Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential-vorticity dynamics of troughs and ridges within Rossby wave packets during a 40-year reanalysis period
Institute for Atmospheric Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
Michael Riemer
Institute for Atmospheric Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
Related authors
Seraphine Hauser, Franziska Teubler, Michael Riemer, and Christian M. Grams
EGUsphere, https://doi.org/10.5194/egusphere-2025-6306, https://doi.org/10.5194/egusphere-2025-6306, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
The relative roles of dry and moist processes in blocking formation are still not well understood, especially across different blocking types and regions. Using a potential vorticity framework, we study the evolution of large-scale anticyclonic circulation anomalies that are linked to four distinct blocking patterns. We find that the development of anomaly amplitude is shaped mainly by their pathway, which determines the balance between dry and moist contributions, rather than the blocking type.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024, https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Short summary
Blocking over Greenland has substantial impacts on the weather and climate in mid- and high latitudes. This study applies a quasi-Lagrangian thinking on the dynamics of Greenland blocking and reveals two pathways of anticyclonic anomalies linked to the block. Moist processes were found to play a dominant role in the formation and maintenance of blocking. This emphasizes the necessity of the correct representation of moist processes in weather and climate models to realistically depict blocking.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023, https://doi.org/10.5194/wcd-4-399-2023, 2023
Short summary
Short summary
Blocking describes a flow configuration in the midlatitudes where stationary high-pressure systems block the propagation of weather systems. This study combines three individual perspectives that capture the dynamics and importance of various processes in the formation of a major blocking in 2016 from a weather regime perspective. In future work, this framework will enable a holistic view of the dynamics and the role of moist processes in different life cycle stages of blocked weather regimes.
Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
Short summary
Short summary
Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
Edgar Dolores-Tesillos, Franziska Teubler, and Stephan Pfahl
Weather Clim. Dynam., 3, 429–448, https://doi.org/10.5194/wcd-3-429-2022, https://doi.org/10.5194/wcd-3-429-2022, 2022
Short summary
Short summary
Strong winds caused by extratropical cyclones represent a costly hazard for European countries. Here, based on CESM-LENS coupled climate simulations, we show that future changes of such strong winds are characterized by an increased magnitude and extended footprint southeast of the cyclone center. This intensification is related to a combination of increased diabatic heating and changes in upper-level wave dynamics.
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
Seraphine Hauser, Franziska Teubler, Michael Riemer, and Christian M. Grams
EGUsphere, https://doi.org/10.5194/egusphere-2025-6306, https://doi.org/10.5194/egusphere-2025-6306, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
The relative roles of dry and moist processes in blocking formation are still not well understood, especially across different blocking types and regions. Using a potential vorticity framework, we study the evolution of large-scale anticyclonic circulation anomalies that are linked to four distinct blocking patterns. We find that the development of anomaly amplitude is shaped mainly by their pathway, which determines the balance between dry and moist contributions, rather than the blocking type.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 17, 4213–4228, https://doi.org/10.5194/gmd-17-4213-2024, https://doi.org/10.5194/gmd-17-4213-2024, 2024
Short summary
Short summary
This study presents a method for identifying and tracking 3-D potential vorticity structures within African easterly waves (AEWs). Each identified structure is characterized by descriptors, including its 3-D position and orientation, which have been validated through composite comparisons. A trough-centric perspective on the descriptors reveals the evolution and distinct characteristics of AEWs. These descriptors serve as valuable statistical inputs for the study of AEW-related phenomena.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024, https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Short summary
Blocking over Greenland has substantial impacts on the weather and climate in mid- and high latitudes. This study applies a quasi-Lagrangian thinking on the dynamics of Greenland blocking and reveals two pathways of anticyclonic anomalies linked to the block. Moist processes were found to play a dominant role in the formation and maintenance of blocking. This emphasizes the necessity of the correct representation of moist processes in weather and climate models to realistically depict blocking.
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023, https://doi.org/10.5194/wcd-4-399-2023, 2023
Short summary
Short summary
Blocking describes a flow configuration in the midlatitudes where stationary high-pressure systems block the propagation of weather systems. This study combines three individual perspectives that capture the dynamics and importance of various processes in the formation of a major blocking in 2016 from a weather regime perspective. In future work, this framework will enable a holistic view of the dynamics and the role of moist processes in different life cycle stages of blocked weather regimes.
Franziska Teubler, Michael Riemer, Christopher Polster, Christian M. Grams, Seraphine Hauser, and Volkmar Wirth
Weather Clim. Dynam., 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, https://doi.org/10.5194/wcd-4-265-2023, 2023
Short summary
Short summary
Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. The year-round dynamics of blocked regimes in the Atlantic European region are investigated in over 40 years of data. We show that the dynamics between the regimes are on average very similar. Within the regimes, the main variability – starting from the characteristics of dynamical processes alone – dominates and transcends the variability in season and types of transitions.
Behrooz Keshtgar, Aiko Voigt, Corinna Hoose, Michael Riemer, and Bernhard Mayer
Weather Clim. Dynam., 4, 115–132, https://doi.org/10.5194/wcd-4-115-2023, https://doi.org/10.5194/wcd-4-115-2023, 2023
Short summary
Short summary
Forecasting extratropical cyclones is challenging due to many physical factors influencing their behavior. One such factor is the impact of heating and cooling of the atmosphere by the interaction between clouds and radiation. In this study, we show that cloud-radiative heating (CRH) increases the intensity of an idealized cyclone and affects its predictability. We find that CRH affects the cyclone mostly via increasing latent heat release and subsequent changes in the synoptic circulation.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Edgar Dolores-Tesillos, Franziska Teubler, and Stephan Pfahl
Weather Clim. Dynam., 3, 429–448, https://doi.org/10.5194/wcd-3-429-2022, https://doi.org/10.5194/wcd-3-429-2022, 2022
Short summary
Short summary
Strong winds caused by extratropical cyclones represent a costly hazard for European countries. Here, based on CESM-LENS coupled climate simulations, we show that future changes of such strong winds are characterized by an increased magnitude and extended footprint southeast of the cyclone center. This intensification is related to a combination of increased diabatic heating and changes in upper-level wave dynamics.
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279, https://doi.org/10.5194/wcd-2-255-2021, https://doi.org/10.5194/wcd-2-255-2021, 2021
Short summary
Short summary
In this study, we quantify the relative contribution of different atmospheric processes to the development of 100 intense Mediterranean cyclones and show that both upper tropospheric systems and diabatic processes contribute to cyclone development. However, these contributions are complex and present high variability among the cases. For this reason, we analyse several exemplary cases in more detail, including 10 systems that have been identified in the past as tropical-like cyclones.
Cited articles
Anthes, R. A., Kuo, Y.-H., Baumhefner, D. P., Errico, R. M., and Bettge, T. W.:
Predictability of Mesoscale Atmospheric Motions, in: Advances in Geophysics, Elsevier,
28, 159–202, 1985. a
Anwender, D., Harr, P. A., and Jones, S. C.: Predictability Associated with
the Downstream Impacts of the Extratropical Transition of Tropical
Cyclones: Case Studies, Mon. Weather Rev., 136, 3226–3247,
https://doi.org/10.1175/2008mwr2249.1, 2008. a
Archambault, H. M., Bosart, L., Keyser, D., and Cordeira, J. M.: A
Climatological Analysis of the Extratropical Flow Response to
Recurving Western North Pacific Tropical Cyclones, Mon. Weather Rev., 141, 2325–2346, https://doi.org/10.1175/MWR-D-12-00257.1, 2013. a
Baumgart, M. and Riemer, M.: Processes Governing the Amplification of Ensemble
Spread in a Medium-range Forecast with Large Forecast Uncertainty, Q. J. Roy. Meteor. Soc., 145, 3252–3270,
https://doi.org/10.1002/qj.3617, 2019. a, b
Baumgart, M., Riemer, M., Wirth, V., Teubler, F., and Lang, S. T. K.: Potential
Vorticity Dynamics of Forecast Errors: A Quantitative Case Study,
Mon Weather Rev, 146, 1405–1425, https://doi.org/10.1175/MWR-D-17-0196.1, 2018. a, b
Baumgart, M., Ghinassi, P., Wirth, V., Selz, T., Craig, G. C., and Riemer, M.:
Quantitative View on the Processes Governing the Upscale Error
Growth up to the Planetary Scale Using a Stochastic Convection
Scheme, Mon. Weather Rev., 147, 1713–1731,
https://doi.org/10.1175/MWR-D-18-0292.1, 2019. a, b, c
Berman, J. D. and Torn, R. D.: The Impact of Initial Condition and
Warm Conveyor Belt Forecast Uncertainty on Variability in the
Downstream Waveguide in an ECWMF Case Study, Mon. Weather Rev.,
147, 4071–4089, https://doi.org/10.1175/MWR-D-18-0333.1, 2019. a
Bretherton, F. P.: Critical layer instability in baroclinic flows, Q. J. Roy.
Meteor. Soc., 92, 325–334, 1966. a
Chang, E. K. M.: Wave Packets and Life Cycles of Troughs in the
Upper Troposphere: Examples from the Southern Hemisphere Summer
Season of 1984/85, Mon. Weather Rev., 128, 25–50,
https://doi.org/10.1175/1520-0493(2000)128<0025:WPALCO>2.0.CO;2, 2000. a, b, c
Chang, E. K. M. and Orlanski, I.: On the Dynamics of a Storm Track,
J. Atmos. Sci., 50, 999–1015,
https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2, 1993. a
Chang, E. K. M., Lee, S., and Swanson, K. L.: Storm Track Dynamics, J. Climate, 15, 2163–2183,
https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2, 2002. a, b
Charney, J. G.: The Use of the Primitive Equations of Motion In
Numerical Prediction, Tellus, 7, 22–26, 1955. a
Cressman, G. P.: On the Forecasting of Long Waves in the Upper Westerlies, J.
Meteorol., 5, 44–57, https://doi.org/10.1175/1520-0469(1948)005<0044:OTFOLW>2.0.CO;2,
1948. a
Davies, H. C. and Didone, M.: Diagnosis and Dynamics of Forecast Error
Growth, Mon. Weather Rev., 141, 2483–2501,
https://doi.org/10.1175/MWR-D-12-00242.1, 2013. a
Davis, C. A.: Piecewise Potential Vorticity Inversion, J.
Atmos. Sci., 49, 1397–1411,
https://doi.org/10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2, 1992. a, b
Davis, C. A. and Emanuel, K. A.: Potential Vorticity Diagnostics of
Cyclogenesis, Mon. Weather Rev., 119, 1929–1953,
https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2, 1991. a, b
Davis, C. A., Stoelinga, M. T., and Kuo, Y.-H.: The Integrated Effect of
Condensation In Numerical Simulations of Extratropical Cyclogenesis,
Mon. Weather Rev., 121, 2309–2330,
https://doi.org/10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2, 1993. a
Davis, C. A., Grell, E. D., and Shapiro, M. A.: The Balanced Dynamical
Nature of a Rapidly Intensifying Oceanic Cyclone, Mon. Weather Rev., 124,
3–26, https://doi.org/10.1175/1520-0493(1996)124<0003:TBDNOA>2.0.CO;2, 1996. a, b
de Vries, H., Methven, J., Frame, T. H. A., and Hoskins, B. J.: An
Interpretation of Baroclinic Initial Value Problems: Results for
Simple Basic States with Nonzero Interior PV Gradients, J. Atmos.
Sci., 66, 864–882, https://doi.org/10.1175/2008JAS2774.1, 2009. a
de Vries, H., Methven, J., Frame, T. H. A., and Hoskins, B. J.: Baroclinic
Waves with Parameterized Effects of Moisture Interpreted Using
Rossby Wave Components RID E-6692-2011, J. Atmos. Sci., 67, 2766–2784,
https://doi.org/10.1175/2010JAS3410.1, 2010. a, b, c, d
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim Reanalysis: Configuration and Performance
of the Data Assimilation System, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10/cz2w58, 2011. a
Dirren, S., Didone, M., and Davies, H. C.: Diagnosis of ”forecast-Analysis”
Differences of a Weather Prediction System, Geophys. Res. Lett., 30, 2060,
https://doi.org/10.1029/2003GL017986, 2003. a
Donnadille, J., Cammas, J.-P., Mascart, P., Lambert, D., and Gall, R.: FASTEX
IOP 18: A Very Deep Tropopause Fold. I: Synoptic Description
and Modelling, Q. J. Roy. Meteor. Soc., 127, 2247–2268, https://doi.org/10/d85kzq, 2001. a
Eady, E. T.: Long Waves and Cyclone Waves, Tellus, 1, 33–52,
https://doi.org/10.1111/j.2153-3490.1949.tb01265.x, 1949. a
ECMWF: IFS documentation CY33R1 – part IV: Physical processes, no. 4 in IFS Documentation, ECMWF,
https://doi.org/10.21957/8o7vwlbdr, 2009. a
Emanuel, K. A., Fantini, M., and Thorpe, A. J.: Baroclinic Instability in
an Environment of Small Stability to Slantwise Moist Convection.
Part I: Two-Dimensional Models, J. Atmos.
Sci., 44, 1559–1573, https://doi.org/10/c33c4n, 1987. a, b, c
Ertel, H.: Ein Neuer Hydrodynamischer Erhaltungssatz, Die
Naturwissenschaften, 30, 543–544, https://doi.org/10.1007/BF01475602, 1942. a
Ghinassi, P., Baumgart, M., Teubler, F., Riemer, M., and Wirth, V.: A Budget
Equation for the Amplitude of Rossby Wave Packets Based on
Finite-Amplitude Local Wave Activity, J. Atmos.
Sci., 77, 277–296, https://doi.org/10.1175/JAS-D-19-0149.1, 2020. a
Glatt, I. and Wirth, V.: Identifying Rossby Wave Trains and Quantifying
Their Properties, Q. J. Roy. Meteor. Soc., 140, 384–396, 2014. a
Grams, C. M. and Archambault, H. M.: The Key Role of Diabatic Outflow
in Amplifying the Midlatitude Flow: A Representative Case Study
of Weather Systems Surrounding Western North Pacific Extratropical
Transition, Mon. Weather Rev., 144, 3847–3869,
https://doi.org/10.1175/MWR-D-15-0419.1, 2016. a
Grams, C. M., Wernli, H., Böttcher, M., Čampa, J., Corsmeier, U.,
Jones, S. C., Keller, J. H., Lenz, C.-J., and Wiegand, L.: The Key Role of
Diabatic Processes in Modifying the Upper-Tropospheric Wave Guide: A North
Atlantic Case-Study, Q. J. Roy. Meteor. Soc.,
137, 2174–2193, https://doi.org/10.1002/qj.891, 2011. a, b
Grams, C. M., Magnusson, L., and Madonna, E.: An Atmospheric Dynamics
Perspective on the Amplification and Propagation of Forecast Error in
Numerical Weather Prediction Models: A Case Study, Q. J. Roy. Meteor. Soc., 144, 2577–2591, https://doi.org/10.1002/qj.3353,
2018. a
Gray, S. L., Dunning, C. M., Methven, J., Masato, G., and Chagnon, J. M.:
Systematic Model Forecast Error in Rossby Wave Structure, Geophys. Res.
Lett., 41, 2979–2987, 2014. a
Grazzini, F.: Predictability of a Large-Scale Flow Conducive to Extreme
Precipitation over the Western Alps, Meteorol. Atmos. Phys.,
95, 123–138, https://doi.org/10.1007/s00703-006-0205-8, 2007. a
Grazzini, F. and Vitart, F.: Atmospheric Predictability and Rossby Wave
Packets, Q. J. Roy. Meteor. Soc., 141,
2793–2802, https://doi.org/10.1002/qj.2564, 2015. a
Grazzini, F., Fragkoulidis, G., Teubler, F., Wirth, V., and Craig, G. C.: Extreme Precipitation Events over Northern-Central Italy.
Part (II): Dynamical Precursors and Decadal Variability, Q. J. Roy. Meteor. Soc., 147, 1237–1257,
https://doi.org/10.1002/qj.3969, 2021. a, b
Grise, K. M., Medeiros, B., Benedict, J. J., and Olson, J. G.: Investigating
the Influence of Cloud Radiative Effects on the Extratropical Storm Tracks,
Geophys. Res. Lett., 46, 7700–7707,
https://doi.org/10.1029/2019GL083542, 2019. a, b
ristey, J. J., Chiu, J. C., Gurney, R. J., Morcrette, C. J., Hill, P. G., Russell, J. E., and Brindley, H. E.: Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model, Atmos. Chem. Phys., 18, 5129–5145, https://doi.org/10.5194/acp-18-5129-2018, 2018. a
Gutowski, W. J., Branscome, L. E., and Stewart, D. A.: Life-Cycles of Moist
Baroclinic Eddies, J. Atmos. Sci., 49, 306–319,
https://doi.org/10.1175/1520-0469(1992)049<0306:LCOMBE>2.0.CO;2, 1992. a
Heifetz, E., Bishop, C. H., Hoskins, B. J., and Methven, J.: The
Counter-Propagating Rossby-Wave Perspective on Baroclinic Instability.
I: Mathematical Basis, Q. J. Roy. Meteor.
Soc., 130, 211–231, https://doi.org/10.1256/qj.02.184, 2004a. a
Heifetz, E., Methven, J., Hoskins, B. J., and Bishop, C. H.: The
Counter-Propagating Rossby-Wave Perspective on Baroclinic Instability.
II: Application to the Charney Model, Q. J. Roy. Meteor.
Soc., 130, 233–258, https://doi.org/10.1256/qj.02.185, 2004b. a
Hersbach, H., Bell, W., Berrisford, P., Horányi, A., J., M.-S., Nicolas,
J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.: Global
reanalysis: goodbye ERA-Interim, hello ERA5, 17–24,
https://doi.org/10.21957/vf291hehd7, 2019. a
Hohenegger, C. and Schär, C.: Predictability and Error Growth Dynamics in
Cloud-Resolving Models, J. Atmos. Sci., 64, 4467–4478,
2007. a
Holton, J. R.: An Introduction to Dynamic Meteorology, no. v. 88 in
International Geophysics Series, Elsevier Academic Press, Burlington, MA,
4th edn., 2004. a
Hoskins, B. J.: Geostrophic Momentum Approximation and the
Semi-Geostrophic Equations, J. Atmos. Sci., 32,
233–242, https://doi.org/10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2, 1975. a, b
Hovmöller, E.: The Trough-and-Ridge Diagram, Tellus, 1, 62–66,
1949. a
Keller, J. H., Grams, C. M., Riemer, M., Archambault, H. M., Bosart, L., Doyle,
J. D., Evans, J. L., Galarneau, T. J., Griffin, K., Harr, P. A., Kitabatake,
N., McTaggart-Cowan, R., Pantillon, F., Quinting, J. F., Reynolds, C. A.,
Ritchie, E. A., Torn, R. D., and Zhang, F.: The Extratropical Transition
of Tropical Cyclones. Part II: Interaction with the Midlatitude
Flow, Downstream Impacts, and Implications for Predictability,
Mon. Weather Rev., 147, 1077–1106, https://doi.org/10.1175/MWR-D-17-0329.1, 2019. a, b
Lynch, P.: Partitioning the Wind in a Limited Domain, Mon. Weather Rev., 117, 1492–1500,
https://doi.org/10.1175/1520-0493(1989)117<1492:PTWIAL>2.0.CO;2, 1989. a
Mak, M.: On Moist Quasi-Geostrophic Baroclinic Instability, J. Atmos. Sci., 39, 2028–2037, https://doi.org/10/btztmm, 1982. a
Mak, M.: Cyclogenesis in a Conditionally Unstable Moist Baroclinic Atmosphere,
Tellus A, 46, 14–33, https://doi.org/10/cfk2n5, 1994. a, b
Martínez-Alvarado, O., Madonna, E., Gray, S. L., and Joos, H.: A Route to
Systematic Error in Forecasts of Rossby Waves, Q. J. Roy. Meteor. Soc., 142, 196–210, https://doi.org/10.1002/qj.2645, 2016. a
Martius, O., Schwierz, C., and Davies, H. C.: Far-Upstream Precursors of Heavy
Precipitation Events on the Alpine South-Side, Q. J. Roy. Meteor. Soc., 134, 417–428, https://doi.org/10.1002/qj.229, 2008. a
Moncrieff, M. W., Waliser, D. E., and Caughey, J.: Progress and Direction in
Tropical Convection Research: YOTC International Science Symposium, B.
Am. Meteorol. Soc., 93, ES65–ES69, https://doi.org/10.1175/BAMS-D-11-00253.1, 2012. a
Nielsen-Gammon, J. W. and Lefevre, R. J.: Piecewise Tendency Diagnosis of
Dynamical Processes Governing the Development of an Upper-Tropospheric Mobile
Trough, J. Atmos. Sci., 53, 3120–3142,
https://doi.org/10.1175/1520-0469(1996)053<3120:ptdodp>2.0.co;2, 1996. a
Orlanski, I. and Sheldon, J. P.: Stages In the Energetics of
Baroclinic Systems, Tellus, 47, 605–628,
https://doi.org/10.1034/j.1600-0870.1995.00108.x, 1995. a, b, c
Pantillon, F., Chaboureau, J. P., Lac, C., and Mascart, P.: On the Role of a
Rossby Wave Train during the Extratropical Transition of Hurricane
Helene (2006), Q. J. Roy. Meteor. Soc., 139, 370–386,
https://doi.org/10.1002/qj.1974, 2013. a, b
Papavasileiou, G., Voigt, A., and Knippertz, P.: The role of observed
cloud-radiative anomalies for the dynamics of the North Atlantic Oscillation
on synoptic time-scales, Q. J. Roy. Meteor. Soc., 146, 1822–1841, https://doi.org/10.1002/qj.3768, 2020. a
Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., and Wernli, H.:
Importance of Latent Heat Release in Ascending Air Streams for Atmospheric
Blocking, Nat. Geosci., 8, 610–614, https://doi.org/10.1038/ngeo2487, 2015. a, b
Phillips, N. A.: A Simple Three-Dimensional Model for the Study of Large-Scale
Extratropical Flow Patterns, J. Meteorol., 8, 381–394, 1951. a
Piaget, N., Froidevaux, P., Giannakaki, P., Gierth, F., Martius, O., Riemer,
M., Wolf, G., and Grams, C. M.: Dynamics of a Local Alpine Flooding Event
in October 2011: Moisture Source and Large-Scale Circulation, Q. J. Roy. Meteor. Soc., 141, 1922–1937,
https://doi.org/10.1002/qj.2496, 2015. a, b
Quinting, J. F. and Jones, S. C.: On the Impact of Tropical Cyclones on
Rossby Wave Packets: A Climatological Perspective, Mon. Weather Rev.,
144, 2021–2048, https://doi.org/10.1175/MWR-D-14-00298.1, 2016. a
Riboldi, J., Grams, C. M., Riemer, M., and Archambault, H. M.: A Phase
Locking Perspective on Rossby Wave Amplification and Atmospheric
Blocking Downstream of Recurving Western North Pacific Tropical
Cyclones, Mon. Weather Rev., 147, 567–589,
https://doi.org/10.1175/MWR-D-18-0271.1, 2019. a, b
Riemer, M. and Jones, S. C.: The Downstream Impact of Tropical Cyclones on a
Developing Baroclinic Wave in Idealized Scenarios of Extratropical
Transition, Q. J. Roy. Meteor. Soc., 136, 617–637,
https://doi.org/10.1002/qj.605, 2010. a, b
Riemer, M. and Jones, S. C.: Interaction of a Tropical Cyclone with a
High-Amplitude, Midlatitude Wave Pattern: Waviness Analysis, Trough
Deformation and Track Bifurcation, Q. J. Roy. Meteor. Soc., 140, 1362–1376, https://doi.org/10.1002/qj.2221, 2014. a, b, c
Riemer, M., Baumgart, M., and Eiermann, S.: Cyclogenesis Downstream of
Extratropical Transition Analyzed by Q–Vector Partitioning Based
on Flow Geometry, J. Atmos. Sci., 71, 4204–4220,
https://doi.org/10.1175/JAS-D-14-0023.1, 2014. a
Rodwell, M. J., Magnusson, L., Bauer, P., Bechtold, P., Bonavita, M.,
Cardinali, C., Diamantakis, M., Earnshaw, P., Garcia-Mendez, A., Isaksen,
L., Källén, E., Klocke, D., Lopez, P., McNally, T., Persson, A.,
Prates, F., and Wedi, N.: Characteristics of Occasional Poor
Medium-Range Weather Forecasts for Europe, B. Am.
Meteor. Soc., 94, 1393–1405, https://doi.org/10.1175/BAMS-D-12-00099.1,
2013. a
Rodwell, M. J., Richardson, D. S., Parsons, D. B., Wernli, H., and PaRsons, B.:
Flow-Dependent Reliability: A Path to More Skillful Ensemble
Forecasts, B. Am. Meteorol. Soc., 99, 1015–1026,
https://doi.org/10.1175/bams-d-17-0027.1, 2018. a
Rossa, A. M., Wernli, H., and Davies, H. C.: Growth and Decay of an
Extra-Tropical Cyclone's PV-Tower, Meteorol. Atmos. Phys., 73,
139–156, 2000. a
Röthlisberger, M., Martius, O., and Wernli, H.: Northern Hemisphere
Rossby Wave Initiation Events on the Extratropical Jet – A
Climatological Analysis, J. Climate, 31, 743–760,
https://doi.org/10.1175/JCLI-D-17-0346.1, 2018. a
Röthlisberger, M., Frossard, L., Bosart, L., Keyser, D., and Martius, O.:
Recurrent Synoptic-Scale Rossby Wave Patterns and Their Effect on the
Persistence of Cold and Hot Spells, J. Climate, 32, 3207–3226, 2019. a
Sanchez, C., Methven, J., Gray, S. L., and Cullen, M.: Linking Rapid Forecast
Error Growth to Diabatic Processes, Q. J. Roy. Meteor. Soc., 146, 3548–3569, https://doi.org/10.1002/qj.3861, 2020. a, b
Schneidereit, A., Peters, D. H. W., Grams, C. M., Quinting, J. F., Keller,
J. H., Wolf, G., Teubler, F., Riemer, M., and Martius, O.: Enhanced
Tropospheric Wave Forcing of Two Anticyclones in the Prephase of
the January 2009 Major Stratospheric Sudden Warming Event, Mon. Weather Rev., 145, 1797–1815, https://doi.org/10.1175/MWR-D-16-0242.1, 2017. a, b
Schäfer, S. A. K. and Voigt, A.: Radiation Weakens Idealized Midlatitude
Cyclones, Geophys. Res. Lett., 45, 2833–2841,
https://doi.org/10.1002/2017GL076726, 2018. a
Selz, T. and Craig, G. C.: Upscale Error Growth in a High-Resolution Simulation
of a Summertime Weather Event over Europe, Mon. Weather Rev., 143,
813–827, 2015. a
Shapiro, M. A. and Thorpe, A. J.: Thorpex International Science Plan, WMO/TD, 1246, 2004. a
Steinfeld, D. and Pfahl, S.: The Role of Latent Heating in Atmospheric Blocking
Dynamics: A Global Climatology, Clim. Dynam., 53, 6159–6180,
https://doi.org/10.1007/s00382-019-04919-6, 2019. a, b
Thorncroft, C. and Jones, S. C.: The Extratropical Transitions of
Hurricanes Felix and Iris in 1995, Mon. Weather Rev., 128,
947–972, https://doi.org/10.1175/1520-0493(2000)128<0947:TETOHF>2.0.CO;2, 2000. a
Wirth, V. and Eichhorn, J.: Long-Lived Rossby Wave Trains as Precursors to
Strong Winter Cyclones over Europe, Q. J. Roy. Meteor. Soc., 680, 729–737, https://doi.org/10.1002/qj.2191, 2014. a
Wolf, G. and Wirth, V.: Implications of the Semigeostrophic Nature of
Rossby Waves for Rossby Wave Packet Detection, Mon. Weather Rev., 143, 26–38, https://doi.org/10.1175/MWR-D-14-00120.1, 2015. a, b
Wolf, G. and Wirth, V.: Diagnosing the Horizontal Propagation of Rossby
Wave Packets along the Midlatitude Waveguide, Mon. Weather Rev., 145,
3247–3264, https://doi.org/10.1175/MWR-D-16-0355.1, 2017. a, b, c
Zhang, F., Bei, N., Rotunno, R., Snyder, C., and Epifanio, C. C.: Mesoscale
Predictability of Moist Baroclinic Waves: Convection-Permitting
Experiments and Multistage Error Growth Dynamics, J. Atmos. Sci., 64,
3579–3594, https://doi.org/10.1175/JAS4028.1, 2007. a
Zierl, B. and Wirth, V.: The Influence of Radiation on Tropopause Behavior and
Stratosphere-Troposphere Exchange in an Upper Tropospheric Anticyclone,
J. Geophys. Res.-Atmos., 102, 23883–23894,
https://doi.org/10.1029/97JD01667, 1997. a
Zimin, A. V., Szunyogh, I., Hunt, B. R., and Ott, E.: Extracting Envelopes
of Nonzonally Propagating Rossby Wave Packets, Mon. Weather Rev., 134,
1329–1333, https://doi.org/10.1175/MWR3122.1, 2006. a
Short summary
Rossby wave packets impact all aspects of midlatitude weather systems, from their climatological distribution to predictability. Case studies suggest an important role of latent heat release in clouds. We investigate thousands of wave packets with a novel diagnostic. We demonstrate that, on average, the impact of moist processes is substantially different between troughs and ridges and that dry conceptual models of wave packet dynamics should be extended.
Rossby wave packets impact all aspects of midlatitude weather systems, from their climatological...