Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-279-2022
https://doi.org/10.5194/wcd-3-279-2022
Research article
 | 
25 Mar 2022
Research article |  | 25 Mar 2022

Is it north or west foehn? A Lagrangian analysis of Penetration and Interruption of Alpine Foehn intensive observation period 1 (PIANO IOP 1)

Manuel Saigger and Alexander Gohm

Related authors

Exploring the daytime boundary layer evolution based on Doppler spectrum width from multiple coplanar wind lidars during CROSSINN
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
EGUsphere, https://doi.org/10.5194/egusphere-2023-1977,https://doi.org/10.5194/egusphere-2023-1977, 2023
Short summary
Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022,https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022,https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021,https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715–2734, https://doi.org/10.5194/hess-23-2715-2019,https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary

Related subject area

Dynamical processes in midlatitudes
Cold wintertime air masses over Europe: where do they come from and how do they form?
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023,https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Diabatic effects on the evolution of storm tracks
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023,https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Atmospheric response to cold wintertime Tibetan Plateau conditions over eastern Asia in climate models
Alice Portal, Fabio D'Andrea, Paolo Davini, Mostafa E. Hamouda, and Claudia Pasquero
Weather Clim. Dynam., 4, 809–822, https://doi.org/10.5194/wcd-4-809-2023,https://doi.org/10.5194/wcd-4-809-2023, 2023
Short summary
Transient anticyclonic eddies and their relationship to atmospheric block persistence
Charlie C. Suitters, Oscar Martínez-Alvarado, Kevin I. Hodges, Reinhard K. H. Schiemann, and Duncan Ackerley
Weather Clim. Dynam., 4, 683–700, https://doi.org/10.5194/wcd-4-683-2023,https://doi.org/10.5194/wcd-4-683-2023, 2023
Short summary
A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023,https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary

Cited articles

Arduini, G., Chemel, C., and Staquet, C.: Local and non-local controls on a persistent cold-air pool in the Arve River Valley, Q. J. Roy. Meteor. Soc., 146, 2497–2521, https://doi.org/10.1002/qj.3776, 2020. a
Atmospheric Dynamics Group, Institute for Atmospheric and Climate Science, ETH Zurich: LAGRANTO – The Lagrangian Analysis Tool, Atmospheric Dynamics Group, Institute for Atmospheric and Climate Science, ETH Zurich [code], https://iacweb.ethz.ch/staff/sprenger/lagranto/home.html, last access: 28 September 2021. a
Bowman, K., Lin, J., Stohl, A., Draxler, R., Konopka, P., Andrews, A., and Brunner, D.: Input Data Requirements for Lagrangian Trajectory Models, B. Am. Meteorol. Soc., 94, 1051–1058, https://doi.org/10.1175/BAMS-D-12-00076.1, 2013. a
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013. a
Bryan, G. H. and Fritsch, J. M.: A Reevaluation of Ice–Liquid Water Potential Temperature, Mon. Weather Rev., 132, 2421–2431, https://doi.org/10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2, 2004. a
Download
Short summary
In this work a special form of a foehn wind in an Alpine valley with a large-scale northwesterly flow is investigated. The study clarifies the origin of the air mass and the mechanisms by which this air enters the valley. A trajectory analysis shows that the location where the main airstream passes the crest line is more suitable for a foehn classification than the local or large-scale wind direction. Mountain waves and a lee rotor were crucial for importing air into the valley.