Articles | Volume 2, issue 1
https://doi.org/10.5194/wcd-2-129-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-129-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global climatological perspective on the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events
Andries Jan de Vries
CORRESPONDING AUTHOR
ETH Zürich, Institute for Atmospheric and Climate Science,
Zürich, Switzerland
Max Planck Institute for Chemistry, Atmospheric Chemistry Department,
Mainz, Germany
Related authors
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Maria Pyrina, Wolfgang Wicker, Andries Jan de Vries, Georgios Fragkoulidis, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3088, https://doi.org/10.5194/egusphere-2023-3088, 2024
Preprint withdrawn
Short summary
Short summary
We investigate the atmospheric dynamics behind heatwaves, specifically of those occurring simultaneously across regions, known as concurrent heatwaves. We find that heatwaves are strongly modulated by Rossby wave packets, being Rossby waves whose amplitude has a local maximum and decays at larger distances. High amplitude Rossby wave packets increase the occurrence probabilities of concurrent and non-concurrent heatwaves by a factor of 15 and 18, respectively, over several regions globally.
Matthias Röthlisberger, Barbara Scherrer, Andries Jan de Vries, and Raphael Portmann
Weather Clim. Dynam., 3, 733–754, https://doi.org/10.5194/wcd-3-733-2022, https://doi.org/10.5194/wcd-3-733-2022, 2022
Short summary
Short summary
We examine the palette of synoptic storylines accompanying unusually long wet spells in Europe. Thereby, we identify a hitherto not documented mechanism for generating long wet spells which involves recurrent Rossby wave breaking and subsequent cutoff replenishment. Understanding the synoptic processes behind long wet spells is relevant in light of projected changes in wet spell characteristics as it is a prerequisite for evaluating climate models with regard to such events.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Maria Pyrina, Wolfgang Wicker, Andries Jan de Vries, Georgios Fragkoulidis, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3088, https://doi.org/10.5194/egusphere-2023-3088, 2024
Preprint withdrawn
Short summary
Short summary
We investigate the atmospheric dynamics behind heatwaves, specifically of those occurring simultaneously across regions, known as concurrent heatwaves. We find that heatwaves are strongly modulated by Rossby wave packets, being Rossby waves whose amplitude has a local maximum and decays at larger distances. High amplitude Rossby wave packets increase the occurrence probabilities of concurrent and non-concurrent heatwaves by a factor of 15 and 18, respectively, over several regions globally.
Matthias Röthlisberger, Barbara Scherrer, Andries Jan de Vries, and Raphael Portmann
Weather Clim. Dynam., 3, 733–754, https://doi.org/10.5194/wcd-3-733-2022, https://doi.org/10.5194/wcd-3-733-2022, 2022
Short summary
Short summary
We examine the palette of synoptic storylines accompanying unusually long wet spells in Europe. Thereby, we identify a hitherto not documented mechanism for generating long wet spells which involves recurrent Rossby wave breaking and subsequent cutoff replenishment. Understanding the synoptic processes behind long wet spells is relevant in light of projected changes in wet spell characteristics as it is a prerequisite for evaluating climate models with regard to such events.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Cited articles
Abatzoglou, J. T.: Contribution of cutoff lows to precipitation across the
United States, J. Appl. Meteorol. Clim., 55, 893–899,
https://doi.org/10.1175/JAMC-D-15-0255.1, 2016.
Agel, L., Barlow, M., Colby, F., Binder, H., Catto, J. L., Hoell, A., and
Cohen, J.: Dynamical analysis of extreme precipitation in the US northeast
based on large-scale meteorological patterns, J. Climate, 52, 1739–1760,
https://doi.org/10.1007/s00382-018-4223-2, 2019.
Al-Nassar, A. R., Pelegri, J. L., Sangra, P., Alarcon, M., and Jansa, A.:
Cut-off low systems over Iraq: Contribution to annual precipitation and
synoptic analysis of extreme events, Int. J. Climatol., 40, 908–926,
https://doi.org/10.1002/joc.6247, 2019.
Appenzeller, C. and Davies, H.: Structure of stratospheric intrusions into
the troposphere, Nature, 358, 570–572, https://doi.org/10.1038/358570a0,
1992.
Argence, S., Lambert, D., Richard, E., Sohne, N., Chaboureau, J. P. Crepin,
F., and Arbogast, P.: High resolution numerical study of the Algiers
2001 flash flood: Sensitivity to the upper-level potential vorticity
anomaly, Adv. Geosci., 7, 251–257, 2006.
Ashley, T. and Ashley, W. S.: Flood fatalities in the United States, J.
Appl. Meteorol. Clim., 47, 805–818, https://doi.org/10.1175/2007JAMC1611.1, 2008.
Barbero, R., Abatzoglou, J. T., and Fowler, H. J.: Contribution of
large-scale midlatitude disturbances to hourly precipitation extremes in the
United States, Clim. Dynam., 52, 197–208,
https://doi.org/10.1007/s00382-018-4123-5, 2019.
Barlow, M., Gutowski, W. J., Gyakum, J. R., Katz, R. W., Lim, Y. K., Schumacher, R. S., Wehner, M. F., Agel, L., Bosilovich, M., Collow, A., Gershunov, A., Grotjahn, R., Leung, R., Milrad, S., and Min, S. K.: North American extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends, Clim. Dynam., 53, 6835–6875, https://doi.org/10.1007/s00382-019-04958-z, 2019.
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat.
Hazards, 42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007.
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a
practical and powerful approach to multiple testing, J. R. Statist. Soc.,
57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x,
1995.
Benedict, J. J., Clement, A. C., and Medeiros, B.: Atmospheric blocking and
other large-scale precursor patters of landfalling atmospheric rivers in the
North Pacific: A CESM2 study, J. Geophys. Res.-Atmos., 124, 11330–11353,
https://doi.org/10.1029/2019JD030790, 2019.
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M.,
Kallberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim
Archive, ERA report series, 1, 1–23, https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20, 2011.
Berry, G., Reeder, M. J., and Jakob, C.: A global climatology of atmospheric
fronts, Geophys. Res. Lett., 38, L04809,
https://doi.org/10.1029/2010GL046451, 2011.
Berry G. J. and Reeder, M. J.: The dynamics of Australian monsoon bursts, J.
Atmos. Sci., 73, 55–69, https://doi.org/10.1175/JAS-D-15-0071.1, 2016.
Bozkurt, D., Rondanelli, R., Garreaud, R., and Arriagada, A.: Impact of
warmer eastern tropical Pacific SST on the March 2015 Atacama floods, Mon.
Weather Rev., 144, 4441–4460, 2016.
Catto, J. L. and Pfahl, S.: The importance of fronts for extreme
precipitation, J. Geophys. Res.-Atmos., 118, 10791–10801,
https://doi.org/10.1002/jgrd.50852, 2013.
Catto, J. L., Madonna, E., Joos, H., Rudeva, I., and Simmonds, I.: Global
relationship between fronts and warm conveyor belts and the impact on
extreme precipitation, J. Climate, 28, 8411–8429,
https://doi.org/10.1175/JCLI-D-15-0171.1, 2015.
Cavalcanti, I. F. A.: Large scale and synoptic features associated with extreme precipitation over South America: A review and case studies for the first decade of the 21st century, Atmos. Res., 118, 27–40, https://doi.org/10.1016/j.atmosres.2012.06.012, 2012.
Chen, G. T.-J. and Yu, C.-C.: Study of low-level jet and extremely heavy
rainfall over northern Taiwan in the mei-yu season, Mon. Weather Rev., 116,
884–891, 1988.
Crespo N. M., da Rocha, R. P., Sprenger, M., and Wernli, H.: A potential
vorticity perspective on cyclogenesis over centre-eastern South America,
Int. J. Climatol., 41, 1–16, 2021.
Crétat, J., Vizy, E. K., and Cook, K.H.: The relationship between African easterly waves and daily rainfall over West Africa: observations and
regional climate simulations, Clim. Dynam., 44, 385–404,
https://doi.org/10.1007/s00382-014-2120-x, 2015.
Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., and Stringer, M. A.: How
do atmospheric rivers form?, B. Am. Meteorol. Soc., 96, 1243–1255, 2015.
Dacre, H. F., Martinez-Alvarado, O., and Mbengue, C. O.: Linking atmospheric
rivers and warm conveyor belt airflows, J. Hydrometeorol., 20, 1183–1196,
2019.
Dai, P. and Nie, J.: A global quasi geostrophic diagnosis of extratropical extreme
precipitation, J. Climate, 33, 1–45, https://doi.org/10.1175/JCLI-D-20-0146.1,
2020.
Davies, H. C.: The quasigeostrophic omega equation: reappraisal,
refinements, and relevance, Mon. Weather Rev., 143, 3–25, 2015.
De Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., and
Lelieveld, J.: Extreme precipitation events in the Middle East: Dynamics of
the Active Red Sea Trough, J. Geophys. Res.-Atmos., 118, 7087–7108, 2013.
De Vries, A. J., Feldstein, S. B., Riemer, M., Tyrlis, E., Sprenger, M.,
Baumgart, M., Fnais, M., and Lelieveld, J.: Dynamics of
tropical-extratropical interactions and extreme precipitation events in
Saudi Arabia in autumn, winter and spring, Q. J. Roy. Meteor. Soc., 142,
1862–1880, 2016.
De Vries, A. J.: Tropical-extratropical interactions and extreme
precipitation events in the Middle East, PhD thesis, University of Mainz,
Mainz, Germany, available at: https://openscience.ub.uni-mainz.de/handle/20.500.12030/2662 (last access: 8 January 2020), 2018.
De Vries, A. J., Ouwersloot, H. G., Feldstein, S. B., Riemer, M., El Kenawy,
A. M., McCabe, M. F., and Lelieveld, J.: Identification of
tropical-extratropical interactions and extreme precipitation events in the
Middle East based on potential vorticity and moisture transport, J. Geophys.
Res.-Atmos., 123, 861–881, 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dinku, T., Ceccato, P., and Connor, S. J.: Challenges of satellite rainfall
estimation over mountainous and arid parts of east Africa, Int. J. Remote
Sens., 32, 5965–5979, 2011.
Donat, M. G., Sillmann, J., Wild, S., Alexander, L. V., Lippmann, T., and
Zwiers, F. W.: Consistency of temperature and precipitation extremes across
various global gridded in situ and reanalysis datasets, J. Climate, 27,
5019–5035, 2014.
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash flood forecasting:
An ingredients-based methodology, Weather Forecast., 11, 560–581, 1996.
Eckhardt, S., Stohl, A., Wernli, H., James, P., Forster, C., and
Spichtinger, N.: A 15-Year Climatology of Warm Conveyor Belts, J. Climate,
17, 218–237, https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2, 2004.
Eden, J. M., Wolter, K., Otto, F. E. L., and van Oldenborgh, G. J.:
Multi-method attribution analysis of extreme precipitation in Boulder,
Colorado, Environ. Res. Lett., 11, 124009,
https://doi.org/10.1088/1748-9326/11/12/124009, 2016.
EM-DAT: Natural disasters in 2017: Lower mortality, higher cost,
Centre for Research on the Epidemiology of disasters, CRED, Brussels, Issue No. 50, available at: https://www.cred.be/publications?page=1, last access: 8 September 2018.
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., and Ralph, F. M.:
Global Analysis of Climate Change Projection Effects on Atmospheric Rivers,
Geophys. Res. Lett., 45, 4299–4308, 2018.
Favors, J. E. and Abatzoglou, J. T.: Regional surges of monsoonal moisture
into the southwestern United States, Mon. Weather Rev., 141, 182–191, 2013.
Favre, A., Hewitson, B., Lennard, C., Cerezo-Mota, R., and Tadross, M.:
Cut-off lows in the South Africa region and their contribution to
precipitation, Clim. Dynam., 41, 2331–2351,
https://doi.org/10.1007/s00382-012-1579-6, 2013.
Franco-Díaz, A., Klingaman, N. P., Vidale, P. L., Guo, L., and Demory,
M.-E.: The contribution of tropical cyclones to the atmospheric branch of
Middle America's hydrological cycle using observed and reanalysis tracks,
Clim. Dynam., 53, 6145–6158, https://doi.org/10.1007/s00382-019-04920-z,
2019.
Fröhlich, L., Knippertz, P., Fink, A. H., and Hohberger,
E.: An objective climatology of Tropical Plumes, J. Climate, 26, 5044–5060,
https://doi.org/10.1175/JCLI-D-12-00351.1, 2013.
Froidevaux, P. and Martius, O.: Exceptional integrated vapour transport
toward orography: an important precursor to severe floods in Switzerland, Q.
J. Roy. Meteor. Soc., 142, 1997–2012, 2016.
Funatsu, B. M. and Waugh, D. W.: Connections between potential vorticity
intrusions and convection in the Eastern Tropical Pacific, J. Atmos. Sci.,
65, 987–1002, 2008.
Gates, W. L.: Static stability measures in the atmosphere, J. Meteorol., 18,
526–533, 1960.
Gimeno, L., Dominguez, F., Nieto, R., Trigo, R. M., Drumond, A., Reason, C.,
and Marengo, J.: Major mechanisms of atmospheric moisture transport and
their role in extreme precipitation events, Annu. Rev. Env. Resour., 41,
117–141, https://doi.org/10.1146/annurev-environ-110615-085558, 2016.
Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J.,
Ikeda, K., Lindsey, D., Wood, A., Dolan, B., Matrosov, S., Newman, A.,
Mahoney, K., Rutledge, S., Johnson, R., Kucera, P., Kennedy, P.,
Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W.,
Chandrasekar, V., Rasmussen, R., Anderson, A., and Brown, B.: The great
Colorado flood of September 2013, B. Am. Meteorol. Soc., 96, 1461–1487,
https://doi.org/10.1175/BAMS-D-13-00241.1, 2015.
Graf, M. A., Wernli, H., and Sprenger, M.: Objective classification of
extratropical cyclogenesis, Q. J. Roy. Meteor. Soc., 143, 1047–1061,
https://doi.org/10.1002/qj.2989, 2017.
Grazzini, F., Graig, G. C., Keil, C., Antolini, G., and Pavan, V.: Extreme
precipitation events over northern Italy. Part 1: A systematic
classification with machine-learning techniques, Q. J. Roy. Meteor. Soc.,
146, 69–85, 2020.
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and
application of an algorithm for global studies, J. Geophys. Res.-Atmos.,
120, 12514–12535, https://doi.org/10.1002/2015JD024257, 2015.
Haggag, M. and El-Badry, H.: Mesoscale Numerical Study of Quasi-Stationary
Convective System over Jeddah in November 2009, Atmos. Clim. Sci., 3, 73–86,
https://doi.org/10.4236/acs.2013.31010, 2013.
Hart, N. C. G., Reason, C. J. C., and Fauchereau, N.: Tropical-extratropical
interactions over southern Africa: Three cases of heavy summer season
rainfall, Mon. Weather Rev., 138, 2608–2623, 2010.
Hart, N. C. G., Reason, C. J. C., and Fauchereau, N.: Building a tropical
extratropical cloud band metbot, Mon. Weather Rev., 140, 4005–4016, 2012.
Hart, N. C. G., Reason, C. J. C., and Fauchereau, N.: Cloud bands over southern Africa: seasonality, contribution to rainfall variability and modulation by the MJO, Clim. Dynam., 41, 1199–1212,
https://doi.org/10.1007/s00382-012-1589-4, 2013.
Hawcroft, M., Shaffrey, L., Hodges, K., and Dacre, H.: How much Northern
Hemisphere precipitation is associated with extratropical cyclones?,
Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866, 2012.
Hong, C-C., Hsu, H.-H., Lin, N.-H., and Chiu, H.: Roles of European blocking
and tropical–extratropical interaction in the 2010 Pakistan flooding,
Geophys. Res. Lett., 38, L13806, https://doi.org/10.1029/2011GL047583, 2011.
Hoskins, B. J., Draghici, I., and Davies, H. C.: A new look at the
v-equation. Q. J. Roy. Meteor. Soc., 104, 31–38,
https://doi.org/10.1002/qj.49710443903, 1978.
Hoskins, B., McIntyre, M., and Robertson, A.: On the use and significance of
isentropic potential vorticity maps, Q. J. Roy. Meteor. Soc., 111,
877–946, https://doi.org/10.1256/smsqj.47001, 1985.
Hsu, H. H. and Chen, Y. T.: Simulation and projection of circulations
associated with atmospheric rivers along the North American northeast coast,
J. Climate, 33, 5673–5695, 2020.
Hu, H., Dominguez, F., and Wang, Z.: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking, J. Climate, 30, 3381–3399, https://doi.org/10.1175/JCLI-D-16-0386.1, 2017.
Hurley J. V. and Boos, W. R.: A global climatology of monsoon low-pressure
systems, Q. J. Roy. Meteor. Soc., 141, 1049–1064, 2015.
Joseph, S., Sahai, A. K., Sharmila, S., Abhilash, S., Borah, N.,
Chattopadhyay, R., Pillai, P. A., Rajeevan, M., and Kumar, A.: North Indian heavy rainfall event during June 2013: diagnostics and extended range prediction, Clim. Dynam., 44, 2049–2065, 2015.
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major
floods in the Negev Desert, Israel, Int J. Climatol., 22, 867–882,
https://doi.org/10.1002/joc.766, 2002.
Khouakhi, A., Villarini, G., and Vecchi, G. A.: Contribution of tropical
cyclones to rainfall at the global scale, J. Climate, 30, 359–372, 2017.
Knippertz, P.: Tropical-extratropical interactions causing precipitation in
northwest Africa: Statistical analysis and seasonal variations, Mon. Weather
Rev., 131, 3069–3076, 2003.
Knippertz, P. and Martin, J. E.: Tropical plumes and extreme precipitation
in subtropical and tropical West Africa, Q. J. Roy. Meteor. Soc., 131,
2337–2365, 2005.
Knippertz, P.: Tropical–extratropical interactions related to upper-level
troughs at low latitudes, Dynam. Atmos. Oceans, 43, 36–62,
https://doi.org/10.1016/j.dynatmoce.2006.06.003, 2007.
Knippertz, P. and Martin, J. E.: A Pacific moisture conveyor belt and its
relationship to a significant precipitation event in the semiarid
southwestern United States, Weather Forecast., 22, 125–144, 2007.
Knippertz, P. and Wernli, H.: A Lagrangian climatology of tropical moisture
exports to the Northern Hemispheric extratropics, J. Climate, 23, 987–1003,
https://doi.org/10.1175/2009JCLI3333.1, 2010.
Knippertz, P., Wernli, H., and Gläser, G.: A Global
Climatology of Tropical Moisture Exports, J. Climate, 26, 3031–3045,
https://doi.org/10.1175/JCLI-D-12-00401.1, 2013.
Kumar, P., Shukla, B. P., Sharma, S., Kishtawal, C. M., and Pal, P. K.: A
high-resolution simulation of catastrophic rainfall over Uttarakhand, India,
Nat. Hazards, 80, 1119–1134, 10.1007/s11069-015-2013-2, 2016.
Ladwig, W. C. and Stensrud, D. J,: Relationship between tropical easterly
waves and precipitation during the North America monsoon, J. Climate, 22,
258–271, 2009.
Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., and Wade, A. J.:
The detection of atmospheric rivers in atmospheric reanalyses and their
links to British winter floods and the large-scale climatic circulation, J.
Geophys. Res.-Atmos., 117, D20106, https://doi.org/10.1029/2012JD018027,
2012.
Lavers, D. A. and Villarini, G: The nexus between atmospheric rivers and
extreme precipitation across Europe, Geophys. Res. Lett., 40, 3259–3264,
https://doi.org/10.1002/grl.50636, 2013a.
Lavers, D. A. and Villarini, G: Atmospheric rivers and flooding over the
Central United States, J. Climate, 26, 7829–7836,
https://doi.org/10.1175/JCLI-D-13-00212.1, 2013b.
Lavers, D. A., Pappenberger, F., and Zsoter, E.: Extending medium-range
predictability of extreme hydrological events in Europe, Nat. Commun., 5,
5382, https://doi.org/10.1038/ncomms6382, 2014.
Lavers, D. A., Ralph, F. M., Waliser, D. E., Gershunov, A., and Dettinger,
M. D.: Climate change intensification of horizontal water vapor transport in
CMIP5, Geophys. Res. Lett., 42, 5617–5625, 2015.
Lavers, D. A., Pappenberger, F., Richardson, D. S., and Zsoter, E.: ECMWF
Extreme Forecast Index for water vapor transport: A forecast tool for
atmospheric rivers and extreme precipitation, Geophys. Res. Lett., 43,
11852–11858, https://doi.org/10.1002/2016GL071320, 2016.
Lenggenhager, S., Croci-Maspoli, M., Bronnimann, S., and Martius, O.: On the
dynamical coupling between atmospheric blocks and heavy precipitation
events: A discussion of the southern Alpine flood in October 2000, Q. J. Roy.
Meteor. Soc., 145, 530–545, https://doi.org/10.1002/qj.3449, 2019.
Lenggenhager, S. and Martius, O.: Atmospheric blocks modulate the odds of
heavy precipitation events in Europe, Clim. Dynam., 53, 4155–4171,
https://doi.org/10.1007/s00382-019-04779-0, 2019.
Liu, B. J., Tan, X. Z., Gan, T. Y., Chen, X. H., Lin, K. R., Lu, M. Q., and Liu, Z. Y.: Global atmospheric moisture transport associated with precipitation extremes: mechanisms and climate change impacts, Wires Water, 7, 1–25, e1412, https://doi.org/10.1002/wat2.1412, 2020.
Liu, C. and Barnes, E. A.: Extreme moisture transport into the Arctic linked
to Rossby wave breaking, J. Geophys. Res. Atmos., 120, 3774–3788, 2015.
Madonna, E., Wernli, H., Joos, H., and Martius, O.: Warm conveyor belts in
the ERA-Interim dataset (1979–2010), Part I: climatology and potential
vorticity evolution, J. Climate, 27, 3–26,
https://doi.org/10.1175/JCLI-D-12-00720.1, 2014.
Mahlstein, I., Bhend, J., Spirig, C., and Martius, O.: Developing an
automated medium-range flood awareness system for Switzerland based on
probabilistic forecasts of integrated water vapor fluxes, Weather
Forecast., 34, 1759–1776, https://doi.org/10.1175/WAF-D-18-0189.1, 2019.
Mahoney, K., Jackson, D. L., Neiman, P., Hughes, M., Darby, L., Wick, G.,
White, A., Sukovich, E., and Cifelli, R.: Understanding the Role of
Atmospheric Rivers in Heavy Precipitation in the Southeast United States,
Mon. Weather Rev., 144, 1617–1632, https://doi.org/10.1175/MWR-D-15-0279.1,
2016.
Maranan, M., Fink, A. H., and Knippertz, P.: Rainfall types over southern
West Africa: Objective identification, climatology and synoptic environment,
Q. J. Roy. Meteor. Soc., 144, 1628–1648, https://doi.org/10.1002/qj.3345,
2018.
Martius, O., Zenklusen, E., Schwierz, C., and Davies, H. C.: Episodes of
Alpine heavy precipitation with an overlying elongated stratospheric
intrusion: A climatology, Int. J. Climatol., 26, 1149–1164,
https://doi.org/10.1002/joc.1295, 2006.
Martius, O., Schwierz, C., and Davies, H. C.: Breaking waves at the
tropopause in the wintertime Northern Hemisphere: Climatological analyses of
the orientation and the theoretical LC1/2 classification, J. Atmos. Sci.,
64, 2576–2592, https://doi.org/10.1175/JAS3977.1, 2007.
Martius, O., Sodemann, H., Joos, H., Pfahl, S.,Winschall, A., Croci-Maspoli,
M., Graf, M., Madonna, E., Mueller, B., Schemm, S., Sedlácek, J.,
Sprenger, M., and Wernli, H.: The role of upper-level dynamics and surface
processes for the Pakistan flood of July 2010, Q. J. Roy. Meteor. Soc.,
139, 1780–1797, https://doi.org/10.1002/qj.2082, 2013.
Massacand, A. C., Wernli, H., and Davies, H. C.: Heavy precipitation on the
alpine southside: An upper-level precursor, Geophys. Res. Lett., 25,
1435–1438, https://doi.org/10.1029/98GL50869, 1998.
McGuirk, J. P., Thompson, A. H., and Schaefer, J. R.: An eastern Pacific
tropical plume, Mon. Weather Rev., 116, 2505–2521, 1988.
McIntyre, M. E. and Palmer, T.: Breaking planetary waves in the
stratosphere, Nature, 305, 593–600, 1983.
Monaghan, A., Rife, D. L., Pinto, J. O., Davis, C. A., and Hannan, J. R.:
Global precipitation extremes associated with diurnally varying low-level jets, J. Climate, 23, 5065–5084, https://doi.org/10.1175/2010JCLI3515.1, 2010.
Moore, B. J., Mahoney, K. M., Sukovich, E. M., Cifelli, R., and Hamill, T.
M.: Climatology and environmental characteristics of extreme precipitation
events in the southeastern United States, Mon. Weather Rev., 143, 718–741,
2015.
Moore, B. J., Keyser, D., and Bosart, L. F.: Linkages between extreme
precipitation events in the central and eastern United States and Rossby
wave breaking, Mon. Weather Rev., 147, 3327–3349, 2019.
Muller, A., Reason, C. J. C., and Fauchereau, N.: Extreme rainfall in the Namib desert during late summer 2006 and influences of regional ocean variability, Int. J. Climatol., 28, 1061–1070, https://doi.org/10.1002/joc.1603, 2008.
Mundhenk, B. D., Barnes, E. A., and Maloney, E. D.: All-season climatology
and variability of atmospheric river frequencies over the North Pacific, J.
Climate, 29, 4885–4903, 2016a.
Mundhenk, B. D., Barnes, E. A., Maloney, E. D., and Nardi, K. M.: Modulation
of atmospheric rivers near Alaska and the US West Coast by northeast Pacific
height anomalies, J. Geophys. Res.-Atmos., 121, 12751–12765,
https://doi.org/10.1002/2016JD025350, 2016b.
NCAR: The NCAR Command Language (Version 6.3.0 and 6.5.0) [software], Boulder, Colorado, UCAR/NCAR/CISL/TDD, https://doi.org/10.5065/D6WD3XH5, 2019.
Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., and Dettinger,
M. D.: Meteorological Characteristics and Overland Precipitation Impacts of
Atmospheric Rivers Affecting the West Coast of North America Based on Eight
Years of SSM/I Satellite Observations, J. Hydrometeorol., 9, 22–47,
https://doi.org/10.1175/2007JHM855.1, 2008.
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R.,
Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger,
J., Gulev, S., Hanley, J., Hewson, T., Inatsu,M., Keay, K., Kew, S. F.,
Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I.
I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M.,
Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F.,
Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community
Effort to Intercompare Extratropical Cyclone Detection and Tracking
Algorithms, B. Am. Meteorol. Soc., 94, 529–547,
https://doi.org/10.1175/BAMS-D-11-00154.1, 2013.
Newell, R., Newell, N., Zhu, Y., and Scott, C.: Tropospheric rivers? A pilot
study, Geophys. Res. Lett., 19, 2401–2404,
https://doi.org/10.1029/92GL02916, 1992.
Nie, J. and Fan, B.: Roles of dynamic forcings and diabatic heating in
summer extreme precipitation in East China and the Southeastern United
States, J. Climate, 32, 5815–5831, 2019.
Papritz, L., Pfahl, S., Rudeva, I., Simmonds, I., Sodemann, H., and Wernli,
H.: The role of extratropical cyclones and fronts for Southern Ocean
freshwater fluxes, J. Climate, 27, 6205–6224,
https://doi.org/10.1175/JCLI-D-13-00409.1, 2014.
Pascale, S. and Bordoni, S.: Tropical and extratropical controls of Gulf of
California surges and summertime precipitation over the southwestern United
States, Mon. Weather Rev., 144, 2695–2718, 2016.
Pasquier J. T., Pfahl S., and Grams, C. M.: Modulation of atmospheric river
occurrence and associated precipitation extremes in the North Atlantic
region by European weather regimes, Geophys. Res. Lett., 46, 1014–1023,
2018.
Payne, A. E. and Magnusdottir, G.: Dynamics of landfalling atmospheric
rivers over the North Pacific in 30 years of MERRA reanalysis, J. Climate,
27, 7133–7150, 2014.
Payne, A. E. and Magnusdottir, G.: Persistent landfalling atmospheric rivers
over the west coast of North America, J. Geophys. Res.-Atmos., 121,
13287–13300, 2016.
Pfahl, S. and Wernli, H.: Quantifying the relevance of cyclones for
precipitation extremes, J. Climate, 25, 6770–6780,
https://doi.org/10.1175/JCLI-D-11-00705.1, 2012.
Pfahl, S., Madonna, E., Boettcher, M., Joos, H., and Wernli, H.: Warm
conveyor belts in the ERA-Interim data set (1979–2010). Part II: Moisture
origin and relevance for precipitation, J. Climate, 27, 27–40,
https://doi.org/10.1175/JCLI-D-13-00223.1, 2014.
Portmann, R., Sprenger, M., and Wernli, H.: The three-dimensional life cycle of potential vorticity cutoffs: A global ERA-interim climatology (1979–2017), Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2020-30, in review, 2020a.
Portmann, R., González-Alemán, J. J., Sprenger, M., and Wernli, H.: How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas), Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, 2020b.
Postel, G. A. and Hitchman M. H.: A climatology of Rossby wave breaking along
the subtropical tropopause, J. Atmos. Sci., 56, 359–373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2,
1999.
Prat, O. P. and Nelson, B. R.: On the link between tropical cyclones and
daily rainfall extremes derived from global satellite observations, J.
Climate, 29, 6127–6135, 2016.
Ralph, F. M., Neiman, P. J., and Wick, G. A.: Satellite and CALJET aircraft
observations of atmospheric rivers over the eastern North Pacific Ocean
during the winter of 1997/98, Mon. Weather Rev., 132, 1721–1745,
https://doi.org/10.1175/1520-0493(2004)132< 1721:SACAOO>2.0.CO;2,
2004.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D.,
Cayan, D. R., and White, A. B.: Flooding on California's Russian River: Role
of atmospheric rivers, Geophys. Res. Lett., 33, L13801,
https://doi.org/10.1029/2006GL026689, 2006.
Ralph, F. M., Kiladis, G. N., Weickmann, K., and Reynolds, D. W.: A
multiscale observational case study of a Pacific atmospheric river
exhibiting tropical/extratropical connections and a mesoscale frontal wave,
Mon. Weather Rev., 139, 1169–1189, 2011.
Ramos, A. M., Trigo, R. M., Liberato, M. L. R., and Tome, R.: Daily
precipitation extreme events in the Iberian Peninsula and its association
with atmospheric rivers, J. Hydrometeorol, 16, 579–597,
https://doi.org/10.1175/JHM-D-14-0103.1, 2015.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: a climatological analysis for 1979–2012, Q. J. Roy.
Meteor. Soc., 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: dynamical aspects of five selected cyclone events,
Q. J. Roy. Meteor. Soc., 142, 3097–3114, 2016.
Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D., and Garreaud, R.:
Strongest MJO on record triggers extreme Atacama rainfall and warmth in
Antarctica, Geophys. Res. Lett., 46, 3482–3491, https://doi.org/10.1029/2018GL081475, 2019.
Röthlisberger, M., Pfahl, S., and Martius, O.: Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes, Geophys. Res. Lett., 43, 10989–10997, 10.1002/2016GL070944, 2016.
Röthlisberger, M., Martius, O., and Wernli, H.: Northern Hemisphere
Rossby wave initiation events on the extratropical jet – A climatological
analysis, J. Climate, 31, 743–760, 2018.
Rubin, S., Ziv, B., and Paldor, N.: Tropical plumes over eastern North
Africa as a source of rain in the Middle East, Mon. Weather Rev., 135,
4135–4148, 2007.
Rutz, J. J., Steenburgh, W. J., and Ralph, F. M.: Climatological
characteristics of atmospheric rivers and their inland penetration over the
western United States, Mon. Weather Rev., 142, 905–921, 2014.
Ryoo, J. M., Kaspi, Y., Waugh, D. W., Kiladis, G. N., Waliser, D. E.,
Fetzer, E. J., and Kim, J.: Impact of Rossby wave breaking on U.S. West
Coast winter precipitation during ENSO events, J. Climate, 26, 6360–6382,
2013.
Schemm, S., Rudeva, I., and Simmonds, I.: Extratropical fronts in the lower
troposphere–global perspectives obtained from two automated methods, Q. J.
Roy. Meteor. Soc., 141, 1686–1698, 2015.
Schlemmer, L., Martius, O., Sprenger, M., Schwierz, C., and Twitchett, A.:
Disentangling the forcing mechanisms of a heavy precipitation event along
the alpine south side using potential vorticity inversion, Mon. Weather
Rev., 138, 2336–2353, 2010.
Sierks, M. D., Kalansky, J., Cannon, F., and Ralph, F. M.: Characteristics,
origins and impacts of summertime extreme precipitation in the Lake Mead
Watershed, J. Climate, 33, 2663–2680, https://doi.org/10.1175/JCLI-D-19-0387.1, 2020.
Simmonds, I, Keay, K., and Bye, J. A. T.: Identification and climatology of
Southern Hemisphere mobile fronts in a modern reanalysis, J. Climate, 25,
1945–1962, 2012.
Skok, G., Tribbia, J., Rakovec, J., and Brown, B.: Object-based analysis of
satellite-derived precipitation systems over the low- and midlatitude
Pacific Ocean, Mon. Weather Rev., 137, 3196–3218, 2009.
Sousa, P. M., Ramos, A. M., Riable, C. C., Messmer, M. Tome, R., and Pinto, J.
G.: North Atlantic integrated water vapor transport – from 850 to 2100 CE:
Impacts on Western European rainfall, J. Climate, 33, 263–279, https://doi.org/10.1175/JCLI-D-19-0348.1, 2020.
Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P.,
Grams, C. M., Knippertz, P., Madonna, E., Schemm, S., Skerlak, B., and
Wernli, H.: Global climatologies of Eulerian and Lagrangian flow features
based on ERA-interim, B. Am. Meteorol. Soc., 98, 1739–1748,
https://doi.org/10.1175/BAMS-D-15-00299.1, 2017.
Sprenger, M., Martius, O., and Arnold, J.: Cold surge episodes over
southeastern Brazil – a potential vorticity perspective, Int. J. Climatol.,
33, 2758–2767, 2013.
Strong, C. and Magnusdottir, G.: Tropospheric Rossby wave breaking and the
NAO/NAM, J. Atmos. Sci., 65, 2861–2876, https://doi.org/10.1175/2008JAS2632.1, 2008.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A
Review of Global Precipitation Data Sets: Data Sources, Estimation, and
Intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018.
Swales, D., Alexander, M., and Hughes, M.: Examining moisture pathways and
extreme precipitation in the U.S. intermountain west using self-organizing
maps, Geophys. Res. Lett., 43, 1727–1735, 2016.
Tan, X. Z., Gan, T. Y., and Chen, Y. D.: Synoptic moisture pathways
associated with mean and extreme precipitation over Canada for summer and
fall, Clim. Dynam., 52, 2959–2979, 2019.
Terti, G., Ruin, I., Anquetin, S., and Gourley, J. J.: A situation-based
analysis of flash flood fatalities in the United States, B. Am. Meteorol.
Soc., 98, 333–345, 2017.
Thorncroft, C., Hoskins, B., and McIntyre, M.: Two paradigms of
baroclinic-wave life-cycle behaviour, Q. J. Roy. Meteor. Soc., 119,
17–55, https://doi.org/10.1002/qj.49711950903, 1993.
Todd, M. C. and Washington, R.: Circulation anomalies associated with
tropical-temperate troughs in southern Africa and the south west Indian
Ocean, Clim. Dynam., 15, 937–951, https://doi.org/10.1007/s003820050323, 1999.
Tsuji, H. and Takayabu, Y. N.: Precipitation enhancement via the interplay
between atmospheric rivers and cutoff lows, Mon. Weather Rev., 147,
2451–2466, 2019.
van Heerden, J. and Taljaard, J. J.: Africa and surrounding waters, in:
Meteorology of the Southern Hemisphere,
Vol. 27, American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-935704-10-2, 1998.
Vellore, R., Kaplan, M., Krishnan, R., Lewis, J., Sabade, S., Deshpande, N.,
Singh, B. Madhura, R., and Rama Rao, M. V. S.: Monsoon–extratropical
circulation interactions in Himalayan extreme rainfall, Clim. Dynam., 46,
3517–3546, 2016.
Vigaud, N. and Robertson, A.: Convection regimes and tropical-midlatitude
interactions over the Intra-American Seas from May to November, Int. J.
Climatol., 37, 987–1000, 2017.
Waliser, D. and Guan, B.: Extreme winds and precipitation during landfall of
atmospheric rivers, Nat. Geosci., 10, 179–183,
https://doi.org/10.1038/ngeo2894, 2017.
Wernli, H. and Schwierz, C.: Surface cyclones in the ERA-40 dataset
(1958-2001). Part I: Novel identification method and global climatology, J.
Atmos. Sci., 63, 2486–2507, https://doi.org/10.1175/JAS3766.1, 2006.
Wernli, H. and Sprenger, M.: Identification and ERA-15 climatology of
potential vorticity streamers and cutoffs near the extratropical tropopause,
J. Atmos. Sci., 64, 1569–1586, https://doi.org/10.1175/JAS3912.1, 2007.
Whelan, J. and Frederiksen, J. S.: Dynamics of the perfect storms: La Nina and Australia's extreme rainfall and floods of 1974 and 2011, Clim. Dynam., 48, 3935–3948, 2017.
White, R. H., Battisti, D. S., Skok, G.: Tracking precipitation events in
time and space in gridded observational data, Geophys. Res. Lett., 44,
8637–8646, 2017.
Wilcox, A., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V.,
Otárola, S., Castro, L., Gironás, J., Cienfuegos, R., and Mao, L.:
An integrated analysis of the March 2015 Atacama floods, Geophys. Res.
Lett., 43, 8035–8043, 2016.
Wilks, D. S.: “The stippling shows statistically significant grid points”:
How research results are routinely overstated and overinterpreted, and what
to do about it, B. Am. Meteorol. Soc., 97, 2263–2273,
https://doi.org/10.1175/BAMS-D-15-00267.1, 2016.
Winschall, A., Sodemann, H., Pfahl, S., and Wernli, H.: How important is
intensified evaporation for Mediterranean precipitation extremes?, J.
Geophys. Res.-Atmos., 119, 5240–5256, https://doi.org/10.1002/2013JD021175, 2014.
Wright, W. J.: Tropical-extratropical cloudbands and Australian rainfall: I.
Climatalogy, Int. J. Climatol., 17, 807–829, 1997.
Yang, L., Smith, J., Baeck, M. L., and Morin, E.: Flash flooding in
arid/semiarid regions: climatological analyses of flood-producing storms in
central Arizona during the North American Monsoon, J. Hydrometeorol., 20,
1449–11471, https://doi.org/10.1175/JHM-D-19-0016.1, 2019.
Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., and Ribbe, L.: Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile, Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, 2017.
Zavadoff, B. L. and Kirtman, B. P.: Dynamic and thermodynamic modulators of
European atmospheric rivers, J. Climate, 33, 4167–4185,
https://doi.org/10.1175/JCLI-D-19-0601.1, 2020.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in
extremes based on daily temperature and precipitation data, WIRES Clim.
Change, 2, 851–870, https://doi.org/10.1002/wcc.147, 2011.
Short summary
Heavy rainfall can cause dramatic societal impacts. This paper presents the first global study on the role of Rossby wave breaking and intense moisture transport for extreme precipitation events. Several catastrophic flood events demonstrate the importance of these two processes, complemented by a detailed climatological analysis. These findings present a new perspective on the meteorology of extreme precipitation events with implications for their prediction and studies on their future changes.
Heavy rainfall can cause dramatic societal impacts. This paper presents the first global study...