Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1073-2021
https://doi.org/10.5194/wcd-2-1073-2021
Research article
 | 
09 Nov 2021
Research article |  | 09 Nov 2021

Systematic assessment of the diabatic processes that modify low-level potential vorticity in extratropical cyclones

Roman Attinger, Elisa Spreitzer, Maxi Boettcher, Heini Wernli, and Hanna Joos

Related authors

Insights from hailstorm track analysis in European climate change simulations
Killian P. Brennan, Iris Thurnherr, Michael Sprenger, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 25, 3693–3712, https://doi.org/10.5194/nhess-25-3693-2025,https://doi.org/10.5194/nhess-25-3693-2025, 2025
Short summary
How relevant are frequency changes of weather regimes for understanding climate change signals in surface precipitation in the North Atlantic–European sector? A conceptual analysis with CESM1 large ensemble simulations
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Robin Noyelle, Matthias Röthlisberger, and Heini Wernli
Weather Clim. Dynam., 6, 1027–1043, https://doi.org/10.5194/wcd-6-1027-2025,https://doi.org/10.5194/wcd-6-1027-2025, 2025
Short summary
Quantifying forecast uncertainty of Mediterranean cyclone-related surface weather extremes in ECMWF ensemble forecasts. Part 1: Method and case studies
Katharina Hartmuth, Dominik Büeler, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4111,https://doi.org/10.5194/egusphere-2025-4111, 2025
Short summary
A new look at the jet-storm track relationship in the North Pacific and North Atlantic
Nora Zilibotti, Heini Wernli, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-3605,https://doi.org/10.5194/egusphere-2025-3605, 2025
Short summary
An object-based and Lagrangian view on an intense hailstorm day in Switzerland as represented in COSMO-1E ensemble hindcast simulations
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
Weather Clim. Dynam., 6, 645–668, https://doi.org/10.5194/wcd-6-645-2025,https://doi.org/10.5194/wcd-6-645-2025, 2025
Short summary

Cited articles

Adamson, D., Belcher, S. E., Hoskins, B. J., and Plant, R. S.: Boundary-layer friction in midlatitude cyclones, Q. J. Roy. Meteorol. Soc., 132, 101–124, https://doi.org/10.1256/qj.04.145, 2006. a, b, c, d
Aebischer, U. and Schär, C.: Low-level potential vorticity and cyclogenesis to the lee of the Alps, J. Atmos. Sci., 55, 186–207, https://doi.org/10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2, 1998. a
Ahmadi-Givi, F.: A review of the role of latent heat release in extratropical cyclones within potential vorticity framework, J. Earth Space Phys., 28, 7–20, 2002. a, b
Attinger, R.: Quantifying the diabatic modification of potential vorticity in extratropical cyclones, PhD thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000432253, 2020. a, b
Attinger, R., Spreitzer, E., Boettcher, M., Forbes, R., Wernli, H., and Joos, H.: Quantifying the role of individual diabatic processes for the formation of PV anomalies in a North Pacific cyclone, Q. J. Roy. Meteorol. Soc., 145, 2454–2476, https://doi.org/10.1002/qj.3573, 2019. a, b, c, d, e, f, g, h, i
Download
Short summary
Diabatic processes affect the development of extratropical cyclones. This work provides a systematic assessment of the diabatic processes that modify potential vorticity (PV) in model simulations. PV is primarily produced by condensation and convection. Given favorable environmental conditions, long-wave radiative cooling and turbulence become the primary process at the cold and warm fronts, respectively. Turbulence and long-wave radiative heating produce negative PV anomalies at the fronts.
Share