Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-361-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-361-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Differentiating lightning in winter and summer with characteristics of the wind field and mass field
Deborah Morgenstern
CORRESPONDING AUTHOR
Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck, Innsbruck, Austria
Department of Statistics, University of Innsbruck, Innsbruck, Austria
Isabell Stucke
Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck, Innsbruck, Austria
Department of Statistics, University of Innsbruck, Innsbruck, Austria
Thorsten Simon
Department of Statistics, University of Innsbruck, Innsbruck, Austria
Georg J. Mayr
Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck, Innsbruck, Austria
Achim Zeileis
Department of Statistics, University of Innsbruck, Innsbruck, Austria
Related authors
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Fiona Fix-Hewitt, Achim Zeileis, Isabell Stucke, Reto Stauffer, and Georg J. Mayr
EGUsphere, https://doi.org/10.5194/egusphere-2025-3552, https://doi.org/10.5194/egusphere-2025-3552, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Atmospheric deserts are air masses from the boundary layer of desert regions. This study tracked them from North Africa to Europe during a two-year period (May 2022–April 2024). They can occur up to 60 % of the time, and can span large parts of Europe. They typically last about a day, and can alter the atmosphere throughout the free troposphere. On its way from Africa the air either rises and may become even warmer and drier, or it stays at mid-altitudes and cools, or retains its properties.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024, https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
Short summary
Atmospheric deserts (ADs) are air masses that are transported away from hot, dry regions. Our study introduces this new concept. ADs can suppress or boost thunderstorms and potentially contribute to the formation of heat waves, which makes them relevant for forecasting extreme events. Using a novel detection method, we follow an AD directly from North Africa to Europe for a case in June 2022, allowing us to analyse the air mass at any time and investigate how it is modified along the way.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022, https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Cited articles
Bentley, M. L., Riley, C., and Mazur, E.: A Winter-Season Lightning Climatology for the Contiguous United States, Meteorol. Atmos. Phys., 131, 1327–1340, https://doi.org/10.1007/s00703-018-0641-2, 2019. a
Cotton, W., Bryan, G., and van den Heever, S.: Storm and Cloud
Dynamics. The Dynamics of Clouds and Precipitating Mesoscale Systems,
International Geophysics Series, vol. 99, Academic Press, 2nd edn., ISBN 978-0-12-0885428, 2011. a
Dewan, A., Ongee, E. T., Rafiuddin, M., Rahman, M. M., and Mahmood, R.: Lightning Activity Associated with Precipitation and CAPE Over Bangladesh, Int. J. Climatol., 38, 1649–1660, https://doi.org/10.1002/joc.5286, 2018. a
Diendorfer, G., Pichler, H., and Mair, M.: Some Parameters of Negative Upward-Initiated Lightning to the Gaisberg Tower (2000–2007), IEEE T. Electromagn. C., 51, 443–452, https://doi.org/10.1109/TEMC.2009.2021616, 2009. a
Diendorfer, G., Pichler, H., and Schulz, W.: LLS Detection of Upward Initiated Lightning Flashes, in: Proc. 9th Asia-Pacific International Conference on Lightning (APL), 23—26 June 2015, Nagoya, Japan, TC2.2-7, p. 5, https://www.ove.at/fileadmin/user_upload/aldis/publication/2015/2_APL2015_Diendorfer.pdf (last access: 17 June 2021), 2015. a
Doswell III, C. A.: The Distinction between Large-Scale and Mesoscale Contribution to Severe Convection: A Case Study Example, Weather Forecast., 2, 3–16, https://doi.org/10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2, 1987. a
Dotzek, N., Rabin, R. M., Carey, L. D., MacGorman, D. R., McCormick, T. L., Demetriades, N. W., Murphy, M. J., and Holle, R. L.: Lightning Activity Related to Satellite and Radar Observations of a Mesoscale Convective System over Texas on 7–8 April 2002, Atmos. Res., 76, 127–166, https://doi.org/10.1016/j.atmosres.2004.11.020, 2005. a
Engholm, C. D., Williams, E. R., and Dole, R. M.: Meteorological and Electrical Conditions Associated with Positive Cloud-to-Ground Lightning, Mon. Weather Rev., 118, 470–487, https://doi.org/10.1175/1520-0493(1990)118<0470:MAECAW>2.0.CO;2, 1990. a, b
Etten-Bohm, M., Yang, J., Schumacher, C., and Jun, M.: Evaluating the Relationship Between Lightning and the Large-Scale Environment and its Use for Lightning Prediction in Global Climate Models, J. Geophys. Res.-Atmos., 126, 1–18, https://doi.org/10.1029/2020JD033990, 2021. a
Gatzen, C. P., Fink, A. H., Schultz, D. M., and Pinto, J. G.: An 18 year climatology of derechos in Germany, Nat. Hazards Earth Syst. Sci., 20, 1335–1351, https://doi.org/10.5194/nhess-20-1335-2020, 2020. a
Goto, Y. and Narita, K.: Electrical Characteristics of Winter Lightning, J. Atmos. Terr. Phys., 57, 449–458, https://doi.org/10.1016/0021-9169(94)00072-V, 1995. a
Hartigan, J. A. and Wong, M.: A K-Means Clustering Algorithm, J. Roy. Stat. Soc. C-Appl., 28, 100–108, https://doi.org/10.2307/2346830, 1979. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018a. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018b. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hoyer, S. and Hamman, J.: xarray: N-D Labeled Arrays and Datasets in Python, Journal of Open Research Software, 5, 10, https://doi.org/10.5334/jors.148, 2017. a
Ishii, M. and Saito, M.: Lightning Electric Field Characteristics Associated With Transmission-Line Faults in Winter, IEEE T. Electromagn. C., 51, 459–465, https://doi.org/10.1109/TEMC.2009.2025496, 2009. a
Johns, R. H., Davies, J. M., and Leftwich, P. W.: Some Wind and Instability Parameters Associated with Strong and Violent Tornadoes: 2. Variations in the Combinations of Wind and Instability Parameters, Geophysical Monograph Series, American Geophysical Union, 583–590, https://doi.org/10.1029/gm079p0583, 1993. a
Kaltenböck, R., Diendorfer, G., and Dotzek, N.: Evaluation of Thunderstorm Indices from ECMWF Analyses, Lightning Data and Severe Storm Reports, Atmos. Res., 93, 381–396, https://doi.org/10.1016/j.atmosres.2008.11.005, 2009. a, b
Kolendowicz, L., Taszarek, M., and Czernecki, B.: Atmospheric Circulation and Sounding-Derived Parameters Associated with Thunderstorm Occurrence in Central Europe, Atmos. Res., 191, 101–114, https://doi.org/10.1016/j.atmosres.2017.03.009, 2017. a, b, c, d
Levin, Z., Yair, Y., and Ziv, B.: Positive Cloud-to-Ground Flashes and Wind Shear in Tel-Aviv Thunderstorms, Geophys. Res. Lett., 23, 2231–2234, https://doi.org/10.1029/96GL00709, 1996. a
Liu, D., Qie, X., Xiong, Y., and Feng, G.: Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing, Adv. Atmos. Sci., 28, 866–878, https://doi.org/10.1007/s00376-010-0001-8, 2011. a
López, J. A., Pineda, N., Montanyà, J., van der Velde, O., Fabró, F., and Romero, D.: Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array, Atmos. Res., 197, 255–264, https://doi.org/10.1016/j.atmosres.2017.06.030, 2017. a
MacQueen, J. B.: Some Methods for Classification and Analysis of Multivariate Observations, in: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 21 June–18 July 1965 and 27 December 1965–7 January 1966, Statistical Laboratory of the University of California, Berkeley, USA, vol. 1, edited by: Cam, L. M. L. and Neyman, J., University of California Press, 281–297, https://projecteuclid.org/proceedings/berkeley-symposium-on-mathematical-statistics-and-probability/proceedings-of-the-fifth-berkeley-symposium-on-mathematical-statistics-and-probability-volume-1-statistics/toc/bsmsp/1200512974 (last access: 30 March 2022), 1967. a, b
Mardia, K. V., Kent, J. T., and Bibby, J. M.: Multivariate Analysis, Probability and Mathematical Statistics, Academic Press, London, 10th edn., ISBN 0-12-471250-9, 1995. a
Markowski, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes, vol. 2, John Wiley & Sons, Ltd., https://doi.org/10.1002/9780470682104, 2010. a
Matsui, M., Michishita, K., and Yokoyama, S.: Cloud-to-Ground Lightning Flash Density and the Number of Lightning Flashes Hitting Wind Turbines in Japan, Electr. Pow. Syst. Res., 181, 106066, https://doi.org/10.1016/j.epsr.2019.106066, 2020. a, b
Mora, M., Riesco, J., de Pablo Dávila, F., and Rivas Soriano, L.: Atmospheric Background Associated with Severe Lightning Thunderstorms in Central Spain, Int. J. Climatol., 35, 558–569, https://doi.org/10.1002/joc.4002, 2015. a
Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector Data, R J., 10, 439–446, https://doi.org/10.32614/RJ-2018-009, 2018 (code available at: https://r-spatial.github.io/sf/index.html, last access: 30 March 2022). a
Pebesma, E.: stars: Spatiotemporal Arrays, Raster and Vector Data Cubes, R package version 0.5-3 [code], https://CRAN.R-project.org/package=stars, last access: 8 June 2021. a
Pierce, D.: ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, R package version 1.17 [code], https://CRAN.R-project.org/package=ncdf4 (last access: 30 March 2022), 2019. a
Poelman, D. R., Schulz, W., Diendorfer, G., and Bernardi, M.: The European lightning location system EUCLID – Part 2: Observations, Nat. Hazards Earth Syst. Sci., 16, 607–616, https://doi.org/10.5194/nhess-16-607-2016, 2016. a, b, c
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, R version 4.1.3 [code], https://www.R-project.org/ (last access: 10 March 2022), 2021. a
Rakov, V. A.: A Review of Positive and Bipolar Lightning Discharges, B. Am. Meteorol. Soc., 84, 767–776, https://doi.org/10.1175/BAMS-84-6-767, 2003. a
Rakov, V. A. and Uman, M. A.: Lightning: Physics and Effects, Cambridge University Press, ISBN 9780521035415, 2003. a
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., and Moreira, A.: Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model, ISPRS J. Photogramm., 132, 119–139, https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a
Salvador, A., Pineda, N., Montanyà, J., López, J. A., and Solà, G.: Thunderstorm Charge Structures Favouring Cloud-to-Ground Lightning, Atmos. Res., 257, 105577, https://doi.org/10.1016/j.atmosres.2021.105577, 2021. a
Saunders, C.: Charge Separation Mechanisms in Clouds, in: Planetary Atmospheric Electricity. Space Sciences Series od ISSI, vol. 30, edited by: Leblanc, F., Aplin, K., Yair, Y., Harrison, R., Lebreton, J., and Blanc, M., Springer, 137, 335–353, https://doi.org/10.1007/s11214-008-9345-0, 2008. a
Schulz, W., Diendorfer, G., Pedeboy, S., and Poelman, D. R.: The European lightning location system EUCLID – Part 1: Performance analysis and validation, Nat. Hazards Earth Syst. Sci., 16, 595–605, https://doi.org/10.5194/nhess-16-595-2016, 2016. a, b
Schulzweida, U.: CDO User Guide, Zenodo [code], https://doi.org/10.5281/zenodo.3539275, 2019. a
Sherburn, K. D. and Parker, M. D.: Climatology and Ingredients of Significant Severe Convection in High-Shear, Low-CAPE Environments, Weather Forecast., 29, 854–877, https://doi.org/10.1175/WAF-D-13-00041.1, 2014. a
South, A.: rnaturalearth: World Map Data from Natural Earth, R package version 0.1.0 [code], https://CRAN.R-project.org/package=rnaturalearth (last access: 30 March 2022), 2017. a
Stolz, D. C., Rutledge, S. A., Pierce, J. R., and van den Heever, S. C.: A Global Lightning Parameterization Based on Statistical Relationships Among Environmental Factors, Aerosols, and Convective Clouds in the TRMM Climatology, J. Geophys. Res.-Atmos., 122, 7461–7492, https://doi.org/10.1002/2016JD026220, 2017. a
Stucke, I., Morgenstern, D., Diendorfer, G., Mayr, G. J., Pichler, H.,
Schulz, W., Simon, T., and Zeileis, A.: Upward Lightning at Tall
Structures: Atmospheric Drivers for Trigger Mechanisms and Flash Type,
arXiv [preprint],
arXiv:2201.05663v2, 2 February 2022. a
Takagi, N., Takeuti, T., and Nakai, T.: On the Occurrence of Positive Ground Flashes, J. Geophys. Res.-Atmos., 91, 9905–9909, https://doi.org/10.1029/JD091iD09p09905, 1986. a
Takahashi, T., Sugimoto, S., Kawano, T., and Suzuki, K.: Microphysical Structure and Lightning Initiation in Hokuriku Winter Clouds, J. Geophys. Res.-Atmos., 124, 13156–13181, https://doi.org/10.1029/2018JD030227, 2019. a, b, c
Takeuti, T., Nakano, M., Brook, M., Raymond, D. J., and Krehbiel, P.: The Anomalous Winter Thunderstorms of the Hokuriku Coast, J. Geophys. Res.-Oceans, 83, 2385–2394, https://doi.org/10.1029/JC083iC05p02385, 1978. a, b, c, d
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B., Kolendowicz, L., Lagouvardos, K., Kotroni, V., and Schulz, W.: A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources, J. Climate, 32, 1813–1837, https://doi.org/10.1175/JCLI-D-18-0372.1, 2019.
a
Unidata: Network Common Data Form (netCDF), UCAR/Unidata,
Boulder, CO [code], https://doi.org/10.5065/D6H70CW6, 2020. a
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, Python
Documentation Manual Part 2, CreateSpace Independent Publishing
Platform, Scotts Valley, CA [code], https://www.python.org/ (last access: 30 March 2022), 2009. a
Vogel, S., Holbøll, J., López, J., Garolera, A. C., and Madsen, S. F.: European Cold Season Lightning Map for Wind Turbines Based on Radio Soundings, in: 2016 33rd International Conference on Lightning Protection (ICLP), 25–30 September 2016, Estoril, Portugal, 16556461, https://doi.org/10.1109/ICLP.2016.7791373, 2016. a, b
Wang, D. and Takagi, N.: Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan, IEEJ Transactions on Power and Energy, 132, 568–572, https://doi.org/10.1541/ieejpes.132.568, 2012. a
Wang, D., Zheng, D., Wu, T., and Takagi, N.: Winter Positive Cloud-to-Ground Lightning Flashes Observed by LMA in Japan, IEEJ T. Electr. Electr., 16, 402–411, https://doi.org/10.1002/tee.23310, 2021. a, b
Wapler, K.: High-Resolution Climatology of Lightning Characteristics within Central Europe, Meteorol. Atmos. Phys., 122, 175–184, https://doi.org/10.1007/s00703-013-0285-1, 2013. a
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.: Accuracy Assessment of the Global TanDEM-X Digital Elevation Model with GPS Data, ISPRS J. Photogramm., 139, 171–182, https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018. a
Westermayer, A., Groenemeijer, P., Pistotnik, G., Sausen, R., and Faust, E.: Identification of Favorable Environments for Thunderstorms in Reanalysis Data, Meteorol. Z., 26, 59–70, https://doi.org/10.1127/metz/2016/0754, 2016. a
Williams, E., Mushtak, V., Rosenfeld, D., Goodman, S., and Boccippio, D.: Thermodynamic Conditions Favorable to Superlative Thunderstorm Updraft, Mixed Phase Microphysics and Lightning Flash Rate, Atmos. Res., 76, 288–306, https://doi.org/10.1016/j.atmosres.2004.11.009, 2005. a
WMO: International Meteorological Vocabulary, WMO, Publication no. 182, 2nd edn., https://library.wmo.int/doc_num.php?explnum_id=4712 (last access: 18 August 2021), 1992. a
Wu, T., Wang, D., and Takagi, N.: Compact Lightning Strokes in Winter Thunderstorms, J. Geophys. Res.-Atmos., 126, e2021JD034932, https://doi.org/10.1029/2021JD034932, 2021. a
Yoshida, S., Yoshikawa, E., Adachi, T., Kusunoki, K., Hayashi, S., and Inoue, H.: Three-Dimensional Radio Images of Winter Lightning in Japan and Characteristics of Associated Charge Structure, IEEJ T. Electr. Electr., 14, 175–184, https://doi.org/10.1002/tee.22795, 2018. a, b, c
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.
Wintertime lightning in central Europe is rare but has a large damage potential for tall...