, D06108, https://doi.org/10.1029/2009JD012742, 2010. a
Zhang, R., Tian, W., Zhang, J., Huang, J., Xie, F., and Xu, M.: The
Corresponding Tropospheric Environments during Downward-extending and
Non-downward-extending Events of Stratospheric Northern Annular Mode
Anomalies, J. Climate, 32, 1857–1873, 2019. a
Short summary
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a promising opportunity to go beyond that limit by providing a change in probability of certain weather regimes at the surface. However, not all stratospheric extreme events are followed by the same surface weather evolution. We show that this weather evolution is related to the tropospheric weather regime around the onset of the stratospheric extreme event for many stratospheric events.
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a...