Articles | Volume 6, issue 2
https://doi.org/10.5194/wcd-6-447-2025
https://doi.org/10.5194/wcd-6-447-2025
Research article
 | 
17 Apr 2025
Research article |  | 17 Apr 2025

Revealing the dynamics of a local Alpine windstorm using large-eddy simulations

Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein

Related authors

psit 1.0: A System to Compress Lagrangian Flows
Alexander Pietak, Langwen Huang, Luigi Fusco, Michael Sprenger, Sebastian Schemm, and Torsten Hoefler
EGUsphere, https://doi.org/10.5194/egusphere-2025-793,https://doi.org/10.5194/egusphere-2025-793, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Insights from hailstorm track analysis in European climate change simulations
Killian P. Brennan, Iris Thurnherr, Michael Sprenger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-918,https://doi.org/10.5194/egusphere-2025-918, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Synoptic perspective on the conversion and maintenance of local available potential energy in extratropical cyclones
Marc Federer, Lukas Papritz, Michael Sprenger, and Christian M. Grams
Weather Clim. Dynam., 6, 211–230, https://doi.org/10.5194/wcd-6-211-2025,https://doi.org/10.5194/wcd-6-211-2025, 2025
Short summary
Frequency anomalies and characteristics of extratropical cyclones during extremely wet, dry, windy, and calm seasons in the extratropics
Hanin Binder and Heini Wernli
Weather Clim. Dynam., 6, 151–170, https://doi.org/10.5194/wcd-6-151-2025,https://doi.org/10.5194/wcd-6-151-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary

Related subject area

Boundary-layer dynamics incl. coupling to land, ocean and ice
Investigating the influence of changing ice surfaces on gravity wave formation impacting glacier boundary layer flow with large-eddy simulations
Brigitta Goger, Ivana Stiperski, Matthis Ouy, and Lindsey Nicholson
Weather Clim. Dynam., 6, 345–367, https://doi.org/10.5194/wcd-6-345-2025,https://doi.org/10.5194/wcd-6-345-2025, 2025
Short summary
Exploring the daytime boundary layer evolution based on Doppler spectrum width from multiple coplanar wind lidars during CROSSINN
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
Weather Clim. Dynam., 5, 609–631, https://doi.org/10.5194/wcd-5-609-2024,https://doi.org/10.5194/wcd-5-609-2024, 2024
Short summary
Forcing for varying boundary layer stability across Antarctica
Mckenzie J. Dice, John J. Cassano, and Gina C. Jozef
Weather Clim. Dynam., 5, 369–394, https://doi.org/10.5194/wcd-5-369-2024,https://doi.org/10.5194/wcd-5-369-2024, 2024
Short summary
Variations in boundary layer stability across Antarctica: a comparison between coastal and interior sites
Mckenzie J. Dice, John J. Cassano, Gina C. Jozef, and Mark Seefeldt
Weather Clim. Dynam., 4, 1045–1069, https://doi.org/10.5194/wcd-4-1045-2023,https://doi.org/10.5194/wcd-4-1045-2023, 2023
Short summary
Adverse impact of terrain steepness on thermally driven initiation of orographic convection
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023,https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary

Cited articles

Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, SoftwareX, 15, 100707, https://doi.org/10.1016/j.softx.2021.100707, 2021. a
Allen, T. and Brown, A. R.: Modelling of turbulent form drag in convective conditions, Bound.-Lay. Meteorol., 118, 421–429, https://doi.org/10.1007/s10546-005-9002-z, 2006. a, b
Ambaum, M. H. P. and Marshall, D. P.: The effects of stratification on flow separation, J. Atmos. Sci., 62, 2618–2625, https://doi.org/10.1175/JAS3485.1, 2005. a, b, c, d, e
Arya, S. P. S., Capuano, M. E., and Fagen, L. C.: Some fluid modeling studies of flow and dispersion over two-dimensional low hills, Atmos. Environ., 21, 753–764, https://doi.org/10.1016/0004-6981(87)90071-0, 1987. a
Baines, P. G.: Topographic effects in stratified flows, Cambridge monographs on mechanics, Cambridge University Press, Cambridge, UK, 2nd edn., ISBN 978-1-108-48152-6, 2022. a, b, c, d, e, f, g, h
Download
Short summary
This study investigates the Laseyer, a local windstorm in a narrow Swiss valley characterized by strong southeasterly winds during northwesterly ambient flow. Using large-eddy simulations (LESs) with 30 m grid spacing, this is the first study to reveal that the extreme gusts in the valley are caused by an amplifying interplay of two recirculation regions. Modifying terrain and ambient wind conditions affects the windstorm's intensity and highlights the importance of topographic details in LES.
Share