Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-361-2022
https://doi.org/10.5194/wcd-3-361-2022
Research article
 | 
31 Mar 2022
Research article |  | 31 Mar 2022

Differentiating lightning in winter and summer with characteristics of the wind field and mass field

Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis

Related authors

Thunderstorm Types in Europe
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1453,https://doi.org/10.5194/egusphere-2022-1453, 2023
Short summary

Related subject area

Dynamical processes in midlatitudes
Anomalous subtropical zonal winds drive decreases in southern Australian frontal rain
Acacia S. Pepler and Irina Rudeva
Weather Clim. Dynam., 4, 175–188, https://doi.org/10.5194/wcd-4-175-2023,https://doi.org/10.5194/wcd-4-175-2023, 2023
Short summary
Origin of low-tropospheric potential vorticity in Mediterranean cyclones
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023,https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Robust poleward jet shifts in idealised baroclinic-wave life-cycle experiments with noisy initial conditions
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023,https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Revisiting the wintertime emergent constraint of the southern hemispheric midlatitude jet response to global warming
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023,https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary
The global atmospheric energy transport analysed by a wavelength-based scale separation
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023,https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary

Cited articles

Bentley, M. L., Riley, C., and Mazur, E.: A Winter-Season Lightning Climatology for the Contiguous United States, Meteorol. Atmos. Phys., 131, 1327–1340, https://doi.org/10.1007/s00703-018-0641-2, 2019. a
Brook, M., Nakano, M., Krehbiel, P., and Takeuti, T.: The Electrical Structure of the Hokuriku Winter Thunderstorms, J. Geophys. Res.-Oceans, 87, 1207–1215, https://doi.org/10.1029/JC087iC02p01207, 1982. a, b, c, d, e, f
Cotton, W., Bryan, G., and van den Heever, S.: Storm and Cloud Dynamics. The Dynamics of Clouds and Precipitating Mesoscale Systems, International Geophysics Series, vol. 99, Academic Press, 2nd edn., ISBN 978-0-12-0885428, 2011. a
Dewan, A., Ongee, E. T., Rafiuddin, M., Rahman, M. M., and Mahmood, R.: Lightning Activity Associated with Precipitation and CAPE Over Bangladesh, Int. J. Climatol., 38, 1649–1660, https://doi.org/10.1002/joc.5286, 2018. a
Diendorfer, G., Pichler, H., and Mair, M.: Some Parameters of Negative Upward-Initiated Lightning to the Gaisberg Tower (2000–2007), IEEE T. Electromagn. C., 51, 443–452, https://doi.org/10.1109/TEMC.2009.2021616, 2009. a
Download
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.